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Abstract: Heavy metals are toxic, non-biodegradable
pollutants that pose serious risks to human health and
the environment, even at trace concentrations. The
contamination of drinking water and groundwater by
heavy metals requires urgent attention. Nanotechnology
has advanced significantly over the past decade, offering
innovative solutions for water purification, particularly
through the adsorption of heavy metal ions using nano-
materials. This study focuses on the synthesis of magnetic
nanoparticles, their adsorption capacity, and the desorption
process. Additionally, the effects of key experimental
parameters — such as contact time, ion concentration, pH,
temperature, ionic strength, and adsorbent dose — on the
removal efficiency of metal ions are examined. The findings
underscore the potential of magnetic nanoparticles for
effective heavy metal remediation in water.
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1 Introduction

One of the most significant natural resources on the planet
is water." Because heavy metal ions can physiologically
accumulate in the environment and enter food chains, the
pollution of water resources by heavy metals from industrial
wastes has a substantial impact on life.2 Furthermore,
because microorganisms cannot decompose into the
environment, heavy metals might potentially have negative
impacts on other ecological receptors and the environment.
Heavy metals are defined as elements that have atomic
weights that range from 63.5 to 200.6 and densities that are
greater than 5 g/cm®.3® Furthermore, the existence of highly
toxic water contaminants like Arsenic (V), Cadmium (II),
Mercury (II), Nickel (I), Lead (I1I), Chromium (VI), Manga-
nese (II), etc., which are in the form of heavy metal ions,
can have detrimental effects on living things.* When the
amounts of certain heavy metal ions exceed the threshold
levels, they have the potential to become carcinogenic
and even deadly.5> Furthermore, due to the widespread
distribution of these pollutants, removing heavy metal ions
from water is challenging.® The adsorption technique is
thought to be safe, effective, clean, and technically feasible.”
Adsorbent materials are easy to create and use, have a high
porosity, a wide surface area, and a strong resistance to
harmful chemicals.® This particular research review focuses
on water contamination by heavy metals and methods of
heavy metal removal,” since water quality is improving with
rising technological advancements1'® and water purification
is crucial to minimize hazardous effects and disruption of
ecological equilibrium.

To increase the effectiveness of heavy metal removal
from water systems, nanotechnology has recently been
combined with a number of cutting-edge methods.""*
Because of their distinct sizes and physical characteristics,
nanoscale materials have various advantages when used,
making nanoscience one of the most significant areas of
research and development in modern science."* Organic
contaminants, colloids, and tiny particles are difficult to
separate using traditional techniques; however, magnetic
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nanoparticles enable this.”® Due to their ease of separation
after use, magnetic absorbent materials have become
increasingly in demand in recent times for the removal of
pollutants.’® ' Thus, the purpose of this work is to review
and explain the use of magnetic nanoparticles in adsorption
to remove heavy metals from water and wastewater. The
operating parameters that control this process are also
covered, including how the adsorption process is affected by
the treatment solution’s pH, contact time, temperature,
initial heavy metal concentration, and adsorbent dosage.

2 Nanoparticles
2.1 Definition of a nanoparticle

Nanoparticles are defined as synthetic particles with one
or more dimensions of less than 100 nm by the American
Society for Testing and Materials (ASTM, 2006) and the
British Standards Institute (BSL, 2005) in recent work.'®
“Unique properties which differentiate the nanoparticles
from the original materials, typically developed at a critical
scale of 100 nm” is a comment that goes along with this
definition. As a result, the newly indicated features
completely rely on the fact that at the nanoparticle scale. The
macroscopic solid’s qualities differ from its physicochemical
characteristics. It is caused by both the quantum size effects
and their high (surface/volume) ratio."

2.2 Synthesis and characterization of
magnetic nanoparticles

The steps of the adsorption process are synthesis, magnetic
nanoparticle characterization, and, in the end, adsorption
evaluation using certain techniques, which are detailed
below. Since characterization is used to visualize and
analyze the outcomes of the first stage, synthesis, the two
processes are connected. Chemical techniques such as
coprecipitation,” fractional emulsions,” The synthesis of
sol-gel,”> * acoustic and chemical reactions,** processes
involving hydrothermal energy,” the process of hydroly-
sis,?® ?7 thermolysis of beginning substances,”® An infusion
of flow,” * the synthesis of electrospray, the solvothermal
technique,®* and ablation using a laser3®® have all been
used over the years to perform bhottom-up or top-down
approaches for the synthesis of nanoparticles. Moreover,
a number of variables, including temperature and pH,
influence the stability and size of nanoparticles. The
synthesis techniques mentioned above could be used to
create nanoparticles of various sizes and forms **
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2.3 Carbon-based nanomaterials

Because of their unique chemical and physical characteris-
tics, carbonaceous functional materials are effective types
of nano adsorbents. Due to their enormous potential,
numerous attempts have been made in the past to produce
different carbon-based nanostructures, such as graphene,
carbon-based nanocomposites, and carbon nanotubes
(CNTs) for the purpose of eliminating different types of
pollutants or treating wastewater contamination; they are
attracting the attention of current researchers. CNTs are
the most promising of these because of their electrical
conductivity, huge surface area, small size, and hollow
cylindrical form. SWCNTs, which stand for single-walled
carbon nanotubes, and MWCNTs, which stand for multi-
walled carbon nanotubes, are the two principal varieties of
carbon nanotubes (CNTs). Several pieces of study have
addressed the utilization of carbon nanotubes (CNTs) for the
purpose of removing heavy metal ions from waste water.
For example, Rahbari and Goharrizi reported that lead (II)
was able to adsorb from water onto carbon nanotubes
CNTs with an adsorption capacity of 70.1 mg/g during the
experiment.”® The application of CNTs is for removing ions
by adsorptive with removal capabilities for Copper (II) > lead
(I1) > Cobalt (II) > Zinc (II) > Manganese (II) was also proven
by Stafiej and Pyrzynska.*® A different study found that
MnO,-coated oxidized multiwalled carbon nanotubes
(MnO,/oMWCNTs) had a capacity of adsorption 41.6 mg/g
and were able to successfully remove cadmium (II) ions from
aqueous solution.*” Because they have better qualities than
their equivalents or traditional carbonaceous materials,
carbon-layered silicate nanocomposites have recently
attracted a lot of scientific interest. An ecologically friendly
montmorillonite/carbon (MMT/C) adsorbent with a maximum
adsorption capacity of 247.85mg/g was created for the
removal of lead (I) in research by Zhu et al.3*® Another
carbon-based nanomaterial that has drawn a lot of interest is
graphene, which is used in environmental cleanup. Graphene
oxide has a high hydrophilic character because of the exis-
tence of oxygen-containing functional groups on its surface,
which causes it to disperse finely in water. Given its unique
functional groups and large surface area, graphene oxide is a
viable option for wastewater purification. These nano-
particles work well against a variety of contaminants found
in wastewater. The process of removing heavy metal ions
involves complexing metal ions with graphene’s oxide bind-
ing site by adsorption. The graphene’s delocalized m-electron
system is impacted by organic contaminants such as dyes.*
GO nanosheets were produced by Zhao et al. to remove
Cadmium (II) and Cobalt (II) adsorptively. The results showed
that the adsorption capabilities for Cadmium (II) and Cobalt
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(I1) were 106.3 and 68.2 mg/g, respectively. Zeng et al. devel-
oped a 3D MnO, graphene oxide hydrogel in a different
scientific investigation.*’

2.4 Advantages of nanoparticles

There is a high surface area to volume ratio when
nanoparticle size decreases. It is largely responsible for
the characteristics involving interactions at the interface
between the thing under consideration and its surround-
ings. Due to this characteristic, the material is more chemi-
cally reactive, which makes it suitable for applications
involving heterogeneous catalysis.*’ Beyond their tiny size,
nanomaterials frequently exhibit certain characteristics,
including surface and quantum effects. Their peculiar
adsorption capacity, which is advantageous for removing
heavy metal ions, is a result of these characteristics. An
enormous amount of research has been done thus far on
nanomaterials to explore potential uses in the treatment
of heavy metal-contaminated water. As a viable substitute
for adsorbing heavy metals from wastewater, they have
shown a lot of promise.*

The remarkable rate of adsorption that nano adsorbents
may hold in a short period has piqued curiosity. Moreover,
organic and inorganic contaminants based on nano
adsorbents can be removed from water by using them as a
separation medium.* A survey of the literature reveals that
numerous attempts have already been made to clean
wastewater, using nanoparticles as an adsorbent to produce
effective outcomes. For the nano-size adsorbents to be
commercialized for decontaminating water, a few obstacles
must be completely overcome. These obstacles include
selectivity, stability, longevity of the material, and excellent
adsorption measurements. Toxic ions and chemicals from
wastewater must be controlled. Hence, an active strategy for
treating wastewater and creating novel nano adsorbents is
desperately needed.** Because they may easily be separated
from wastewater by utilizing both the magnetite core
and the organic or inorganic shells and because of their
superior absorption and heavy metal-absorbing powers.
The ability to remove heavy metals from modified magnetite
nanoparticles with envelopes as their fundamental
structure has shown significant promise.**

3 Different nanomaterial kinds for
the removal of heavy metals

Inorganic and carbon-based nanoparticles are the two
categories into which nanomaterials are divided.* In the
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realm of environmental cleanup, they have found wide-
spread application. The most widely used and researched
nanomaterials among them are carbon nanotubes (CNTS),
titanium dioxide nanoparticles (TiO, NPs), and nano zero-
valent iron (NZVI).*® *’ The uses and best practices for the
removal of heavy metals from water by using nanomaterials
are collected in Table 1.

4 Mechanisms of heavy metal
removal by nanoparticles

There is ongoing discussion over the interaction processes
that enable the removal of heavy metal ions from aqueous
solutions, as they are currently poorly understood.”* Sorp-
tion, sorption-reduction, or photocatalytic degradation are
the most common remediation techniques used today to
remove these contaminants.” To understand these pollut-
ants’ possible impact on the environment and establish
alternative removal routes, it becomes essential to identify
the physicochemical characteristics of these pollutants and
combine contemporary characterization (such as spectros-
copy) with theoretical predictions at the molecular level
become crucial. Because of the chemical interactions be-
tween functional groups — particularly those with various
oxygen-containing groups, hydroxyl groups, or carbonyl
groups — and metal ions, sorption is one of the most
straightforward processes for removing heavy metal ions
from solutions.> It is important to note that sorption is
defined by the International Union of Pure and Applied
Chemistry (IUPAC) as the process of sorping (adsorbed or
absorbed) a material (sorbate) on or in another substance
(sorbent).” Strong surface complexes that form through
hydrophobic contacts, m-m-donor—acceptor interactions,
hydrogen bond interactions, and electrostatic attraction
promote this process.”*>° Comparably, sorption-reduction is
a technique that turns high-valent metal ions into low-valent
metal ions by immobilizing and reducing them. Reduction of
the high valent metal ions produces more dense particles or
clusters that precipitate more easily. This sorption-reduction
process is commonly seen in the reduction of Cr®* to Cr** and
Se** to Se’*. Low valent metal ions are, therefore much more
biocompatible in their native environment. High-valent
metal ions are generally thought to be significantly more
mobile than low-valent metal ions, which regulates this
process. Lastly, although the method of photocatalytic
degradation is widely used to eliminate a variety of organic
pollutants from solutions, including POPs (persistent organic
pollutants), it has also been widely used to eliminate low
concentrations of metalloid ions and heavy metals.*” ® This
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Table 1: Uses of nanomaterials for environmental heavy metal removal.
Types of nanomaterials Environment Heavy metals target Highlights of performance Ref.

For lead (II), copper (II), zinc II, the highest adsorption capabilities were

48

195.1,161.9 and 109.7 mg g~ respectively

NZVI_HCS Water Lead (II), copper (II), Zinc (II)
NZVI Water Lead (II)
MWCNTs_COOH Water Mercury (II), arsenic (III)

At pH 6, NZVP’s highest adsorption capacity was 807.23mg g™
The highest removal efficiencies for arsenic (III) and mercury (II) were

49
50

72.4% and 80.5 %, respectively, at pH 7.6-7.9 with an adsorbent dosage
of 20mg L™

Mesoporous carbonated ~ Water
titanium dioxide NPs

Strontium (II)

The highest adsorption capabilities of strontium (II) 204.4mg g™ at the
natural pH by 4C-titanium dioxide

method is predicated on photocatalytic reactions, which are
heavily influenced by the catalyst’s shape, mechanisms of
mass transfer, visible light absorption, and the distribution
of active sites on the surface.”’ % Depending on the kind of
light source and metal ions, several mechanisms may be
involved in the presence of heavy metal ions.*

5 Factors affecting adsorption

Many factors, such as adsorbent dosage, pH, temperature,
contact time, and initial ion concentration, have been
studied in scientific investigations to determine how heavy
metal adsorption occurs on the surface of nanoparticles.

5.1 Effect of pH

pH is important for the adsorption capacity in particular and
for the entire adsorption process. Consequently, research on
its impact on the elimination of metal ions is required. It has
been demonstrated in a research paper that the adsorptive
removal of Mercury II ions by CANPs rises with a pH
increase from 2.0 to 5.0. The electrostatic repulsions between
the metal cations and the protonated functional moieties on
the surface of CANPs prevent their adsorption at low pH
levels. Furthermore, the metal ions are in competition for
adsorption with a considerable amount of H" and H;0" ions in
water.”®> Numerous additional studies have also shown that
adsorption of heavy metal ions is preferred at intermediate
PH levels as opposed to lower ones. For instance, lead (II) and
Copper (II) adsorption on the surface of chitosan/TiO, nano-
fibers peaked at pH 6.0 and decreased from pH 2.0 to pH 4.0.%*
In arelated investigation, it was shown that the percentage of
Cadmium (II) adsorption increased noticeably from pH 4.0 to
PH 6.0 before stabilizing at pH 9.0 (97 %). Following that, when
the pH was raised to 11.0 once more, the percentage of
adsorption dropped to 80%.% The findings gathered from
these studies are presented in Figure 1a.

We can infer from the previous description that a
moderate pH is ideal for removing heavy metal ions because
it causes the sorbent surface to become deprotonated, which
increases the number of negatively charged sites. Increased
electrostatic attractions between the surface of the adsor-
bent and metal cations lead to an increase in the adsorption
capacity of the adsorbent. As the pH level decreases,
however, the number of positively charged adsorption
sites increases. This results in an increase in the repulsive
interactions that occur between the positively charged
metal ions and the surface of the adsorbent, which in turn
results in a decrease in the amount of metal ions that are
absorbed.6°® Higher pH levels cause the metal ions to form
hydroxylated complexes, which damage the nano adsor-
bent’s surface and obstruct some of its active sites.

5.2 Effect of contact time

An important factor in the efficient treatment of wastewater
is the duration of contact between nanoparticles and the
metal ion solution. Removal efficiency has been found to
improve with the contact time, which may be explained by
an increase in the amount of time that metal ions spend
interacting with the active sites on the nano adsorbent.
Additionally, removal efficiency grows gradually after the
initial stage, which is quick. This is mostly because there are
initially more available empty spots on the adsorbent
surface, but over time, those spots become less in number.
This type of adsorption behavior was demonstrated in a
study wherein extending the contact duration from 0 to
90 min improved the removal efficacy for Hg (II) on the
surface of CANPs. When adsorption equilibrium was
reached in 90 min, the rate of rise in Hg (II) removal
efficiency slowed down after increasing quickly in the first
30 min.®® In a related investigation, it was found that during
the first 20 min of contact time, lead (II) and Cadmium (II)
adsorbed 91 and 100 % of the total amount of adsorption
(48.53 and 53.33 mg/g), respectively, on the surface of MNCPs.
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Figure 1: Numerous studies demonstrate how various types of nanosomic materials affect the % removal of heavy metal ions by varying adsorbent

doses, pH values, contact times, and initial ion concentrations.

After that, the process became independent of contact time
because of the equilibrium between the rates of adsorption
and desorption.®” A comparison of several of these research
may be found in Figure 1c.

5.3 Effect of temperature

Another crucial element in the adsorption process is
solution temperature. Depending on whether the process
involves the absorption or development of heat, a subse-
quent change in temperature can have two distinct effects
on the adsorption process. When the temperature rises in
an exothermic process, the adsorption capacity falls, while

in an endothermic process, it rises. It was discovered
through scientific research that the adsorption of Hg (II) on
CANPs is exothermic. When the temperature was raised
from 10 to 30 °C, the removal effectiveness rose. However,
after that, it dropped, reaching a maximum adsorption of
about 79.40 % at 30 °C. The increased mobility of metal ions
with temperature rise may be the cause of further decline
since metal ions may desorb or de-chelate from the
adsorbent surface. As a result, when the temperature rose,
fewer metalions were adsorbed on CANPs. Furthermore, in
the case of an exothermic adsorption process, the adsor-
bent’s electrostatic interactions with the Mercury (II) ions
become weaker at higher temperatures.”® In a distinct
investigation, it was discovered that Pb (II) adsorption on



592 —— H,J.S. Hawezy et al.: Exploring efficient heavy metal removal using magnetic nanoparticles

the Fe30, nano adsorbent surface was endothermic at
various temperatures. When the temperature was raised,
the Pb (II) adsorption effectiveness increased. This was
likely caused by an increase in ionic mobility, which led to
more ions interacting with the active sites.®®

5.4 Effect of initial ion concentration

Up to a point, increasing the concentration of metal ions
enhances the rate of adsorption; however, further increases
result in a drop in the removal efficiency. This could be
because the solution should contain an ideal concentration
of metal ions for a given amount of adsorbent. Low
concentrations result in fewer metal ions available for
adsorption, which lowers removal capacity; high concen-
trations, on the other hand, increase the number of ions
available for adsorption, increasing the adsorption rate.
However, after a certain starting concentration, more ions
are available for the same number of adsorption sites, which
lowers removal efficiency. For instance, raising the initial Hg
(I1) concentration on the surface of CANPs from 4 to 12 mg/l
increases the adsorption rate, which then falls.%® Similar
research found that when starting metal ion concentrations
were raised from 90 to 500 mg/l, the sorption capacity of
PVA/ZnO nanofibrous adsorbent for Uranium (VI), Copper
(I1), and Nickel (II) ions increased.® Figure 1d presents a few
of these findings.

5.5 Effect of adsorbent dose

It is essential to the adsorption process. It’s some of the
effective adsorption sites that determine the capability of
adsorption for removing heavy metal ions, and this number
grows when the dose of the adsorbent is increased. However,
a higher dose of the adsorbent causes NPs to aggregate,
reduces surface area, and reduces sorption sites, all of which
lower the adsorption capacity. Numerous studies have been
published in the literature that show how the dose of the
adsorbent affects the adsorption of heavy metal ions.
For adsorbing ions of lead (II) and copper (II), for instance,
2000 mg/1 was the ideal concentration of nanofibrous chito-
san covered with Titanium dioxide. It has been demon-
strated that higher concentrations of nanoparticles (NPs)
can cause nanofiber surfaces to become partially inactive
due to the accumulation of NPs. Consequently, the adsor-
bent’s adsorption capability was greatly diminished.** When
the dosage of Fe;0,@C nanosorbent was increased from 0.5
to 2 g/l, there was a noticeable improvement in adsorption
efficiency from 41.7 to 92%; however, there was a
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corresponding decrease in adsorption capacity from 41.7
to 22.9mg/g. The enhanced removal efficiency can be
attributed to Pb (II) ions having easier access to the active
sites on the Fe;0,@C surface. Conversely, a higher adsorbent
concentration may cause interparticle aggregation, which
lowers the active surface area of Fe;0,@C and leads to a
decreased adsorption capacity with an increase in adsorbent
dose.” A graphic representation of these findings is shown
in Figure 1b.

5.6 Effect of ion strength

The aqueous solution’s ionic strength, which indicates the
impact of extra ions on the adsorption of adsorbate
molecules on the surface of the adsorbent, is crucial to the
adsorption process. Typically, varying quantities of ions
such asNa*, C1", and so on are added to an adsorbate solution
to study it. The rivalry between the target and additional ions
for active sites on the adsorbent surface, as well as the
screening of the coulombic potential between the adsorbent
molecule and the adsorbing ions, determine how much of an
impact the strength of the ions has. Both the affinity of the
adsorbent and the concentration of additional ions have an
impact on the adsorption effectiveness. The ionic strength of
the solution does not affect the adsorption efficiency of the
adsorbent if it has a greater affinity for the target metal ions
than for the added ions. Ionic strength has very little impact
on the adsorption of heavy metal ions, according to several
observations in the literature. Hasanzadeh et al. demon-
strated that the presence of sodium chloride at concentra-
tions of 3 mmol per liter affected the adsorption of two heavy
metal ions, namely lead (II) and Cadmium (II), on the surface
of MNCPs.6°” The fact that sodium chloride was found to
have negligible influence on the adsorption of heavy metal
ions indicate that the adsorbent is more suited to adsorb lead
(I) and Cadmium (II) ions than Sodium (I) ions. In a study by
Xu et al,,”" the addition of sodium chloride at a concentration
of 0.025 mM was shown to slightly increase the adsorption
capacity of lead (II) on Fe;0,-SiO,-GSH MNPs; however,
additional increases in sodium chloride concentration up to
0.2 mM resulted in a drop in adsorption capacity from 98.87
to 85.72 mg/g (Table 2). This observation makes sense since,
at first, sodium chloride encourages the dissociation of
functional groups on the adsorbent’s surface, increasing the
adsorption capacity. The reason for the later decline was the
competition between ions for binding sites. Thus, it can be
said that depending on the sodium chloride concentration
and the adsorbent surface’s affinity for adsorbate molecules,
the impact of ionic strength can range from little to
significant.
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Table 2: Adsorption capacity and system conditions.
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Magnetic nanoparticle Heavy metal ion Adsorption capacity (mg/g) Time (min) pH Temperature (°C) Ref.
MnFe,0, Zinc (1) 454.4 120 6 25 72
CoFe,0,4 Zinc (II) 384.6 120 6 25 2
Si0,/CuFe,0,/PANI Copper (1) 285.71 300 5.3 30 7
Fe;0,@Z-NCNT/PC Lead (II) 789.87 20 5.5 74
Fe;04/NaP/NH, Lead (II) 181.81 480 5-6 60 »
Fe;04/NaP/NH, Cadmium (1) 50.25 240 5-6 70 »
APTES-Fe30, (3 Wt%) Arsenic (V) 14.6 210 2 25 76
CoFe,0,@Si0,-EDTA Mercury (IT) 103.3 360 7 25 ”
MnFe,0,4-BC Cadmium (1) 181.49 7 25 &
CoFe,0,@5i0, Mercury (II) 149.3 7 25 79
rGO-PDTC/Fe;0, Copper (1) 113.64 5 25 8
Graphene oxide-Fe304 Lead (II) 373.14 10 6 81

6 Conclusions

Nanomaterials, due to their remarkable properties, have
proven highly effective in removing heavy metals from water.
This review has focused on the synthesis, characterization,
and applications of magnetic nanoparticles in heavy metal
removal. The impact of several key factors, including pH,
adsorbent dose, contact time, temperature, initial ion con-
centration, and ionic strength, on the adsorption process has
been discussed. While these findings demonstrate the poten-
tial of magnetic nanoparticles in water purification, the next
challenge lies in scaling up these methods for industrial use.
Practical considerations such as the cost of large-scale syn-
thesis, the reusability and recovery of nanoparticles, and the
long-term environmental impacts of widespread nanoparticle
use must be addressed. Additionally, optimizing the efficiency
of magnetic nanoparticles for use in diverse water treatment
systems will be crucial. Despite these challenges, magnetic
nanoparticles hold great promise as a scalable, efficient solu-
tion for heavy metal remediation, offering significant benefits
for environmental protection and public health.
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