Home CeCr2Al20-type intermetallics – structure-property relationships
Article
Licensed
Unlicensed Requires Authentication

CeCr2Al20-type intermetallics – structure-property relationships

  • Rainer Pöttgen EMAIL logo and Oliver Janka ORCID logo EMAIL logo
Published/Copyright: July 3, 2023

Abstract

This review summarizes the synthetic aspects, the structural and crystal chemical peculiarities as well as the physical properties of the members of the CeCr2Al20 type family. Most of the known compounds were investigated in great detail with respect to their properties since the plethora of elemental combinations is an interesting playground for structure property investigations.


Corresponding authors: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail: ; and Oliver Janka, Universität des Saarlandes, Anorganische Festkörperchemie, Campus C4 1, 66123 Saarbrücken, Germany, E-mail:

Award Identifier / Grant number: JA 1891-10-1

Acknowledgements

We thank the German Research Foundation DFG for providing funding with the project JA 1891-10-1.

  1. Author contribution: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  2. Research funding: Funding has been provided by the German Research Foundation DFG (JA 1891-10-1).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Akselrud, L. G.; Davydov, V. M.; Demchenko, P. Y.; Bodak, O. I.; Starodub, P. K. Crystal structure of the DyCr2Al20, ThCr1.825Al20 and ThMo1.69Al20 compounds. Visn. Lviv. Derzh. Univ., Ser. Khim. 2005, 46, 86–89.Search in Google Scholar

Allenou, J.; Tougait, O.; Pasturel, M.; Iltis, X.; Charollais, F.; Anselmet, M. C.; Lemoine, P. Interdiffusion behaviors in doped molybdenum uranium and aluminum or aluminum silicon dispersion fuels: effects of the microstructure. J. Nucl. Mater. 2011, 416, 205–210; https://doi.org/10.1016/j.jnucmat.2011.01.130.Search in Google Scholar

Araki, K.; Shimura, Y.; Kase, N.; Sakakibara, T.; Sakai, A.; Nakatsuji, S. Magnetization and specific heat of the cage compound PrV2Al20. JPS Conf. Proc. 2014, 3, 011093.10.7566/JPSCP.3.011093Search in Google Scholar

Asaki, K.; Kotegawa, H.; Tou, H.; Onimaru, T.; Matsumoto, K. T.; Inoue, Y. F.; Takabatake, T. NMR evidence of freezing of rattling motion in LaIr2Zn20 and LaRu2Zn20. J. Phys. Soc. Jpn. 2012, 81, 023711; https://doi.org/10.1143/jpsj.81.023711.Search in Google Scholar

Bärnighausen, H. Group-subgroup relations between space groups: a useful tool in crystal chemistry. Commun. Math. Chem. 1980, 9, 139–175.Search in Google Scholar

Bauer, E. D.; Christianson, A. D.; Gardner, J. S.; Sidorov, V. A.; Thompson, J. D.; Sarrao, J. L.; Hundley, M. F. Physical properties of the ferromagnetic heavy-fermion compound UIr2Zn20. Phys. Rev. B 2006, 74, 155118; https://doi.org/10.1103/physrevb.74.155118.Search in Google Scholar

Bauer, E. D.; Thompson, J. D.; Sarrao, J. L.; Hundley, M. F. Ferromagnetism and crystalline electric field effects in cubic UX2Zn20 (X = Co, Rh, Ir). J. Magn. Magn. Mater. 2007, 310, 449–451; https://doi.org/10.1016/j.jmmm.2006.10.505.Search in Google Scholar

Bauer, E. D.; Wang, C.; Fanelli, V. R.; Lawrence, J. M.; Goremychkin, E. A.; de Souza, N. R.; Ronning, F.; Thompson, J. D.; Silhanek, A. V.; Vildosola, V.; Lobos, A. M.; Aligia, A. A.; Bobev, S.; Sarrao, J. L. Simplifying strong electronic correlations in uranium: localized uranium heavy-fermion UM2Zn20 (M = Co, Rh) compounds. Phys. Rev. B 2008, 78, 115120; https://doi.org/10.1103/physrevb.78.115120.Search in Google Scholar

Benbow, E. M.; Latturner, S. E. Mixed-metal flux synthesis of quaternary RMn2TrxZn20–x compounds with Tr = Al, in. J. Solid State Chem. 2006, 179, 3969–3976; https://doi.org/10.1016/j.jssc.2006.09.001.Search in Google Scholar

Bodak, O.; Demchenko, P.; Seropegin, Yu.; Fedorchuk, A. Cubic structure types of rare-earth intermetallics and related compounds. Z. Kristallogr. 2006, 221, 482–492; https://doi.org/10.1524/zkri.2006.221.5-7.482.Search in Google Scholar

Bram, A. I.; Venkert, A.; Meshi, L. Characterization of new aluminides found in the ThT2Al20 alloys (where T = Ti, V, Mn). J. Alloys Compd. 2015, 641, 1–6; https://doi.org/10.1016/j.jallcom.2015.03.247.Search in Google Scholar

Brühwiler, M.; Kazakov, S. M.; Karpinski, J.; Batlogg, B. Mass enhancement, correlations, and strong-coupling superconductivity in the β-pyrochlore KOs2O6. Phys. Rev. B 2006, 73, 094518; https://doi.org/10.1103/physrevb.73.094518.Search in Google Scholar

Bud’ko, S. L.; Kong, T.; Ma, X.; Canfield, P. C. Study of 57Fe Mössbauer effect in RFe2Zn20 (R = Lu, Yb, Gd). J. Phys.: Condens. Matter 2015, 27, 336003; https://doi.org/10.1088/0953-8984/27/33/336003.Search in Google Scholar PubMed

Burnett, V. W.; Yazici, D.; White, B. D.; Dilley, N. R.; Friedman, A. J.; Brandom, B.; Maple, M. B. Structure and physical properties of RT2Cd20 (R = rare earth, T = Ni, Pd) compounds with the CeCr2Al20-type structure. J. Solid State Chem. 2014, 215, 114–121; https://doi.org/10.1016/j.jssc.2014.03.035.Search in Google Scholar

Cabrera-Baez, M.; Naranjo-Uribe, A.; Osorio-Guillén, J. M.; Rettori, C.; Avila, M. A. Multiband electronic characterization of the complex intermetallic cage system Y1−xGdxCo2Zn20. Phys. Rev. B 2015, 92, 214414; https://doi.org/10.1103/physrevb.92.214414.Search in Google Scholar

Cabrera-Baez, M.; Ribeiro, R. A.; Avila, M. A. Tuning the electronic hybridization in the heavy fermion cage compound YbFe2Zn20 with Cd doping. J. Phys.: Condens. Matter 2016, 28, 375601; https://doi.org/10.1088/0953-8984/28/37/375601.Search in Google Scholar PubMed

Cabrera-Baez, M.; Naranjo-Uribe, A.; Osorio-Guillen, J. M.; Rettori, C.; Avila, M. A. Conduction electrons mediating the evolution from antiferromagnetic to ferromagnetic ordering in Gd(Co1–yFey)2Zn20 (0 ≤ y ≤ 1). Phys. Rev. B 2017, 95, 104407; https://doi.org/10.1103/physrevb.95.104407.Search in Google Scholar

Cabrera-Baez, M.; Avila, M. A.; Rettori, C. Gd3+ as a probing and tuning tool of strong electronic correlations in the heavy-fermion Kondo lattice compound YbFe2Zn20. Phys. Rev. B 2018, 98, 165106; https://doi.org/10.1103/physrevb.98.165106.Search in Google Scholar

Cabrera-Baez, M.; Munevar, J.; Couto-Mota, R. M.; Camejo, Y. M.; Contreras, C.; Baggio-Saitovitch, E.; Avila, M. A.; Rettori, C. Unconventional enhancement of ferromagnetic interactions in Cd-doped GdFe2Zn20 single crystals studied by ESR and 57Fe Mössbauer spectroscopies. Phys. Rev. B 2020, 102, 144420; https://doi.org/10.1103/physrevb.102.144420.Search in Google Scholar

Canfield, P. C.; Jia, S.; Mun, E. D.; Bud’ko, S. L.; Samolyuk, G. D.; Torikachvili, M. S. Myriad of correlated electron effects found in the RT2Zn20 family. Physica B 2008, 403, 844–846; https://doi.org/10.1016/j.physb.2007.10.234.Search in Google Scholar

Canfield, P. C.; Kong, T.; Kaluarachchi, U. S.; Jo, N. H. Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples. Phil. Mag. 2016, 96, 84–92; https://doi.org/10.1080/14786435.2015.1122248.Search in Google Scholar

Canfield, P. C.; Bud’ko, S. L.; Palasyuk, A.; Slade, T. J. Comment on "Unconventional enhancement of ferromagnetic interactions in Cd-doped GdFe2Zn20 single crystals studied by ESR and Fe57 Mössbauer spectroscopies". Phys. Rev. B 2021, 103, 176401; https://doi.org/10.1103/physrevb.103.176401.Search in Google Scholar

Chen, K. H.; Fang, H. C.; Zhang, Z.; Chen, X.; Liu, G. Effect of Yb, Cr and Zr additions on recrystallization and corrosion resistance of Al-Zn-Mg-Cu alloys. Mater. Sci. Eng. A 2008, 497, 426–431; https://doi.org/10.1016/j.msea.2008.07.028.Search in Google Scholar

Chen, X.-A.; Jeitschko, W. Preparation, properties, and crystal structure of Zr5Zn39, a vacancy variant of the Ce5Mg41-type, and structure refinement of ZrZn22. J. Solid State Chem. 1996, 121, 95–104; https://doi.org/10.1006/jssc.1996.0014.Search in Google Scholar

Chen, Y.; Shen, J. Structural and mechanical properties of RT2Zn20 and RFe2–xCoxZn20 (R = Y, Sm; T = Fe, Ru, Os, Co, Rh and Ir). Mater. Sci. Forum 2011, 689, 204–210; https://doi.org/10.4028/www.scientific.net/msf.689.204.Search in Google Scholar

Cherkashyn, E. E.; Gladyshevskii, E. I.; Krypyakevych, P. I.; Kuz’ma, Y. B. X-ray structural study of some systems of the transition metals. Zh. Neorg. Khim. 1958, 3, 650–653.Search in Google Scholar

Chi, J.; Li, Y.; Gou, W.; Goruganti, V.; Rathnayaka, K. D. D.; Ross, J. H.Jr. Kondo lattice behavior and magnetic field effects in Al20V2Eu. Physica B 2008, 403, 1426–1427; https://doi.org/10.1016/j.physb.2007.10.308.Search in Google Scholar

Cooper, M. J. The structure of the intermetallic phase θ(Cr-Al). Acta Crystallogr. 1960, 13, 257–263; https://doi.org/10.1107/s0365110x60000571.Search in Google Scholar

Daszkiewicz, M.; Swatek, P.; Kaczorowski, D. Crystal structure of UT2Zn20 (T = Fe, Co, Ru, Rh, and Ir) phases. J. Alloys Compd. 2012, 517, 26–30; https://doi.org/10.1016/j.jallcom.2011.11.124.Search in Google Scholar

Doto, H.; Hirose, Y.; Honda, F.; Li, D.; Homma, Y.; Aoki, D.; Settai, R. Single crystal growth and electronic state of UPd2Cd20. Phys. Procedia 2015, 75, 56–61; https://doi.org/10.1016/j.phpro.2015.12.009.Search in Google Scholar

Doto, H.; Hirose, Y.; Honda, F.; Takeuchi, T.; Haga, Y.; Settai, R. Single crystal growth and electronic state of new compounds RPt2Cd20 (R = La-Nd, Sm). J. Alloys Compd. 2017, 693, 332–338; https://doi.org/10.1016/j.jallcom.2016.09.077.Search in Google Scholar

Edwards, D. A.; Wallace, W. E.; Craig, R. S. Magnesium-cadmium alloys. IV. The cadmium-rich alloys; some lattice parameters and phase relationships between 25 and 300 °C. Structure of the MgCd3 superlattice. Schottky defects and the anomalous entropy. J. Am. Chem. Soc. 1952, 74, 5256–5261; https://doi.org/10.1021/ja01141a006.Search in Google Scholar

Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

Emes Misenko, E. I. Investigation of the phase equilibria in the lanthanum-chromium-aluminium and lanthanum-manganese-aluminium systems in the region of low lanthanum content. Visn. Lviv Derzh. Univ., Ser. Khim. 1971, 12, 12–14.Search in Google Scholar

Engel, S.; Gießelmann, E.; Pöttgen, R.; Janka, O. Trivalent Europium – a scarce case in intermetallics. Rev. Inorg. Chem. 2023, 43; https://doi.org/10.1515/revic-2023-0003.Search in Google Scholar

Fahl, A.; Cabrera-Baez, M.; Avila, M. A.; Adriano, C.; Giles, C.; Rigitano, D.; Granado, E. Crystal structure of the heavy fermion compound YbFe2Zn20 doped with Cd; Blucher: São Paulo, 2017; p 3.10.5151/23abcr-03Search in Google Scholar

Frank, F. C.; Kasper, J. S. Complex alloy structures regarded as sphere packings. I. Definitions and basic principles. Acta Crystallogr. 1958, 11, 184–190; https://doi.org/10.1107/s0365110x58000487.Search in Google Scholar

Frank, F. C.; Kasper, J. S. Complex alloy structures regarded as sphere packings. II. Analysis and classification of representative structures. Acta Crystallogr. 1959, 12, 483–499; https://doi.org/10.1107/s0365110x59001499.Search in Google Scholar

Freyer, F.; Attig, J.; Lee, S.; Paramekanti, A.; Trebst, S.; Kim, Y. B. Two-stage multipolar ordering in PrT2Al20 Kondo materials. Phys. Rev. B 2018, 97, 115111; https://doi.org/10.1103/physrevb.97.115111.Search in Google Scholar

Fun, H.-K.; Lin, H.-C.; Lee, T.-J.; Yip, B.-C. T-Phase Al18Mg3Mn2. Acta Crystallogr. 1994, C50, 661–663; https://doi.org/10.1107/s0108270193014453.Search in Google Scholar

Gayle, F. W.; Biancaniello, F. S.; Schaefer, R. J.; Jiggets, R. D. X-ray powder diffraction pattern for reaction HIPed Al18Ti2Mg3. Powder Diffr. 1992, 7, 223–225; https://doi.org/10.1017/s0885715600018765.Search in Google Scholar

Giorgi, A. L.; Stewart, G. R.; Szklarz, E. G. Superconductivity in the Re1−xTcxBe22 system. In Supercond. d–f Band Met., Proc. Conf., 4th, 1982; pp. 455–458.Search in Google Scholar

Gonçalves, A. P.; Waerenborgh, J. C.; Amaro, A.; Godinho, M.; Almeida, M. UFe2Zn20: a new uranium intermetallic compound. J. Alloys Compd. 1998, 271–273, 456–458; https://doi.org/10.1016/s0925-8388(98)00110-8.Search in Google Scholar

Gross, N.; Nasch, T.; Jeitschko, W. Ternary intermetallics with high zinc content: TT′2Zn20 (T = Zr, Hf, Nb; T′ = Mn, Fe, Ru, Co, Rh, Ni) with CeCr2Al20-type structure. J. Solid State Chem. 2001, 161, 288–293; https://doi.org/10.1006/jssc.2001.9311.Search in Google Scholar

Halevy, I.; Sterer, E.; Aizenshtein, M.; Kimmel, G.; Regev, D.; Yahel, E.; Pereira, L. C. J.; Goncalves, A. P. High pressure studies of a new ternary actinide compound, UV2Al20. J. Alloys Compd. 2001, 319, 19–21; https://doi.org/10.1016/s0925-8388(01)00881-7.Search in Google Scholar

Hasegawa, T.; Ogita, N.; Udagawa, M. First-principles calculations of lattice vibrations on LaT2Zn20 (T = Ru and Ir). J. Phys.: Conf. Ser. 2012, 391, 012016; https://doi.org/10.1088/1742-6596/391/1/012016.Search in Google Scholar

Hattori, K.; Tsunetsugu, H. Antiferro quadrupole orders in non-Kramers doublet systems. J. Phys. Soc. Jpn. 2014, 83, 034709; https://doi.org/10.7566/jpsj.83.034709.Search in Google Scholar

Higashinaka, R.; Nakama, A.; Ando, M.; Watanabe, M.; Aoki, Y.; Sato, H. Magnetic and transport properties of YbT2Al20 (T = Ti, V and Cr). J. Phys.: Conf. Ser. 2011a, 273, 012033; https://doi.org/10.1088/1742-6596/273/1/012033.Search in Google Scholar

Higashinaka, R.; Maruyama, T.; Nakama, A.; Miyazaki, R.; Aoki, Y.; Sato, H. Unusual field-insensitive phase transition and Kondo behavior in SmTi2Al20. J. Phys. Soc. Jpn. 2011b, 80, 093703; https://doi.org/10.1143/jpsj.80.093703.Search in Google Scholar

Higashinaka, R.; Yamada, A.; Matsuda, T. D.; Aoki, Y. La substitution effect on the magnetic phase transition of SmTi2Al20. J. Phys.: Conf. Ser. 2016, 683, 012018; https://doi.org/10.1088/1742-6596/683/1/012018.Search in Google Scholar

Higashinaka, R.; Nakama, A.; Miyazaki, R.; Yamaura, J. I.; Sato, H.; Aoki, Y. Antiferroquadrupolar ordering in quadrupolar Kondo lattice of non-Kramers system PrTa2Al20. J. Phys. Soc. Jpn. 2017, 86, 103703; https://doi.org/10.7566/jpsj.86.103703.Search in Google Scholar

Higemoto, W.; Ito, T. U.; Ninomiya, K.; Onimaru, T.; Matsumoto, K. T.; Takabatake, T. µSR studies on caged compound PrIr2Zn20. Phys. Procedia 2012, 30, 125–128; https://doi.org/10.1016/j.phpro.2012.04.055.Search in Google Scholar

Hillebrecht, H.; Kuntze, V.; Gebhardt, K. Synthese und Kristallstruktur von Mo7Sn12Zn40 – einer kubischen Verbindung mit Ikosaedern aus Ikosaedern. Z. Kristallogr. 1997, 212, 840–847.10.1524/zkri.1997.212.12.840Search in Google Scholar

Hiroi, Z.; Onosaka, A.; Okamoto, Y.; Yamaura, J. I.; Harima, H. Rattling and superconducting properties of the cage compound GaxV2Al20. J. Phys. Soc. Jpn. 2012, 81, 124707; https://doi.org/10.1143/jpsj.81.124707.Search in Google Scholar

Hirose, Y.; Toda, M.; Yoshiuchi, S.; Yasui, S.; Sugiyama, K.; Honda, F.; Hagiwara, M.; Kindo, K.; Settai, R.; Ōnuki, Y. Metamagnetic transition in heavy fermion compounds YbT2Zn20 (T: Co, Rh, Ir). J. Phys.: Conf. Ser. 2011, 273, 012003; https://doi.org/10.1088/1742-6596/273/1/012003.Search in Google Scholar

Hirose, Y.; Enoki, K.; Yoshiuchi, S.; Takeuchi, T.; Honda, F.; Sugiyama, K.; Yamamoto, E.; Haga, Y.; Hagiwara, M.; Kindo, K.; Settai, R.; Ōnuki, Y. Metamagnetic behavior in heavy fermion compounds UCo2Zn20 and UIr2Zn20. J. Phys.: Conf. Ser. 2012, 391, 012021; https://doi.org/10.1088/1742-6596/391/1/012021.Search in Google Scholar

Hirose, Y.; Yoshiuchi, S.; Nishimura, N.; Sakaguchi, J.; Enoki, K.; Iwakawa, K.; Miura, Y.; Sugiyama, K.; Ōnuki, Y.; Settai, R.; Takeuchi, T.; Honda, F.; Matsuda, T. D.; Yamamoto, E.; Haga, Y.; Hagiwara, M. Single crystal growth and various electronic states in Yb-based compounds. J. Kor. Phys. Soc. 2013, 62, 1858–1861; https://doi.org/10.3938/jkps.62.1858.Search in Google Scholar

Hirose, T.; Okamoto, Y.; Yamaura, J. I.; Hiroi, Z. Large diamagnetic susceptibility from Petit Fermi surfaces in LaV2Al20. J. Phys. Soc. Jpn. 2015, 84, 113701; https://doi.org/10.7566/jpsj.84.113701.Search in Google Scholar

Hirose, Y.; Doto, H.; Honda, F.; Li, D.; Aoki, D.; Haga, Y.; Settai, R. New heavy-fermion antiferromagnet UPd2Cd20. J. Phys.: Condens. Matter 2016a, 28, 425601; https://doi.org/10.1088/0953-8984/28/42/425601.Search in Google Scholar PubMed

Hirose, Y.; Doto, H.; Kawano, T.; Settai, R.; Takeuchi, T.; Tahara, T.; Kida, T.; Hagiwara, M.; Miyake, H.; Tokunaga, M.; Kulkarni, R.; Thamizhavel, A.; Honda, F. High-field magnetization and crystalline electric field effect of RT2Cd20. JPS Conf. Ser. 2016b, 15aPS-28.Search in Google Scholar

Hirose, Y.; Doto, H.; Takeuchi, T.; Kawano, T.; Settai, R.; Miyake, A.; Tokunaga, M. Low temperature physical properties of PrT2Cd20 (T = Rh, Pt). JPS Conf. Ser. 2017, 22pPSA-32.Search in Google Scholar

Hirose, Y.; Suzuki, Y.; Honda, F.; Kulkarni, R.; Thamizhavel, A.; Kawamura, N.; Mizumaki, M.; Simokasa, R.; Mimura, K.; Doto, H.; Settai, R. Electronic states of CeT2X20 (T: transition metal, X = Zn and Cd). AIP Adv. 2018, 8, 115017; https://doi.org/10.1063/1.5043138.Search in Google Scholar

Honda, F.; Yasui, S.; Yoshiuchi, S.; Takeuchi, T.; Settai, R.; Ōnuki, Y. Quantum critical phenomena in heavy fermion compound YbIr2Zn20. J. Phys. Soc. Jpn. 2010, 79, 083709; https://doi.org/10.1143/jpsj.79.083709.Search in Google Scholar

Honda, F.; Hirose, Y.; Yoshiuchi, S.; Yasui, S.; Takeuchi, T.; Bonalde, I.; Shimizu, K.; Settai, R.; Ōnuki, Y. Pressure-induced novel superconductivity and heavy fermion state in rare earth compounds. J. Phys.: Conf. Ser. 2012, 400, 022028; https://doi.org/10.1088/1742-6596/400/2/022028.Search in Google Scholar

Honda, F.; Takeuchi, T.; Yasui, S.; Taga, Y.; Yoshiuchi, S.; Hirose, Y.; Tomooka, Y.; Sugiyama, K.; Hagiwara, M.; Kindo, K.; Settai, R.; Ōnuki, Y. Metamagnetic behavior and effect of pressure on the electronic state in heavy-Fermion compound YbRh2Zn20. J. Phys. Soc. Jpn. 2013, 82, 084705; https://doi.org/10.7566/jpsj.82.084705.Search in Google Scholar

Honda, F.; Taga, Y.; Hirose, Y.; Yoshiuchi, S.; Tomooka, Y.; Ohya, M.; Sakaguchi, J.; Takeuchi, T.; Settai, R.; Shimura, Y.; Sakakibara, T.; Sheikin, I.; Tanaka, T.; Kubo, Y.; Ōnuki, Y. Novel electronic states of heavy fermion compound YbCo2Zn20. J. Phys. Soc. Jpn. 2014, 83, 044703; https://doi.org/10.7566/jpsj.83.044703.Search in Google Scholar

Honda, F.; Hirose, Y.; Miyake, A.; Mizumaki, M.; Kawamura, N.; Tsutsui, S.; Watanuki, T.; Watanabe, S.; Takeuchi, T.; Settai, R.; Aoki, D.; Ōnuki, Y. X-ray absorption spectroscopy and novel electronic properties in heavy fermion compounds YbT2Zn20 (T = Rh and Ir). J. Phys.: Conf. Ser. 2015, 592, 012021; https://doi.org/10.1088/1742-6596/592/1/012021.Search in Google Scholar

Iizuka, Y.; Yamada, T.; Hanzawa, K.; Ōno, Y. First-principles study of the RKKY interaction and the quadrupole order in the Pr 1-2-20 systems PrT2Al20 (T = Ti, V). J. Phys. Soc. Jpn. 2022, 91, 074708; https://doi.org/10.7566/jpsj.91.074708.Search in Google Scholar

Imai, R.; Akatsu, M.; Nemoto, Y.; Goto, T.; Kurihara, R.; Mitsumoto, K.; Doto, H.; Hirose, Y.; Settai, R. Elastic constants of cage-structured compound PrRh2Cd20 by using ultrasonic measurements. JPS Conf. Ser. 2018, 11pPSB-9.Search in Google Scholar

Inui, K.; Motome, Y. Channel-selective non-Fermi liquid behavior in the two-channel Kondo lattice model under a magnetic field. Phys. Rev. B 2020, 102, 155126; https://doi.org/10.1103/physrevb.102.155126.Search in Google Scholar

Ishii, I.; Suetomi, Y.; Fujita, T. K.; Onimaru, T.; Matsumoto, K. T.; Inoue, Y. F.; Takabatake, T.; Suzuki, T. Elastic modulus of cage compound PrRu2Zn20. J. Phys.: Conf. Ser. 2011, 273, 012136; https://doi.org/10.1088/1742-6596/273/1/012136.Search in Google Scholar

Ishii, I.; Muneshige, H.; Kamikawa, S.; Fujita, T. K.; Onimaru, T.; Nagasawa, N.; Takabatake, T.; Suzuki, T.; Ano, G.; Akatsu, M.; Nemoto, Y.; Goto, T. Antiferroquadrupolar ordering and magnetic-field-induced phase transition in the cage compound PrRh2Zn20. Phys. Rev. B 2013, 87, 205106; https://doi.org/10.1103/physrevb.87.205106.Search in Google Scholar

Ishitobi, T.; Hattori, K. Triple-q quadrupole-octupole order scenario for PrV2Al20. Phys. Rev. B 2021, 104, L241110; https://doi.org/10.1103/physrevb.104.l241110.Search in Google Scholar

Isikawa, Y.; Ejiri, J. I.; Mizushima, T.; Kuwai, T. Isotropic Γ6 ground state in caged cubic compound NdRu2Zn20. J. Phys. Soc. Jpn. 2013a, 82, 123708; https://doi.org/10.7566/jpsj.82.123708.Search in Google Scholar

Isikawa, Y.; Mizushima, T.; Kumagai, K. I.; Kuwai, T. Dense Kondo effect in caged compound CeRu2Zn20. J. Phys. Soc. Jpn. 2013b, 82, 083711; https://doi.org/10.7566/jpsj.82.083711.Search in Google Scholar

Isikawa, Y.; Mizushima, T.; Miyamoto, S.; Kumagai, K.; Nakahara, M.; Okuyama, H.; Tayama, T.; Kuwai, T.; Lejay, P. Enhancement of the Curie temperature due to the coupling between Fe itinerant electrons and Dy localized electrons in DyFe2Zn20. J. Kor. Phys. Soc. 2013c, 63, 644–649; https://doi.org/10.3938/jkps.63.644.Search in Google Scholar

Isikawa, Y.; Mizushima, T.; Ejiri, J.-I.; Kuwai, T. Anomalous magnetic anisotropy of caged cubic compound SmRu2Zn20. J. Phys. Soc. Jpn. 2014, 83, 073701; https://doi.org/10.7566/jpsj.83.073701.Search in Google Scholar

Isikawa, Y.; Mizushima, T.; Ejiri, J.-I.; Kitayama, S.; Kumagai, K.; Kuwai, T.; Bordet, P.; Lejay, P. Crystal structure and magnetic properties of new cubic quaternary compounds RT2Sn2Zn18 (R = La, Ce, Pr, and Nd, and T = Co and Fe). J. Phys. Soc. Jpn. 2015, 84, 074707; https://doi.org/10.7566/jpsj.84.074707.Search in Google Scholar

Isomae, T.; Sakai, A.; Fu, M.; Taniguchi, T.; Takigawa, M.; Nakatsuji, S. Extremely large magnetoresistance and anisotropic transport in multipolar Kondo system PrTi2Al20. arXiv:2210.12436 2022.Search in Google Scholar

Ito, T. U.; Higemoto, W.; Sakai, A.; Tsujimoto, M.; Najatsuji, S. Perturbation on hyperfine-enhanced 141Pr nuclear spin dynamics associated with antiferroquadrupolar order in PrV2Al20. Phys. Rev. B 2015, 92, 125151; https://doi.org/10.1103/physrevb.92.125151.Search in Google Scholar

Ivanshin, V. A.; Sukhanov, A. A.; Sokolov, D. A.; Aronson, M. C.; Jia, S.; Bud’ko, S. L.; Canfield, P. C. Electron spin resonance of dense Yb-based heavy-fermion compounds: new experimental data. J. Alloys Compd. 2009, 480, 126–127; https://doi.org/10.1016/j.jallcom.2008.09.172.Search in Google Scholar

Ivanshin, V. A.; Litvinova, T. O.; Sukhanov, A. A.; Ivanshin, N. A.; Endeward, B. Hybridized electronic states in dense intermetallics as studied by ESR. Diffus. Defect Data, Pt. B 2011a, 170, 170–173; https://doi.org/10.4028/www.scientific.net/ssp.170.170.Search in Google Scholar

Ivanshin, V. A.; Litvinova, T. O.; Sukhanov, A. A. Electronic hybridization effects in dense intermetallics measured by electron spin resonance. J. Phys.: Conf. Ser. 2011b, 273, 012035; https://doi.org/10.1088/1742-6596/273/1/012035.Search in Google Scholar

Ivanshin, V. A.; Litvinova, T. O.; Sukhanov, A. A.; Ivanshin, N. A.; Jia, S.; Bud’ko, S. L.; Canfield, P. C. Dual nature of electron spin resonance in YbCo2Zn20 intermetallic compound. JETP Lett. 2014, 99, 153–157; https://doi.org/10.1134/s0021364014030096.Search in Google Scholar

Ivanshin, V. A.; Litvinova, T. O.; Gimranova, K.; Sukhanov, A. A.; Jia, S.; Bud’ko, S. L.; Canfield, P. C. Dual nature of 3d electrons in YbT2Zn20 (T = Co; Fe) evidenced by electron spin resonance. J. Phys.: Conf. Ser. 2015, 592, 012084; https://doi.org/10.1088/1742-6596/592/1/012084.Search in Google Scholar

Iwasa, K.; Kobayashi, H.; Onimaru, T.; Matsumoto, K. T.; Nagasawa, N.; Takabatake, T.; Ohira-Kawamura, S.; Kikuchi, T.; Inamura, Y.; Nakajima, K. Well-defined crystal field splitting schemes and non-Kramers doublet ground states of electrons in PrT2Zn20 (T = Ir, Rh, and Ru). J. Phys. Soc. Jpn. 2013, 82, 043707; https://doi.org/10.7566/jpsj.82.043707.Search in Google Scholar

Iwasa, K.; Higashinaka, R.; Aoki, Y.; Ohira-Kawamura, S.; Nakajima, K. Broad excitation spectra between crystalline-electric-field levels associated with non-Kramers doublet ground state of f electrons in PrNb2Al20. J. Phys. Soc. Jpn. 2016, 85, 123704; https://doi.org/10.7566/jpsj.85.123704.Search in Google Scholar

Iwasa, K.; Onimaru, T.; Takabatake, T.; Higashinaka, R.; Aoki, Y.; Ohira-Kawamura, S.; Nakajima, K. Inelastic neutron scattering study on 4f -electron multipole system PrTr2X20 (Tr: transition metal, X: Al and Zn). Physica B 2018, 551, 37–40; https://doi.org/10.1016/j.physb.2017.11.002.Search in Google Scholar

Jia, S.; Bud’ko, S. L.; Samolyuk, G. D.; Canfield, P. C. Nearly ferromagnetic Fermi-liquid behaviour in YFe2Zn20 and high-temperature ferromagnetism of GdFe2Zn20. Nat. Phys. 2007a, 3, 334–338; https://doi.org/10.1038/nphys568.Search in Google Scholar

Jia, S.; Ni, N.; Bud’ko, S. L.; Canfield, P. C. Magnetic properties of GdxY1−xFe2Zn20: dilute, large-S moments in a nearly ferromagnetic Fermi liquid. Phys. Rev. B 2007b, 76, 184410; https://doi.org/10.1103/physrevb.76.184410.Search in Google Scholar

Jia, S.; Ni, N.; Samolyuk, G. D.; Safa-Sefat, A.; Dennis, K.; Ko, H.; Miller, G. J.; Bud’ko, S. L.; Canfield, P. C. Variation of the magnetic ordering in GdT2Zn20 (T = Fe, Ru, Os, Co, Rh and Ir) and its correlation with the electronic structure of isostructural YT2Zn20. Phys. Rev. B 2008, 77, 104408; https://doi.org/10.1103/physrevb.77.104408.Search in Google Scholar

Jia, S.; Ni, N.; Bud’ko, S. L.; Canfield, P. C. Magnetic properties of RFe2Zn20 and RCo2Zn20 (R = Y, Nd, Sm, Gd-Lu). Phys. Rev. B 2009, 80, 104403.Search in Google Scholar

Kaluarachchi, U. S.; Xiang, L.; Ying, J.; Kong, T.; Struzhkin, V.; Gavriliuk, A.; Bud’ko, S. L.; Canfield, P. C. Collapse of the Kondo state and ferromagnetic quantum phase transition in YbFe2Zn20. Phys. Rev. B 2018, 98, 174405; https://doi.org/10.1103/physrevb.98.174405.Search in Google Scholar

Kanai, Y.; Mori, T.; Naimen, S.; Yamagami, K.; Kitayama, S.; Fujiwara, H.; Higashiya, A.; Kadono, T.; Imada, S.; Kiss, T.; Tanaka, A.; Muro, T.; Tamasaku, K.; Yabashi, M.; Ishikawa, T.; Iga, F.; Ebihara, T.; Honda, F.; Ōnuki, Y.; Sekiyama, A. Linear dichroism in 3d core-level and 4f valence-band photoemission spectra of strongly correlated rare-earth compounds. J. Electron. Spectrosc. Relat. Phenom. 2017, 220, 61–65; https://doi.org/10.1016/j.elspec.2016.12.012.Search in Google Scholar

Kanatzidis, M. G.; Pöttgen, R.; Jeitschko, W. The metal flux – a preparative tool for intermetallic compounds. Angew. Chem. Int. Ed. 2005, 44, 6996–7023; https://doi.org/10.1002/anie.200462170.Search in Google Scholar PubMed

Kaneko, K.; Yoshiuchi, S.; Takeuchi, T.; Honda, F.; Settai, R.; Ōnuki, Y. Effect of magnetic field in heavy-fermion compound YbCo2Zn20. J. Phys.: Conf. Ser. 2012, 391, 012026; https://doi.org/10.1088/1742-6596/391/1/012026.Search in Google Scholar

Kangas, M. J.; Schmitt, D. C.; Sakai, A.; Nakatsuji, S.; Chan, J. Y. Structure and physical properties of single crystal PrCr2Al20 and CeM2Al20 (M = V, Cr): a comparison of compounds adopting the CeCr2Al20 structure type. J. Solid State Chem. 2012, 196, 274–281; https://doi.org/10.1016/j.jssc.2012.06.035.Search in Google Scholar

Kase, N.; Shimura, Y.; Kittaka, S.; Sakakibara, T.; Nakatsuji, S.; Nakano, T.; Takeda, N.; Akimitsu, J. Antiferromagnetic transition of the caged compound TmTi2Al20. J. Phys.: Conf. Ser. 2015, 592, 012052; https://doi.org/10.1088/1742-6596/592/1/012052.Search in Google Scholar

Kawamura, N.; Hirose, Y.; Honda, F.; Shimokasa, R.; Ishimatsu, N.; Mizumaki, M.; Kawaguchi, S. I.; Hirao, N.; Mimura, K. Study on the correlation of U valence states with U-U distance in UPd2Cd20. JPS Conf. Proc. 2020, 30, 011172.10.7566/JPSCP.30.011172Search in Google Scholar

Keppens, V.; Mandrus, D.; Sales, B. C.; Chakoumakos, B. C.; Dai, P.; Coldea, R.; Maple, M. B.; Gajewski, D. A.; Freeman, E. J.; Bennington, S. Localized vibrational modes in metallic solids. Nature 1998, 395, 876–878; https://doi.org/10.1038/27625.Search in Google Scholar

Kerimov, K. M.; Dunaev, S. F. The M2Mg3Al18 physe in Al-Mg-transition metal systems. J. Less-Common. Met. 1989, 153, 267–273; https://doi.org/10.1016/0022-5088(89)90121-5.Search in Google Scholar

Kim, J. S.; Stewart, G. R.; Bauer, E. D. Specific heat variation as T0.5 in Th-doped UIr2Zn20: consistent with weak coupled quantum critical behavior. Phys. Rev. B 2008, 78, 035121; https://doi.org/10.1103/physrevb.78.035121.Search in Google Scholar

Kim, S. K.; Torikachvili, M. S.; Bud’ko, S. L.; Canfield, P. C. Search for pressure-induced quantum criticality in YbFe2Zn20. Phys. Rev. B 2013, 88, 045116; https://doi.org/10.1103/physrevb.88.045116.Search in Google Scholar

Kishii, N.; Tateno, S.; Ohashi, M.; Isikawa, Y. Crystal structure of the caged magnetic compound DyFe2Zn20 at low temperature magnetic ordering state. Phys. Procedia 2015, 75, 664–670; https://doi.org/10.1016/j.phpro.2015.12.086.Search in Google Scholar

Koldemir, A.; Klenner, S.; Pöttgen, R. Crystal structure of europium dichromium icosaaluminum, EuCr2Al20. Z. Kristallogr. NCS 2023, 238, 507–509.10.1515/ncrs-2023-0054Search in Google Scholar

Komagata, T.; Wakiya, K.; Sugiyama, Y.; Uehara, M.; Umehara, I.; Nakamura, N.; Matsuda, T. D.; Aoki, Y.; Gouchi, J.; Uwatoko, Y. Structural and magnetic properties of a new cubic compound PrRu2In2Zn18. JPS Conf. Proc. 2020, 30, 011157.Search in Google Scholar

Kong, T.; Taufour, V.; Bud’ko, S. L.; Canfield, P. C. Tuning the Kondo effect in Yb(Fe1−xCox)2Zn20. Phys. Rev. B 2017, 95, 155103; https://doi.org/10.1103/physrevb.95.155103.Search in Google Scholar

Konic, A. M.; Adhikari, R. B.; Kunwar, D. L.; Kirmani, A. A.; Breindel, A.; Sheng, R.; Maple, M. B.; Dzero, M.; Almasan, C. C. Evolution of non-Kramers doublets in magnetic field in PrNi2Cd20 and PrPd2Cd20. Phys. Rev. B 2021, 104, 205139; https://doi.org/10.1103/physrevb.104.205139.Search in Google Scholar

Koza, M. M.; Leithe-Jasper, A.; Sischka, E.; Schnelle, W.; Borrmann, H.; Mutka, H.; Grin, Yu. Effect of the electropositive elements A = Sc, La, and Ce on the microscopic dynamics of AV2Al20. Phys. Chem. Chem. Phys. 2014, 16, 27119–27133; https://doi.org/10.1039/c4cp04097j.Search in Google Scholar PubMed

Krypyakevych, P. I.; Zarechnyuk, O. S. The RCr2Al20 compounds in the systems of the rare earth metals and calcium and their crystal structures. Dopov. Akad. Nauk Ukr. RSR, Ser. A 1968, 238, 364–367.Search in Google Scholar

Kubo, T.; Kotegawa, H.; Tou, H.; Higashinaka, R.; Nakama, A.; Aoki, Y.; Sato, H. 93Nb- and 27Al-NMR/NQR studies of the praseodymium based PrNb2Al20. J. Phys. Soc. Jpn. Conf. Proc. 2014, 3, 012031.Search in Google Scholar

Kubo, T.; Kotegawa, H.; Tou, H.; Higashinaka, R.; Nakama, A.; Aoki, Y.; Sato, H. 93Nb- and 27Al-NMR/NQR studies on the Pr-based heavy fermion system PrNb2Al20. J. Phys.: Conf. Ser. 2015, 592, 012093; https://doi.org/10.1088/1742-6596/592/1/012093.Search in Google Scholar

Kubo, T.; Kotegawa, H.; Tou, H.; Higashinaka, R.; Nakama, A.; Aoki, Y.; Sato, H. Analysis of 27Al- and 93Nb-NMR spectra of PrNb2Al20 single crystal. J. Phys.: Conf. Ser. 2016, 683, 012015; https://doi.org/10.1088/1742-6596/683/1/012015.Search in Google Scholar

Kubo, T.; Kotegawa, H.; Tou, H.; Harima, H.; Higashinaka, R.; Nakama, A.; Aoki, Y.; Sato, H. Site-selective NMR measurements in single crystal PrNb2Al20. J. Phys.: Conf. Ser. 2017, 807, 032006; https://doi.org/10.1088/1742-6596/807/3/032006.Search in Google Scholar

Kusanose, Y.; Onimaru, T. Competition between quadrupole and magnetic Kondo effects on non-Kramers doublet systems. J. Phys.: Conf. Ser. 2015, 592, 012099.10.1088/1742-6596/592/1/012099Search in Google Scholar

Kusanose, Y.; Onimaru, T.; Yamane, Yu.; Umeo, K.; Takabatake, T. Synthesis and study of transport and magnetic properties of magnesium cage compounds RNi2Mg20 (R = Pr, Nd). J. Alloys Compd. 2022, 894, 162361; https://doi.org/10.1016/j.jallcom.2021.162361.Search in Google Scholar

Kuwai, T.; Funane, M.; Tada, K.; Mizushima, T.; Isikawa, Y. Thermoelectric power anomaly of PrTi2Al20 and PrV2Al20 with non-Kramers Γ3 ground state. J. Phys. Soc. Jpn. 2013, 82, 074705; https://doi.org/10.7566/jpsj.82.074705.Search in Google Scholar

Lee, S. B.; Trebst, S.; Kim, Y. B.; Paramekanti, A. Landau theory of multipolar orders in Pr(Y)2X20 Kondo materials (Y = Ti, V, Rh, Ir; X = Al, Zn). Phys. Rev. B 2018, 98, 134447; https://doi.org/10.1103/physrevb.98.134447.Search in Google Scholar

Lei, Q.; Namiki, T.; Isikawa, Y.; Nishimura, K.; Hutchison, W. D. Magnetic and thermal properties of TmV2Al20 single crystals. J. Phys. Soc. Jpn. 2016, 85, 034709; https://doi.org/10.7566/jpsj.85.034709.Search in Google Scholar

Li, Q.; Luo, Q.; Gu, Q.-F. Insights into the composition exploration of novel hydrogen storage alloys: evaluation of the Mg-Ni-Nd-H phase diagram. J. Mater. Chem. 2017, 5, 3848–3864; https://doi.org/10.1039/c6ta10090b.Search in Google Scholar

Lima-de-Faria, J.; Hellner, E.; Liebau, F.; Makovicky, E.; Parthé, E. Nomenclature of inorganic structure types. Acta Crystallogr. 1990, A46, 1–11; https://doi.org/10.1107/s0108767389008834.Search in Google Scholar

Lueken, H. Magnetochemie; B. G. Teubner: Stuttgart, Leipzig, 1999.10.1007/978-3-322-80118-0Search in Google Scholar

Luo, Q.; Gu, Q.-F.; Zhang, J.-Y.; Chen, S.-L.; Chou, K.-C.; Li, Q. Phase equilibria, crystal structure and hydriding/dehydriding mechanism of Nd4Mg80Ni8 compound. Sci. Rep. 2015, 5, 15385; https://doi.org/10.1038/srep15385.Search in Google Scholar PubMed PubMed Central

Lux, R.; Kuntze, V.; Hillebrecht, H. Synthesis and crystal structure of cubic V11Cu9Ga46 – a 512-fold super structure of a simple bcc packing. Solid State Sci. 2012, 14, 1445–1453; https://doi.org/10.1016/j.solidstatesciences.2012.07.028.Search in Google Scholar

Ma, H.; Li, X.; Jiang, W.; Zhang, X. First-principles investigation of structural stability, mechanical, anisotropic, and thermodynamic properties of CeT2Al20 intermetallics. Z. Naturforsch. 2018, 73a, 1157–1167; https://doi.org/10.1515/zna-2018-0265.Search in Google Scholar

Ma, H.; Li, X.; Yu, H.; Jiang, W.; Zhang, X. Phase stability, elastic, anisotropic and thermodynamic properties of HoT2Al20 (T = Ti, V, Cr) intermetallic cage compounds. Mol. Simulat. 2019a, 45, 833–840; https://doi.org/10.1080/08927022.2019.1603381.Search in Google Scholar

Ma, H.; Zhang, X.; Liu, C.; Zhao, L.; Jiang, W. Structural, elastic, anisotropic and thermodynamic properties of the caged intermetallics RETi2Al20 (RE = La, Ce, Gd and Ho): a first-principles study. Solid State Sci. 2019b, 89, 121–129; https://doi.org/10.1016/j.solidstatesciences.2018.12.023.Search in Google Scholar

Machida, Y.; Yoshida, T.; Ikeura, T.; Izawa, K.; Nakama, A.; Higashinaka, R.; Aoki, Y.; Sato, H.; Sakai, A.; Nakatsuji, S.; Nagasawa, N.; Matsumoto, K.; Onimaru, T.; Takabatake, T. Anomalous enhancement of Seebeck coefficient in Pr-based 1-2-20 system with non-Kramers doublet ground states. J. Phys.: Conf. Ser. 2015, 592, 012025; https://doi.org/10.1088/1742-6596/592/1/012025.Search in Google Scholar

Magata, A.; Matsumoto, Y.; Tsujimoto, M.; Tomita, T.; Küchler, R.; Sakai, A.; Nakatsuji, S. Low-temperature thermal expansion measurements in PrV2Al20. J. Phys.: Conf. Ser. 2016, 683, 012014; https://doi.org/10.1088/1742-6596/683/1/012014.Search in Google Scholar

Mahan, G.; Sales, B.; Sharp, J. Thermoelectric materials: new approaches to an old problem. Phys. Today 1997, 50, 42; https://doi.org/10.1063/1.881752.Search in Google Scholar

Manyako, M. B.; Yahson, T. L.; Zarechnyuk, O. S. Phase transformations in the Ca-V(Cr)-Al systems at 770 K. Russ. Metall. 1990, 2, 199–201.Search in Google Scholar

Mardegan, J. R. L.; Francoual, S.; Fabbris, G.; Veiga, L. S. I.; Strempfer, J.; Haskel, D.; Ribeiro, R. A.; Avila, M. A.; Giles, C. Magnetic properties of GdT2Zn20 (T = Fe, Co) investigated by x-ray diffraction and spectroscopy. Phys. Rev. B 2016, 93, 024421; https://doi.org/10.1103/physrevb.93.024421.Search in Google Scholar

Matsubayashi, K.; Saiga, Y.; Matsumoto, T.; Uwatoko, Y. Fermi-liquid properties of the heavy fermion systems YbT2Zn20 (T = Ir, Rh and Co) under pressure. J. Phys.: Conf. Ser. 2009, 150, 042117; https://doi.org/10.1088/1742-6596/150/4/042117.Search in Google Scholar

Matsubayashi, K.; Saiga, Y.; Matsumoto, T.; Uwatoko, Y. Pressure-induced variation of Kondo behavior on the heavy fermion compounds YbT2Zn20 (T = Co, Rh, Ir). J. Phys.: Conf. Ser. 2010, 200, 012112; https://doi.org/10.1088/1742-6596/200/1/012112.Search in Google Scholar

Matsubayashi, K.; Hisada, A.; Kawae, T.; Uwatoko, Y. Recent progress in multi-extreme condition by miniature high-pressure cell. Koatsuryoku no Kagaku to Gijutsu 2012, 22, 206–213; https://doi.org/10.4131/jshpreview.22.206.Search in Google Scholar

Matsumoto, Y.; Matsuda, T. D.; Tateiwa, N.; Yamamoto, E.; Haga, Y.; Fisk, Z. Single crystal growth and physical properties of UT2Al20 (T = transition metal). J. Kor. Phys. Soc. 2013, 63, 363–366; https://doi.org/10.3938/jkps.63.363.Search in Google Scholar

Matsumoto, Y.; Tsujimoto, M.; Tomita, T.; Sakai, A.; Nakatsuji, S. Strong orbital fluctuations in multipolar ordered states of PrV2Al20. J. Magn. Magn. Mater. 2016a, 400, 66–69; https://doi.org/10.1016/j.jmmm.2015.07.113.Search in Google Scholar

Matsumoto, Y.; Tsujimoto, M.; Tomita, T.; Sakai, A.; Nakatsuji, S. Heavy fermion superconductivity in non-magnetic cage compound PrV2Al20. J. Phys.: Conf. Ser. 2016b, 683, 012013; https://doi.org/10.1088/1742-6596/683/1/012013.Search in Google Scholar

Matsunami, M.; Taguchi, M.; Chainani, A.; Eguchi, R.; Oura, M.; Sakai, A.; Nakatsuji, S.; Shin, S. Kondo resonance in PrTi2Al20: photoemission spectroscopy and single-impurity Anderson model calculations. Phys. Rev. B 2011, 84, 193101; https://doi.org/10.1103/physrevb.84.193101.Search in Google Scholar

Melotti, F.; Dustan, A.; Hirst, T.; Griffiths, W. D. Effects of Ce on the thermal stability of the Ω phase in a cast aluminum metal matrix composite. In Advances in the science and engineering of casting solidification; Nastac, L., Liu, B., Fredriksson, H., Lacaze, J., Hong, C.-P., Catalina, A. V., Buhrig-Polaczek, A., Monroe, C., Sabau, A. S., Ruxanda, R. E. L., Luo, A., Sen, S., Diószegi, A., Eds. TMS (The Minerals, Metals & Materials Society), Springer International Publishing: Heidelberg, 2015.Search in Google Scholar

Mito, T.; Koyama, T.; Nakagawara, K.; Ishida, T.; Ueda, K.; Kohara, T.; Matsubayashi, K.; Saiga, Y.; Munakata, K.; Uwatoko, Y.; Mizumaki, M.; Kawamura, N. Magnetic field effect on Yb-based heavy fermions near magnetic-nonmagnetic transition. Acta Phys. Pol., A 2010, 118, 870–872; https://doi.org/10.12693/aphyspola.118.870.Search in Google Scholar

Mito, T.; Koyama, T.; Nakagawara, K.; Ishida, T.; Ueda, K.; Kohara, T.; Matsubayashi, K.; Saiga, Y.; Munakata, K.; Uwatoko, Y.; Mizumaki, M.; Kawamura, N.; Idzikowski, B.; Reiffers, M. Mechanism of field induced Fermi liquid state in Yb-based heavy-fermion compound: X-ray absorption spectroscopy and nuclear magnetic resonance studies of YbCo2Zn20. J. Phys. Soc. Jpn. 2012, 81, 033706; https://doi.org/10.1143/jpsj.81.033706.Search in Google Scholar

Mito, T.; Hara, H.; Ishida, T.; Nakagawara, K.; Koyama, T.; Ueda, K.; Kohara, T.; Ishida, K.; Matsubayashi, K.; Saiga, Y.; Uwatoko, Y. Microscopic evidence of a crossover to a low-temperature intermediate valence state in YbCo2Zn20. J. Phys. Soc. Jpn. 2013, 82, 103704; https://doi.org/10.7566/jpsj.82.103704.Search in Google Scholar

Miyazaki, M.; Kadono, R.; Hiraishi, M.; Yamauchi, I.; Koda, A.; Kojima, K. M.; Kawasaki, I.; Watanabe, I.; Okamoto, Y.; Hiroi, Z. Spin dynamics of Mn pyrochlore lattice in YMn2Zn20−xInx. J. Phys.: Conf. Ser. 2014, 551, 012019; https://doi.org/10.1088/1742-6596/551/1/012019.Search in Google Scholar

Moussa, C.; Pasturel, M.; Stepnik, B.; Tougait, O. Experimental study of phase relations in the U–Ti–Al system. Intermetallics 2015, 57, 1–6; https://doi.org/10.1016/j.intermet.2014.09.009.Search in Google Scholar

Moussa, C.; Berche, A.; Pasturel, M.; Barbosa, J.; Stepnik, B.; Dubois, S.; Tougait, O. The U-Nb-Al ternary system: experimental and simulated investigations of the phase equilibria and study of the crystal structure and electronic properties of the intermediate phases. J. Alloys Compd. 2017, 691, 893–905; https://doi.org/10.1016/j.jallcom.2016.08.257.Search in Google Scholar

Moze, O.; Tung, L. D.; Franse, J. J. M.; Buschow, K. H. J. Crystal structure and magnetic properties of CeV2Al20 and CeCr2Al20. J. Alloys Compd. 1998, 268, 39–41; https://doi.org/10.1016/s0925-8388(97)00586-0.Search in Google Scholar

Müller, U. Kristallographische Gruppe-Untergruppe-Beziehungen und ihre Anwendung in der Kristallchemie. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537; https://doi.org/10.1002/zaac.200400250.Search in Google Scholar

Mun, E. D.; Jia, S.; Bud’ko, S. L.; Canfield, P. C. Thermoelectric power of the YbT2Zn20 (T = Fe, Ru, Os, Ir, Rh, and Co) heavy fermions. Phys. Rev. B 2012, 86, 115110; https://doi.org/10.1103/physrevb.86.115110.Search in Google Scholar

Nagasawa, N.; Onimaru, T.; Matsumoto, K. T.; Umeo, K.; Takabatake, T. Nonmagnetic Γ3 doublet ground state in a caged compound PrRh2Zn20. J. Phys.: Conf. Ser. 2012, 391, 012051; https://doi.org/10.1088/1742-6596/391/1/012051.Search in Google Scholar

Nakanishi, Y.; Fujino, T.; Ito, K.; Nakamura, M.; Yoshizawa, M.; Saiga, Y.; Kosaka, M.; Uwatoko, Y. Elastic constants of the single crystalline Yb based heavy-fermion compound YbCo2Zn20. Phys. Rev. B 2009a, 80, 184418; https://doi.org/10.1103/physrevb.80.184418.Search in Google Scholar

Nakanishi, Y.; Ito, K.; Nakamura, M.; Saiga, Y.; Kosaka, M.; Uwatoko, Y.; Yoshizawa, M. Ultrasonic study of the Yb-based heavy fermion compound YbRh2Zn20. J. Phys.: Conf. Ser. 2009b, 150, 042138; https://doi.org/10.1088/1742-6596/150/4/042138.Search in Google Scholar

Nakanishi, Y.; Kamiyama, T.; Ito, K.; Nakamura, M.; Saiga, Y.; Kosaka, M.; Uwatoko, Y.; Yoshizawa, M. Ultrasonic investigation close to quantum critical point in YbTr2Zn20 (Tr: Co, Rh, and Ir). J. Phys.: Conf. Ser. 2010, 200, 012142; https://doi.org/10.1088/1742-6596/200/1/012142.Search in Google Scholar

Nakanishi, Y.; Taniguchi, M.; Hasegawa, J.; Ohyama, R.; Nakamura, M.; Yoshizawa, M.; Tsujimoto, M.; Nakatsuji, S. Elastic anomalies associated with two successive transitions of PrV2Al20 probed by ultrasound measurements. Physica B 2018, 536, 125–127; https://doi.org/10.1016/j.physb.2017.10.110.Search in Google Scholar

Namiki, T.; Nosaka, K.; Tsuchida, K.; Lei, Q.; Kanamori, R.; Nishimura, K. Magnetic and thermal properties of NdT2Al20 (T: Ti, V, Cr) single crystals. J. Phys.: Conf. Ser. 2016, 683, 012017; https://doi.org/10.1088/1742-6596/683/1/012017.Search in Google Scholar

Nasch, T.; Jeitschko, W.; Rodewald, U.Ch. Ternary rare earth transition metal zinc compounds RT2Zn20 with T = Fe, Ru, Co, Rh, and Ni. Z. Naturforsch. 1997, 52b, 1023–1030; https://doi.org/10.1515/znb-1997-0901.Search in Google Scholar

Ni, N.; Jia, S.; Samolyuk, G. D.; Kracher, A.; Sefat, A. S.; Bud’ko, S. L.; Canfield, P. C. Physical properties of GdFe2(AlxZn1−x)20. Phys. Rev. B 2011, 83, 054416; https://doi.org/10.1103/physrevb.83.054416.Search in Google Scholar

Niemann, S.; Jeitschko, W. Ternary aluminides AT2Al20 (A = rare earth elements and uranium; T = Ti, Nb, Ta, Mo, and W) with CeCr2Al20-type structure. J. Solid State Chem. 1995, 114, 337–341; https://doi.org/10.1006/jssc.1995.1052.Search in Google Scholar

Noël, H.; Tougait, O.; Dubois, S. Phase relations in the U-Mo-Al system. J. Nucl. Mater. 2009, 389, 93–97; https://doi.org/10.1016/j.jnucmat.2009.01.013.Search in Google Scholar

Nolas, G. S.; Cohn, J. L.; Slack, G. A.; Schujman, S. B. Semiconducting Ge clathrates: promising candidates for thermoelectric applications. Appl. Phys. Lett. 1998, 73, 178–180; https://doi.org/10.1063/1.121747.Search in Google Scholar

Ohashi, M.; Ohashi, K.; Sawabu, M.; Miyagawa, M.; Maeta, K.; Isikawa, Y. X-ray diffraction study of the caged magnetic compound DyFe2Zn20 at low temperatures. Physica B 2018, 536, 821–823; https://doi.org/10.1016/j.physb.2017.10.003.Search in Google Scholar

Ohya, M.; Matsushita, M.; Yoshiuchi, S.; Takeuchi, T.; Honda, F.; Settai, R.; Tanaka, T.; Kubo, Y.; Ōnuki, Y. Strong field quenching of the quasiparticle effective mass in heavy fermion compound YbCo2Zn20. J. Phys. Soc. Jpn. 2010, 79, 083601; https://doi.org/10.1143/jpsj.79.083601.Search in Google Scholar

Okamoto, Y.; Shimizu, T.; Yamaura, J.-I.; Hiroi, Z. Crystal chemistry and magnetic properties of manganese zinc alloy “YMn2Zn20” comprising a Mn pyrochlore lattice. J. Solid State Chem. 2012, 191, 246–256; https://doi.org/10.1016/j.jssc.2012.03.038.Search in Google Scholar

Okuyama, D.; Tsujimoto, M.; Sagayama, H.; Shimura, Y.; Sakai, A.; Magata, A.; Nakatsuji, S.; Sato, T. J. Crystal structure in quadrupolar Kondo candidate PrTr2Al20 (Tr = Ti and V). J. Phys. Soc. Jpn. 2019, 88, 015001; https://doi.org/10.7566/jpsj.88.015001.Search in Google Scholar

Onimaru, T.; Matsumoto, K. T.; Inoue, Y. F.; Umeo, K.; Saiga, Y.; Matsushita, Y.; Tamura, R.; Nishimoto, K.; Ishii, I.; Suzuki, T.; Takabatake, T. Superconductivity and structural phase transitions in caged compounds RT2Zn20 (R = La, Pr, T = Ru, Ir). J. Phys. Soc. Jpn. 2010, 79, 033704; https://doi.org/10.1143/jpsj.79.033704.Search in Google Scholar

Onimaru, T.; Sakakibara, T. Non-Kramers doublet and phase transitions in Pr-based 1-2-20 systems with a caged structure. Kotai Butsuri 2012, 47, 565–576.Search in Google Scholar

Onimaru, T.; Matsumoto, K. T.; Nagasawa, N.; Inoue, Y. F.; Umeo, K.; Tamura, R.; Nishimoto, K.; Kittaka, S.; Sakakibara, T.; Takabatake, T. Nonmagnetic ground states and phase transitions in the caged compounds PrT2Zn20 (T = Ru, Rh and Ir). J. Phys.: Condens. Matter 2012a, 24, 294207; https://doi.org/10.1088/0953-8984/24/29/294207.Search in Google Scholar PubMed

Onimaru, T.; Nagasawa, N.; Matsumoto, K. T.; Wakiya, K.; Umeo, K.; Kittaka, S.; Sakakibara, T.; Matsushita, Y.; Takabatake, T. Simultaneous superconducting and antiferroquadrupolar transitions in PrRh2Zn20. Phys. Rev. B 2012b, 86, 184426; https://doi.org/10.1103/physrevb.86.184426.Search in Google Scholar

Onimaru, T.; Kusunose, H. Exotic quadrupolar phenomena in non-Kramers doublet systems – the cases of PrT2Zn20 (T = Ir, Rh) and PrT2Al20 (T = V, Ti). J. Phys. Soc. Jpn. 2016, 85, 082002; https://doi.org/10.7566/jpsj.85.082002.Search in Google Scholar

Onosaka, A.; Okamoto, Y.; Yamaura, J. I.; Hirose, T.; Hiroi, Z. Large diamagnetism of AV2Al20 (A = Y and La). J. Phys. Soc. Jpn. 2012a, 81, 123702; https://doi.org/10.1143/jpsj.81.123702.Search in Google Scholar

Onosaka, A.; Okamoto, Y.; Yamaura, J.; Hiroi, Z. Superconductivity in the Einstein solid AxV2Al20 (A = Al and Ga). J. Phys. Soc. Jpn. 2012b, 81, 023703; https://doi.org/10.1143/jpsj.81.023703.Search in Google Scholar

Ōnuki, Y.; Yasui, S.; Yoshiuchi, S.; Ohya, M.; Matsushita, M.; Hirose, Y.; Takeuchi, T.; Honda, F.; Settai, R.; Sugiyama, K.; Yamamoto, E.; Haga, Y. Relation between metamagnetic transition and quantum critical point in heavy fermion compound YbIr2Zn20. J. Phys.: Conf. Ser. 2011, 273, 012013; https://doi.org/10.1088/1742-6596/273/1/012013.Search in Google Scholar

Ōnuki, Y.; Settai, R.; Sugiyama, K.; Takeuchi, T.; Honda, F.; Haga, Y.; Yamamoto, E.; Matsuda, T. D.; Tateiwa, N.; Aoki, D.; Sheikin, I.; Harima, H. Heavy fermions and unconventional superconductivity in high-quality single crystals of rare-earth and actinide compounds. J. Kor. Phys. Soc. 2013, 63, 409–415; https://doi.org/10.3938/jkps.63.409.Search in Google Scholar

Panday, S. R.; Dzero, M. Superconductivity in Ce-based cage compounds. arXiv:2301.04580v1 2023.10.1088/1361-648X/acd15cSearch in Google Scholar PubMed

Patri, A. S.; Sakai, A.; Lee, S. B.; Paramekanti, A.; Nakatsuji, S.; Kim, Y. B. Unveiling hidden multipolar orders with magnetostriction. Nat. Commun. 2019, 10, 4092; https://doi.org/10.1038/s41467-019-11913-3.Search in Google Scholar PubMed PubMed Central

Patri, A. S.; Kim, Y. B. Unconventional superconductivity arising from multipolar Kondo interactions. SciPost Phys. 2022, 12, 057; https://doi.org/10.21468/scipostphys.12.2.057.Search in Google Scholar

Pecharsky, V. K.; Bodak, O. I.; Belsky, V. K.; Starodub, P. K.; Mokraya, I. R.; Gladyshevsky, E. I. Crystal structure of a Tb117Fe52Ge112 compound. Kristallografiya 1987, 32, 334–338.Search in Google Scholar

Quan, S.; Zhang, X.; Liu, C.; Jiang, W. First-principles investigations on structural stability, mechanical, and thermodynamic properties of LaT2Al20 (T = Ti, V, Cr, and Ta) intermetallic cage compounds. Chin. Phys. B 2018, 27, 126201; https://doi.org/10.1088/1674-1056/27/12/126201.Search in Google Scholar

Raghavan, V. A-Ho-Ti (Aluminum-Holmium-Titanium). J. Phase Equilibria Diffus. 2005, 26, 184–185; https://doi.org/10.1007/s11669-005-0144-y.Search in Google Scholar

Ramesh Kumar, K.; Nair, H. S.; Christian, R.; Thamizhavel, A.; Strydom, A. M. Magnetic, specific heat and electrical transport properties of Frank-Kasper cage compounds RTM2Al20 [R = Eu, Gd and La; TM = V, Ti]. J. Phys.: Condens. Matter 2016, 28, 436002; https://doi.org/10.1088/0953-8984/28/43/436002.Search in Google Scholar PubMed

Ramesh Kumar, K.; Nair, H. S.; Bhattacharyya, A.; Thamizhavel, A.; Strydom, A. M. Metamagnetism, sign reversal and low temperature magnetocaloric effect in single-crystalline EuV2Al20. J. Magn. Magn. Mater. 2018, 452, 205–209; https://doi.org/10.1016/j.jmmm.2017.12.066.Search in Google Scholar

Romero, M. A.; Aligia, A. A.; Sereni, J. G.; Nieva, G. Interpretation of experimental results on Kondo systems with crystal field. J. Phys.: Condens. Matter 2014, 26, 025602; https://doi.org/10.1088/0953-8984/26/2/025602.Search in Google Scholar PubMed

Rossteutscher, W.; Schubert, K. Über einige T-Zn und T-Cd Legierungssysteme. Z. Metallkd. 1965, 56, 730–734; https://doi.org/10.1515/ijmr-1965-561013.Search in Google Scholar

Rubaszek, A. Effect of the Ir and Zn monovacancy on the electron and positron properties in UIr2Zn20. Phys. Status Solidi B 2013, 250, 1404–1409; https://doi.org/10.1002/pssb.201248494.Search in Google Scholar

Rubaszek, A. Positron annihilation study of defects in the cage-type uranium compound. Acta Phys. Pol., A 2014, 125, 737–740; https://doi.org/10.12693/aphyspola.125.737.Search in Google Scholar

Rykhal’, R. M.; Zarechnyuk, O. S.; Matz’kiv, O. P. The isothermal sections at 500 °C of the system Dy-V-Al and Dy-Cr-Al in the aluminium-rich regions. Visn. Lviv Derzh. Univ., Ser. Khim. 1979, 21, 46–49.Search in Google Scholar

Saiga, Y.; Matsubayashi, K.; Fujiwara, T.; Kosaka, M.; Katano, S.; Hedo, M.; Matsumoto, T.; Uwatoko, Y. Pressure-induced magnetic transition in a single crystal of YbCo2Zn20. J. Phys. Soc. Jpn. 2008, 77, 053710; https://doi.org/10.1143/jpsj.77.053710.Search in Google Scholar

Saiga, Y.; Matsubayashi, K.; Fujiwara, T.; Matsumoto, T.; Kosaka, M.; Katano, S.; Uwatoko, Y. Magnetoresistivity of YbCo2Zn20 at low temperature. J. Phys.: Conf. Ser. 2009, 150, 042168; https://doi.org/10.1088/1742-6596/150/4/042168.Search in Google Scholar

Sakai, A.; Nakatsuji, S. Kondo effects and multipolar order in the cubic PrTr2Al20 (Tr = Ti, V). J. Phys. Soc. Jpn. 2011a, 80, 063701; https://doi.org/10.1143/jpsj.80.063701.Search in Google Scholar

Sakai, A.; Nakatsuji, S. Strong valence fluctuation effects in SmTr2Al20 (Tr = Ti, V, Cr). Phys. Rev. B 2011b, 84, 201106; https://doi.org/10.1103/physrevb.84.201106.Search in Google Scholar

Sakai, A.; Nakatsuji, S. Thermal properties of the nonmagnetic cubic Γ3 Kondo lattice systems PrTr2Al20 (Tr = Ti, V). J. Phys.: Conf. Ser. 2012, 391, 012058; https://doi.org/10.1088/1742-6596/391/1/012058.Search in Google Scholar

Sakai, A.; Kuga, K.; Nakatsuji, S. Superconductivity in the ferroquadrupolar state in the quadrupolar Kondo lattice PrTi2Al20. J. Phys. Soc. Jpn. 2012, 81, 083702; https://doi.org/10.1143/jpsj.81.083702.Search in Google Scholar

Sakai, A.; Nakatsuji, S. Low temperature transport properties of the quadrupolar Kondo lattice system PrTi2Al20. J. Kor. Phys. Soc. 2013, 63, 398–400; https://doi.org/10.3938/jkps.63.398.Search in Google Scholar

Salamakha, P.; Sologub, O.; Bocelli, G.; Otani, S.; Takabatake, T. Dy117Co57Sn112, a new structure type of ternary intermetallic stannides with a giant unit cell. J. Alloys Compd. 2001, 314, 177–180; https://doi.org/10.1016/s0925-8388(00)01212-3.Search in Google Scholar

Sales, B. C.; Mandrus, D.; Williams, R. K. Filled skutterudite antimonides: a new class of thermoelectric materials. Science 1996, 272, 1325–1328; https://doi.org/10.1126/science.272.5266.1325.Search in Google Scholar PubMed

Samson, S. The crystal structure of the intermetallic compound Mg3Cr2Al18. Acta Crystallogr. 1958, 11, 851–857; https://doi.org/10.1107/s0365110x58002425.Search in Google Scholar

Samson, S. The crystal structure of the intermetallic compound ZrZn22. Acta Crystallogr. 1961, 14, 1229–1236; https://doi.org/10.1107/s0365110x61003600.Search in Google Scholar

Sands, D. E.; Johnson, Q. C.; Zalkin, A.; Krikorian, O. H.; Kromholtz, K. L. The crystal structure of ReBe22. Acta Crystallogr. 1962, 15, 832–834; https://doi.org/10.1107/s0365110x62002224.Search in Google Scholar

Sato, T. J.; Ibuka, S.; Nambu, Y.; Yamazaki, T.; Hong, T.; Sakai, A.; Nakatsuji, S. Ferroquadrupolar ordering in PrTi2Al20. Phys. Rev. B 2012, 86, 184419; https://doi.org/10.1103/physrevb.86.184419.Search in Google Scholar

Schmitt, D. C.; Drake, B. L.; McCandless, G. T.; Chan, J. Y. Targeted crystal growth of rare earth intermetallics with synergistic magnetic and electrical properties: structural complexity to simplicity. Acc. Chem. Res. 2015, 48(3), 612–618; https://doi.org/10.1021/ar5003895.Search in Google Scholar PubMed

Shimura, Y.; Sakakibara, T.; Yoshiuchi, S.; Honda, F.; Settai, R.; Ōnuki, Y. Evidence of a field-induced ordering in YbCo2Zn20 in a [111] magnetic field. J. Phys. Soc. Jpn. 2011, 80, 073707; https://doi.org/10.1143/jpsj.80.073707.Search in Google Scholar

Shimura, Y.; Sakakibara, T.; Yoshiuchi, S.; Honda, F.; Settai, R.; Ōnuki, Y. Field-induced ordering in the heavy fermion compound YbCo2Zn20. J. Phys.: Conf. Ser. 2012, 391, 012066; https://doi.org/10.1088/1742-6596/391/1/012066.Search in Google Scholar

Shimura, Y.; Ohta, Y.; Sakakubara, T.; Sakai, A.; Nakatsuji, S. Evidence of a high-field phase in PrV2Al20 in a [100] magnetic field. J. Phys. Soc. Jpn. 2013, 82, 043705; https://doi.org/10.7566/jpsj.82.043705.Search in Google Scholar

Shimura, Y.; Tsujimoto, M.; Sakai, A.; Zeng, B.; Balicas, L.; Nakatsuji, S. Shubnikov-de Haas oscillation in the cubic Γ3-based heavy fermion superconductor PrV2Al20. J. Phys.: Conf. Ser. 2015a, 592, 012026; https://doi.org/10.1088/1742-6596/592/1/012026.Search in Google Scholar

Shimura, Y.; Tsujimoto, M.; Zeng, B.; Balicas, L.; Sakai, A.; Nakatsuji, S. Field-induced quadrupolar quantum criticality in PrV2Al20. Phys. Rev. B 2015b, 91, 241102; https://doi.org/10.1103/physrevb.91.241102.Search in Google Scholar

Shimura, Y.; Tsujimoto, M.; Zeng, B.; Zhang, Q.; Balicas, L.; Sakai, A.; Nakatsuji, S. Very low temperature magnetoresistance in the quadrupole ordered system PrV2Al20. J. Phys.: Conf. Ser. 2016, 683, 012012; https://doi.org/10.1088/1742-6596/683/1/012012.Search in Google Scholar

Shimura, Y.; Zhang, Q.; Zeng, B.; Rhodes, D.; Schönemann, R.; Tsujimoto, M.; Matsumoto, Y.; Sakai, A.; Sakakibara, T.; Araki, K.; Zheng, W.; Zhou, Q.; Balicas, L.; Nakatsuji, S. Giant anisotropic magnetoresistance due to purely orbital rearrangement in the quadrupolar heavy fermion superconductor PrV2Al20. Phys. Rev. Lett. 2019, 122, 256601; https://doi.org/10.1103/physrevlett.122.256601.Search in Google Scholar PubMed

Shimura, Y.; Kitazawa, T.; Tsuda, S.; Bachus, S.; Tokiwa, Y.; Gegenwart, P.; Yamamoto, R.; Yamane, Y.; Nishihara, I.; Umeo, K.; Onimaru, T.; Takabatake, T.; Hirose, H. T.; Kikugawa, N.; Terashima, T.; Uji, S. Fragile superheavy Fermi liquid in YbCo2Zn20. Phys. Rev. B 2020, 101, 241102; https://doi.org/10.1103/physrevb.101.241102.Search in Google Scholar

Sootsman, J. R.; Chung, D. Y.; Kanatzidis, M. G. New and old concepts in thermoelectric materials. Angew. Chem. Int. Ed. 2009, 48, 8616–8639; https://doi.org/10.1002/anie.200900598.Search in Google Scholar PubMed

Svanidze, E.; Kindy, M.II; Georgen, C.; Fulfer, B. W.; Lapidus, S. H.; Chan, J. Y.; Morosan, E. Magnetic and crystallographic properties of ZrM2–δZn20+δ (M = Cr-Cu). J. Magn. Magn Mater. 2016, 416, 401–407; https://doi.org/10.1016/j.jmmm.2016.04.082.Search in Google Scholar

Swatek, P.; Kaczorowski, D. Magnetic behavior in UFe2Zn20 and URu2Zn20 single crystals. J. Phys.: Condens. Matter 2011, 23, 466001; https://doi.org/10.1088/0953-8984/23/46/466001.Search in Google Scholar PubMed

Swatek, P.; Daszkiewicz, M.; Kaczorowski, D. Paramagnetic heavy-fermion ground state in single-crystalline UIr2Zn20. Phys. Rev. B 2012, 85, 094426; https://doi.org/10.1103/physrevb.85.094426.Search in Google Scholar

Swatek, P.; Kaczorowski, D. Magnetic and electrical properties of UCr2Al20 single crystals. J. Solid State Chem. 2012, 191, 191–194; https://doi.org/10.1016/j.jssc.2012.03.018.Search in Google Scholar

Swatek, P.; Kaczorowski, D. Intermediate valence behavior in the novel cage compound CeIr2Zn20. J. Phys.: Condens. Matter 2013, 25, 055602; https://doi.org/10.1088/0953-8984/25/5/055602.Search in Google Scholar PubMed

Swatek, P.; Daszkiewicz, M.; Kaczorowski, D. Crystal structure of the new compound UOs2Zn20. J. Alloys Compd. 2014, 586, 754–756; https://doi.org/10.1016/j.jallcom.2013.09.165.Search in Google Scholar

Swatek, P.; Kaczorowski, D. Magnetic properties of EuCr2Al20. J. Magn. Magn. Mater. 2016, 416, 348–352; https://doi.org/10.1016/j.jmmm.2016.04.086.Search in Google Scholar

Takayama, K.; Hirose, Y.; Kawano, T.; Doto, H.; Honda, F.; Homma, Y.; Nakamura, A.; Aoki, D.; Thamizhavel, A.; Settai, R. Substitution effect for Cd site in RT2Cd20 (R = Ce, U). JPS Conf. Proc. 2020a, 30, 011122.10.7566/JPSCP.30.011122Search in Google Scholar

Takayama, K.; Hirose, Y.; Doto, H.; Honda, F.; Homma, Y.; Nakamura, A.; Aoki, D.; Settai, R. Substitution effect for Cd site in UPd2Cd20. JPS Conf. Proc. 2020b, 17pPSB, 102.Search in Google Scholar

Takeuchi, T.; Yasui, S.; Toda, M.; Matsushita, M.; Yoshiuchi, S.; Ohya, M.; Katayama, K.; Hirose, Y.; Yoshitani, N.; Honda, F.; Sugiyama, K.; Hagiwara, M.; Kindo, K.; Yamamoto, E.; Haga, Y.; Tanaka, T.; Kubo, Y.; Settai, R.; Ōnuki, Y. Metamagnetic behavior in heavy-fermion compound YbIr2Zn20. J. Phys. Soc. Jpn. 2010, 79, 064609; https://doi.org/10.1143/jpsj.79.064609.Search in Google Scholar

Takeuchi, T.; Yoshiuchi, S.; Ohya, M.; Taga, Y.; Hirose, Y.; Sugiyama, K.; Honda, F.; Hagiwara, M.; Kindo, K.; Settai, R.; Ōnuki, Y. Field-induced quadrupolar ordered phase for H ‖ ⟨111⟩ in heavy-fermion compound YbCo2Zn20. J. Phys. Soc. Jpn. 2011a, 80, 114703; https://doi.org/10.1143/jpsj.80.114703.Search in Google Scholar

Takeuchi, T.; Ohya, M.; Yoshiuchi, S.; Matsushita, M.; Honda, F.; Settai, R.; Ōnuki, Y. Metamagnetic behavior in a heavy fermion compound YbCo2Zn20. J. Phys.: Conf. Ser. 2011b, 273, 012059; https://doi.org/10.1088/1742-6596/273/1/012059.Search in Google Scholar

Takeuchi, T.; Yoshiuchi, S.; Ohya, M.; Matsushita, M.; Yasui, S.; Hirose, Y.; Sugiyama, K.; Honda, F.; Settai, R.; Onuki, Y. Characteristic magnetic phase diagram in heavy-fermion compound YbCo2Zn20. J. Phys.: Conf. Ser. 2012, 391, 012072; https://doi.org/10.1088/1742-6596/391/1/012072.Search in Google Scholar

Takeuchi, T.; Taga, Y.; Yoshiuchi, S.; Ohya, M.; Hirose, Y.; Honda, F.; Settai, R.; Ōnuki, Y. Effect of pressure on the field-induced ordered phase in the heavy-fermion compound YbCo2Zn20. J. Kor. Phys. Soc. 2013, 62, 1852–1854; https://doi.org/10.3938/jkps.62.1852.Search in Google Scholar

Tamura, I.; Isikawa, Y.; Mizushima, T.; Miyamoto, S. Study of 57Fe Mössbauer effect on DyFe2Zn20 and YFe2Zn20. J. Phys. Soc. Jpn. 2013, 82, 114703; https://doi.org/10.7566/jpsj.82.114703.Search in Google Scholar

Tanaka, T.; Kubo, Y. Electronic states of heavy-fermion compound YbT2Zn20 (T = Fe, Co, Ru, Rh, Os, Ir). Kenkyu Kiyo - Nihon Daigaku Bunrigakubu Shizen Kagaku Kenkyusho 2009, 44, 245–255.Search in Google Scholar

Tanaka, T.; Kubo, Y. Electronic structure of heavy-fermion systems YbT2Zn20 (T = Fe, Co, Ru, Rh, Os, Ir). J. Phys. Soc. Jpn. 2010, 79, 124710; https://doi.org/10.1143/jpsj.79.124710.Search in Google Scholar

Taniguchi, T.; Yoshida, M.; Takeda, H.; Takigawa, M.; Tsujimoto, M.; Sakai, A.; Matsumoto, Y.; Nakatsuji, S. Single crystal 27Al-NMR study of the cubic Γ3 ground doublet system PrTi2Al20. J. Phys.: Conf. Ser. 2016, 683, 012016; https://doi.org/10.1088/1742-6596/683/1/012016.Search in Google Scholar

Thiede, V. M. T.; Jeitschko, W.; Niemann, S.; Ebel, T. EuTa2Al20, Ca6W4Al43 and other compounds with CeCr2Al20 and Ho6Mo4Al43 type structures and some magnetic properties of these compounds. J. Alloys Compd. 1998, 267, 23–31; https://doi.org/10.1016/s0925-8388(97)00532-x.Search in Google Scholar

Tian, W.; Christianson, A. D.; Zarestky, J. L.; Jia, S.; Bud’ko, S. L.; Canfield, P. C.; Piccoli, P. M. B.; Schultz, A. J. Magnetic order in TbCo2Zn20 and TbFe2Zn20. Phys. Rev. B 2010, 81, 144409; https://doi.org/10.1103/physrevb.81.144409.Search in Google Scholar

Tokiwa, Y.; Piening, B.; Jeevan, H. S.; Bud’ko, S. L.; Canfield, P. C.; Gegenwart, P. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling. Sci. Adv. 2016, 2, e1600835; https://doi.org/10.1126/sciadv.1600835.Search in Google Scholar PubMed PubMed Central

Tokunaga, Y.; Sakai, H.; Kambe, S.; Sakai, A.; Nakatuji, S.; Harima, H. Magnetic excitations and c- f hybridization effect in PrTi2Al20 and PrV2Al20. Phys. Rev. B 2013, 88, 085124; https://doi.org/10.1103/physrevb.88.085124.Search in Google Scholar

Torikachvili, M. S.; Jia, S.; Mun, E. D.; Hannahs, S. T.; Black, R. C.; Neils, W. K.; Martien, D.; Bud’ko, S. L.; Canfield, P. C. Six closely related YbT2Zn20 (T = Fe, Co, Ru, Rh, Os, Ir) heavy fermion compounds with large local moment degeneracy. Proc. Natl. Acad. Sci. USA 2007, 104, 9960–9963; https://doi.org/10.1073/pnas.0702757104.Search in Google Scholar PubMed PubMed Central

Tou, H.; Asaki, K.; Kotegawa, H.; Onimaru, T.; Matsumoto, K. T.; Inoue, Y. F.; Takabatake, T. Evidence of a rattling transition in the caged compounds LaRu2Zn20 and LaIr2Zn20: 139La NMR studies. J. Kor. Phys. Soc. 2013, 63, 650–653; https://doi.org/10.3938/jkps.63.650.Search in Google Scholar

Treadwell, L. J.; McAlpin, J. D.; Schmitt, D. C.; Kangas, M. J.; Sougrati, M. T.; Haldolaarachchige, N.; Young, D. P.; Jumas, J.-C.; Chan, J. Y. Investigation of Fe incorporation in LnCr2Al20 (Ln = La, Gd, Yb) with 57Fe Mössbauer and single crystal X-ray diffraction. Inorg. Chem. 2013, 52, 5055–5062; https://doi.org/10.1021/ic302805n.Search in Google Scholar PubMed

Tsujimoto, M.; Matsumoto, Y.; Tomita, T.; Sakai, A.; Nakatsuji, S. Heavy-fermion superconductivity in the quadrupole ordered state of PrV2Al20. Phys. Rev. Lett. 2014, 113, 267001; https://doi.org/10.1103/physrevlett.113.267001.Search in Google Scholar PubMed

Tsujimoto, M.; Matsumoto, Y.; Nakatsuji, S. Anomalous specific heat behaviour in the quadrupolar Kondo system PrV2Al20. J. Phys.: Conf. Ser. 2015, 592, 0120236; https://doi.org/10.1088/1742-6596/592/1/012023.Search in Google Scholar

Tsuruta, A.; Miyake, K. Non-Fermi liquid and Fermi liquid in two-channel Anderson lattice model: theory for PrA2Al20 (A = V, Ti) and PrIr2Zn20. J. Phys. Soc. Jpn. 2015, 84, 114714; https://doi.org/10.7566/jpsj.84.114714.Search in Google Scholar

Tsutsui, S.; Kobayashi, Y.; Nakamura, J.; Kubo, M. K.; Amagasa, S.; Yamada, Y.; Yoda, Y.; Shimizu, Y.; Hidaka, H.; Yanagisawa, T.; Amitsuka, H.; Yamada, A.; Higashinaka, R.; Matsuda, T. D.; Aoki, Y. Sm valence states and magnetic properties in SmBe13 and SmTi2Al20 investigated by Sm synchrotron-radiation-based Mössbauer spectroscopy. Hyperfine Interact. 2017, 238, 100; https://doi.org/10.1007/s10751-017-1473-z.Search in Google Scholar

Tsutsui, S.; Masuda, R.; Yoda, Y.; Seto, M. Precise determination of hyperfine interactions and second-order Doppler shift in 149Sm Mössbauer transition. Hyperfine Interact. 2018, 239, 50; https://doi.org/10.1007/s10751-018-1524-0.Search in Google Scholar

Tsutsui, S.; Higashinaka, R.; Nakamura, R.; Fujiwara, K.; Nakamura, J.; Kobayashi, Y.; Ito, T. U.; Yoda, Y.; Kato, K.; Nitta, K.; Kawamura, N.; Mizumaki, M.; Matsuda, T.; Aoki, Y. Sm valence determination of Sm-based intermetallics using 149Sm Mössbauer and Sm LIII-edge X-ray absorption spectroscopies. Hyperfine Interact. 2021, 242, 32; https://doi.org/10.1007/s10751-021-01759-x.Search in Google Scholar

Tursina, A. I.; Nesterenko, S. N.; Noël, H.; Seropegin, Y. D. A new ternary indide: Ce20Pd36In67. Acta Crystallogr. 2005, E61, i99–i101; https://doi.org/10.1107/s1600536805013048.Search in Google Scholar

Uziel, A.; Bram, A. I.; Venkert, A.; Kiv, A. E.; Fuks, D.; Meshi, L. Abrupt symmetry decrease in the ThT2Al20 alloys (T = 3d transition metal). J. Alloys Compd. 2015, 648, 353–359; https://doi.org/10.1016/j.jallcom.2015.06.216.Search in Google Scholar

Vannette, M. D.; Sefat, A. S.; Jia, S.; Law, S. A.; Lapertot, G.; Bud’ko, S. L.; Canfield, P. C.; Schmalian, J.; Prozorov, R. Precise measurements of radio-frequency magnetic susceptibility in ferromagnetic and antiferromagnetic materials. J. Magn. Magn. Mater. 2008, 320, 354–363; https://doi.org/10.1016/j.jmmm.2007.06.018.Search in Google Scholar

Verbovytsky, Yu.; Łątka, K.; Tomala, K. The crystal structure and magnetic peroperties of the GdV2Al20 and GdCr2Al20 ternary compounds. J. Alloys Compd. 2007, 442, 334–336; https://doi.org/10.1016/j.jallcom.2006.07.148.Search in Google Scholar

Villars, P., Cenzual, K., Eds. Pearson’s crystal data: crystal structure database for inorganic compounds (release 2022/23). ASM International®: Materials Park, Ohio (USA), 2022.Search in Google Scholar

Wakiya, K.; Nagasawa, N.; Matsumoto, K. T.; Onimaru, T.; Umeo, K.; Takabatake, T. Magnetic and transport properties of a new caged compound PrOs2Zn20. J. Kor. Phys. Soc. 2013, 62, 2143–2145; https://doi.org/10.3938/jkps.62.2143.Search in Google Scholar

Wakiya, K.; Onimaru, T.; Tsutsui, S.; Matsumoto, K. T.; Nagasawa, N.; Baron, A. Q. R.; Hasegawa, T.; Ogita, N.; Udagawa, M.; Takabatake, T. Interplay between low-energy optical phonon modes and structural transition in PrT2Zn20 (T = Ru and Ir). J. Phys.: Conf. Ser. 2015, 592, 012024; https://doi.org/10.1088/1742-6596/592/1/012024.Search in Google Scholar

Wakiya, K.; Onimaru, T.; Tsutsui, S.; Hasegawa, T.; Matsumoto, K. T.; Nagasawa, N.; Baron, A. Q. R.; Ogita, N.; Udagawa, M.; Takabatake, T. Low-energy optical phonon modes in the caged compound LaRu2Zn20. Phys. Rev. B 2016, 93, 064105; https://doi.org/10.1103/physrevb.93.064105.Search in Google Scholar

Wakiya, K.; Sugiyama, Y.; Kishimoto, M.; Matsuda, T. D.; Aoki, Y.; Uehara, M.; Gouchi, J.; Uwatoko, Y.; Umehara, I. Structural, magnetic, and transport properties of novel quaternary compounds RRu2Sn2Zn18 (R = La, Pr, and Nd). J. Phys. Soc. Jpn. 2018, 87, 094706; https://doi.org/10.7566/jpsj.87.094706.Search in Google Scholar

Wakiya, K.; Sugiyama, Y.; Komagata, T.; Uehara, M.; Sato, H.; Gouchi, J.; Uwatoko, Y.; Umehara, I. Intermediate valence state of Ce in the novel quaternary compound CeRu2Sn2Zn18. J. Alloys Compd. 2019, 797, 309–313; https://doi.org/10.1016/j.jallcom.2019.04.345.Search in Google Scholar

Wang, C. H.; Lawrence, J. M.; Bauer, E. D.; Kothapalli, K.; Gardner, J. S.; Ronning, F.; Gofryk, K.; Thompson, J. D.; Nakotte, H.; Trouw, F. Unusual signatures of the ferromagnetic transition in the heavy fermion compound UMn2Al20. Phys. Rev. B 2010a, 82, 094406; https://doi.org/10.1103/physrevb.82.094406.Search in Google Scholar

Wang, C. H.; Christianson, A. D.; Lawrence, J. M.; Bauer, E. D.; Goremychkin, E. A.; Kolesnikov, A. I.; Trouw, F.; Ronning, F.; Thompson, J. D.; Lumsden, M. D.; Ni, N.; Mun, E. D.; Jia, S.; Canfield, P. C.; Qiu, Y.; Copley, J. R. D. Neutron scattering and scaling behavior in URu2Zn20 and YbFe2Zn20. Phys. Rev. B 2010b, 82, 184407; https://doi.org/10.1103/physrevb.82.184407.Search in Google Scholar

Wei, C.; Zhan, Y.Al. –Cr–Dy system: phase relationships and crystallography. J. Solid State Chem. 2019, 276, 47–55; https://doi.org/10.1016/j.jssc.2019.04.023.Search in Google Scholar

Wei, K.; Siegrist, T.; Baumbach, R. Thermoelectric materials and devices: United States, 2020. US20200136003 A1 2020-04-30.Search in Google Scholar

White, B. D.; Yazici, D.; Ho, P.-C.; Kanchanavatee, N.; Pouse, N.; Fang, Y.; Breindel, A. J.; Friedman, A. J.; Maple, M. B. Weak hybridization and isolated localized magnetic moments in the compounds CeT2Cd20 (T = Ni, Pd). J. Phys.: Condens. Matter 2015a, 27, 315602; https://doi.org/10.1088/0953-8984/27/31/315602.Search in Google Scholar PubMed

White, B. D.; Thompson, J. D.; Maple, M. B. Unconventional superconductivity in heavy-fermion compounds. Phys. C: Supercond. Appl. 2015b, 514, 246–278; https://doi.org/10.1016/j.physc.2015.02.044.Search in Google Scholar

White, R.; Hutchison, W. D.; Iles, G. N.; Mole, R. A.; Stewart, G. A.; Cadogan, J. M.; Namiki, T.; Nishimura, K. Determination of the crystal field levels in TmV2Al20. J. Alloys Compd. 2020, 845, 156184; https://doi.org/10.1016/j.jallcom.2020.156184.Search in Google Scholar

Winiarski, M. J.; Wiendlocha, B.; Sternik, M.; Wiśniewski, P.; O’Brien, J. R.; Kaczorowski, D.; Klimczuk, T. Rattling-enhanced superconductivity in MV2Al20 (M = Sc, Lu, Y) intermetallic cage compounds. Phys. Rev. B 2016, 93, 134507; https://doi.org/10.1103/physrevb.93.134507.Search in Google Scholar

Winiarski, M. J.; Griveau, J.-C.-; Colineau, E.; Wochowski, K.; Wiśniewski, P.; Kaczorowski, D.; Caciuffo, R.; Klimczuk, T. Synthesis and properties of AxV2Al20 (A = Th, U, Np, Pu) ternary actinide aluminides. J. Alloys Compd. 2017, 696, 1113–1119; https://doi.org/10.1016/j.jallcom.2016.12.033.Search in Google Scholar

Winiarski, M. J.; Klimczuk, T. Crystal structure and low-energy Einstein mode in ErV2Al20 intermetallic cage compound. J. Solid State Chem. 2017a, 245, 10–16; https://doi.org/10.1016/j.jssc.2016.09.029.Search in Google Scholar

Winiarski, M. J.; Klimczuk, T. Synthesis and properties of HoT2Al20 (T = Ti, V, Cr) intermetallic cage compounds. Intermetallics 2017b, 85, 103–109; https://doi.org/10.1016/j.intermet.2017.02.005.Search in Google Scholar

Wiśniewski, P.; Swatek, P.; Gukasov, A.; Kaczorowski, D. Ferromagnetism in UMn2Al20 studied with polarized neutron diffraction and bulk magnetic measurements. Phys. Rev. B 2012, 86, 054438; https://doi.org/10.1103/physrevb.86.054438.Search in Google Scholar

Wu, C.; Wang, X.; Liu, D.; Li, Z.; Zhu, Z.; Wang, J.; Su, X. Phase relationships in the Zn-rich corner of the Zn-Fe-Zr system. J. Phase Equilibria Diffus. 2011, 32, 271–278; https://doi.org/10.1007/s11669-011-9901-2.Search in Google Scholar

Yamada, A.; Higashinaka, R.; Miyazaki, R.; Fushiya, K.; Matsuda, T. D.; Aoki, Y.; Fujita, W.; Harima, H.; Sato, H. Anomalously field-insensitive correlated electron behaviors in SmTa2Al20. J. Phys. Soc. Jpn. 2013, 82, 123710; https://doi.org/10.7566/jpsj.82.123710.Search in Google Scholar

Yamada, A.; Higashinaka, R.; Matsuda, T. D.; Sato, H.; Miyake, A.; Tokunaga, M.; Aoki, Y. Unconventional –logT dependent resistivity in SmxLa1−xTa2Al20. Phys. Procedia 2015, 75, 522–528; https://doi.org/10.1016/j.phpro.2015.12.066.Search in Google Scholar

Yamada, A.; Higashinaka, R.; Fushiya, K.; Asano, T.; Matsuda, T. D.; Mizumaki, M.; Tsutsui, S.; Nitta, K.; Ina, T.; Uruga, T.; Aoki, Y. Mixed valence states in (SmxLa1−x)Tr2Al20 (Tr = Ti and Ta) studied using X-ray absorption spectroscopy. J. Phys.: Conf. Ser. 2016, 683, 012020; https://doi.org/10.1088/1742-6596/683/1/012020.Search in Google Scholar

Yamada, A.; Oike, S.; Higashinaka, R.; Matsuda, T. D.; Aoki, Y. Low Curie temperature ferromagnetic phase in SmPt2Cd20 possibly accompanied by strong quantum fluctuations. Phys. Rev. B 2017, 96, 085102; https://doi.org/10.1103/physrevb.96.085102.Search in Google Scholar

Yamada, A.; Higashinaka, R.; Matsuda, T. D.; Aoki, Y. Superconductivity in cage compounds LaTr2Al20 with Tr = Ti, V, Nb, and Ta. J. Phys. Soc. Jpn. 2018, 87, 033707; https://doi.org/10.7566/jpsj.87.033707.Search in Google Scholar

Yamamoto, R.; Shimura, Y.; Umeo, K.; Takabatake, T.; Onimaru, T. Transport and magnetic properties in the Nd diluted system Y1−xNdxCo2Zn20. In International conference on strongly correlated electron systems (SCES 2022), Amsterdam, 24–29 July 2022;, 2022.10.21468/SciPostPhysProc.11.010Search in Google Scholar

Yamanaka, R.; Matsubayashi, K.; Saiga, Y.; Kawae, T.; Uwatoko, Y. Heat capacity measurement of heavy fermion YbCo2Zn20 under magnetic field. J. Phys.: Conf. Ser. 2012, 391, 012078; https://doi.org/10.1088/1742-6596/391/1/012078.Search in Google Scholar

Yamane, Y.; Onimaru, T.; Uenishi, K.; Wakiya, K.; Matsumoto, K. T.; Umeo, K.; Takabatake, T. Impurity quadrupole Kondo ground state in a dilute Pr system Y1−xPrxIr2Zn20. Physica B 2018, 536, 40–42; https://doi.org/10.1016/j.physb.2017.07.062.Search in Google Scholar

Yanagisawa, T.; Hidaka, H.; Amitsuka, H.; Nakamura, S.; Awaji, S.; Green, E. L.; Zherlitsyn, S.; Wosnitza, J.; Yazici, D.; White, B. D.; Maple, M. B. Quadrupolar susceptibility and magnetic phase diagram of PrNi2Cd20 with non-Kramers doublet ground state. Phil. Mag. 2020, 100, 1268–1281; https://doi.org/10.1080/14786435.2019.1709912.Search in Google Scholar

Yaniv, G.; Meshi, L. Crystal structure of the Th2Ni10Al15 phase solved using electron diffraction tomography. J. Alloys Compd. 2016, 660, 496–502; https://doi.org/10.1016/j.jallcom.2015.11.143.Search in Google Scholar

Yaniv, G.; Vidal, D.; Fuks, D.; Meshi, L. Bonding and stability of ternary structures in the CeT2Al20 (T = Ta, W, Re) and YRe2Al20 alloys. Metals 2020, 10, 422; https://doi.org/10.3390/met10040422.Search in Google Scholar

Yazici, D.; White, B. D.; Ho, P.-C.; Kanchanavatee, N.; Huang, K.; Friedman, A. J.; Wong, A. S.; Burnett, V. W.; Dilley, N. R.; Maple, M. B. Investigation of magnetic order in SmTr2Zn20 (Tr = Fe, Co, Ru) and SmTr2Cd20 (Tr = Ni, Pd). Phys. Rev. B 2014, 90, 144406; https://doi.org/10.1103/physrevb.90.144406.Search in Google Scholar

Yazici, D.; Yanagisawa, T.; White, B. D.; Maple, M. B. Nonmagnetic ground state in the cubic compounds PrNi2Cd20 and PrPd2Cd20. Phys. Rev. B 2015, 91, 115136; https://doi.org/10.1103/physrevb.91.115136.Search in Google Scholar

Yoshida, T.; Machida, Y.; Izawa, K.; Shimada, Y.; Nagasawa, N.; Onimaru, T.; Takabatake, T. Common anomalies of transport properties in PrTr2Zn20 (Tr = Ir, Rh) with non-Kramers doublet ground state. Phys. Procedia 2015, 75, 529–536; https://doi.org/10.1016/j.phpro.2015.12.067.Search in Google Scholar

Yoshiuchi, S.; Toda, M.; Matsushita, M.; Yasui, S.; Hirose, Y.; Ohya, M.; Katayama, K.; Honda, F.; Sugiyama, K.; Hagiwara, M.; Kindo, K.; Takeuchi, T.; Yamamoto, E.; Haga, Y.; Settai, R.; Tanaka, T.; Kubo, Y.; Onuki, Y. Heavy fermion state in YbIr2Zn20. J. Phys. Soc. Jpn. 2009, 78, 123711; https://doi.org/10.1143/jpsj.78.123711.Search in Google Scholar

Zarechnyuk, O. S.; Emes Misenko, E. I. X-ray investigation of the system lanthanum-vanadium-aluminium in the region 0-33.3 at.% La. Visn. Lviv Derzh. Univ., Ser. Khim. 1969, 11, 11–13.Search in Google Scholar

Zarechnyuk, O. S.; Rykhal, R. M. The cerium-vanadium-aluminum and cerium-chromium-aluminum systems in the region of low cerium content. Visn. Lviv Derzh. Univ., Ser. Khim. 1974, 16, 5–8.Search in Google Scholar

Zarechnyuk, O. S.; Yanson, T. I.; Ostrovska, O. I.; Shevchuk, L. P. Isothermal sections of (Sm,Tb)-(V,Cr)-Al systems in the region 0-0.333 at. fractions rare-earth metal at 770 K. Visn. Lviv Derzh. Univ., Ser. Khim. 1988, 29, 44–47.Search in Google Scholar

Zelinska, O.Y.; Zelinskiy, A. V.; Pavlyuk, V. V. Isothermal sections of the Sm–Co–Zn and Gd–Co–Zn phase diagrams at 470 K. Chem. Met. Alloys 2008, 1, 168–173; https://doi.org/10.30970/cma1.0053.Search in Google Scholar

Zhan, Y.; Yang, Z.; Mo, H.; Du, Y. Phase equilibria of the Al-V-RE (RE = Gd, Ho) systems at 773 K (500 °C). Metall. Mater. Trans. A 2012, 43A, 29–36; https://doi.org/10.1007/s11661-011-0842-5.Search in Google Scholar

Zhang, X.; Huang, W.; Ma, H.; Yu, H.; Jiang, W. First-principles prediction of the physical properties of ThM2Al20 (M = Ti, V, Cr). Solid State Commun. 2018, 284–286, 75–83; https://doi.org/10.1016/j.ssc.2018.09.008.Search in Google Scholar

Zhang, X.; Dong, T.; Ma, H.; Li, D.; Ying, C.; Liu, C.; Wand, F. A first principles investigation on the influence of transition-metal elements on the structural, mechanical, and anisotropic properties of CaM2Al20 intermetallics. J. Mol. Graph. Model. 2020, 96, 107509; https://doi.org/10.1016/j.jmgm.2019.107509.Search in Google Scholar PubMed

Zhou, H.; Liu, W.; Yuan, S.; Yan, J. The 500°C isothermal section of the Al-Dy-Ti ternary system. J. Alloys Compd. 2002, 336, 218–221; https://doi.org/10.1016/s0925-8388(01)01902-8.Search in Google Scholar

Received: 2023-04-14
Accepted: 2023-05-31
Published Online: 2023-07-03
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2023-0012/html?lang=en
Scroll to top button