Home Carbon dot-based fluorometric optical sensors: an overview
Article
Licensed
Unlicensed Requires Authentication

Carbon dot-based fluorometric optical sensors: an overview

  • Samira Bagheri , Amin TermehYousefi EMAIL logo and Javad Mehrmashhadi
Published/Copyright: August 1, 2019

Abstract

Fluorescent carbon dots (CDs) are a new class of carbon nanomaterials and have demonstrated excellent optical properties, good biocompatibility, great aqueous solubility, low cost, and simple synthesis. Since their discovery, various synthesis methods using different precursors were developed, which were mainly classified as top-down and bottom-up approaches. CDs have presented many applications, and this review article mainly focuses on the development of CD-based fluorescent sensors. The sensing mechanisms, sensor design, and sensing properties to various targets are summarized. Broad ranges of detection, including temperature, pH, DNA, antibiotics, cations, cancer cells, and antibiotics, have been discussed. In addition, the challenges and future directions for CDs as sensing materials are also presented.

References

Abedini, M.; Khlaghi, E. A.; Mehrmashhadi, J.; Mussa, M. H.; Ansari, M.; Momeni, T. Evaluation of concrete structures reinforced with fiber reinforced polymers bars: a review. J. Asian Sci. Res.2017, 7, 165.10.18488/journal.2.2017.75.165.175Search in Google Scholar

Abedini, M.; Azrul A. M.; Javad M.; Sudharshan N. R.; Roozbeh A.; Tohid M.; Mohamed H. M. Large deflection behavior effect in reinforced concrete columns exposed to extreme dynamic loads. engrXiv 2019, 1–32. Available online-only at: https://engrxiv.org/6n5fs/.10.1007/s11709-020-0604-9Search in Google Scholar

Ajima, K.; Yudasaka, M.; Murakami, T.; Maigné, A.; Shiba, K.; Iijima, S. Carbon nanohorns as anticancer drug carriers. Mol. Pharm.2005, 2, 475–480.10.1021/mp0500566Search in Google Scholar PubMed

Back, P.; Matthijssens, F.; Vanfleteren, J. R.; Braeckman, B. P. A simplified hydroethidine method for fast and accurate detection of superoxide production in isolated mitochondria. Anal. Biochem.2012, 423, 147–151.10.1016/j.ab.2012.01.008Search in Google Scholar PubMed

Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed.2010, 49, 6726–6744.10.1002/anie.200906623Search in Google Scholar PubMed

Bao, L.; Zhang, Z. L.; Tian, Z. Q.; Zhang, L.; Liu, C.; Lin, Y.; Qi, B.; Pang, D. W. Electrochemical tuning of luminescent carbon nanodots: from preparation to luminescence mechanism. Adv. Mater.2011, 23, 5801–5806.10.1002/adma.201102866Search in Google Scholar PubMed

Bergamini, C. M.; Gambetti, S.; Dondi, A.; Cervellati, C. Oxygen, reactive oxygen species and tissue damage. Curr. Pharm. Des.2004, 10, 1611–1626.10.2174/1381612043384664Search in Google Scholar PubMed

Brites, C. D.; Lima, P. P.; Silva, N. J.; Millán, A.; Amaral, V. S.; Palacio, F.; Carlos, L. D. Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids. Nanoscale2013, 5, 7572–7580.10.1039/c3nr02335dSearch in Google Scholar PubMed

Brugnara, C. Iron deficiency and erythropoiesis: new diagnostic approaches. Clin. Chem.2003, 49, 1573–1578.10.1373/49.10.1573Search in Google Scholar PubMed

Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D.; Xie, S.Y. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc.2007, 129, 11318–11319.10.1021/ja073527lSearch in Google Scholar PubMed PubMed Central

Cao, L.; Sahu, S.; Anilkumar, P.; Bunker, C. E.; Xu, J.; Fernando, K. S.; Wang, P.; Guliants, E. A.; Tackett, K. N.; Sun, Y. P. Carbon nanoparticles as visible-light photocatalysts for efficient CO2 conversion and beyond. J. Am. Chem. Soc.2011, 133, 4754–4757.10.1021/ja200804hSearch in Google Scholar PubMed

Cao, B.; Yuan, C.; Liu, B.; Jiang, C.; Guan, G.; Han, M. Y. Ratiometric fluorescence detection of mercuric ion based on the nanohybrid of fluorescence carbon dots and quantum dots. Anal. Chim. Acta2013, 786, 146–152.10.1016/j.aca.2013.05.015Search in Google Scholar

Cauzzi, D.; Pattacini, R.; Delferro, M.; Dini, F.; Di Natale, C.; Paolesse, R.; Bonacchi, S.; Montalti, M.; Zaccheroni, N.; Calvaresi, M.; Zerbetto, F. Temperature-dependent fluorescence of Cu5 metal clusters: a molecular thermometer. Angew. Chem. Int. Ed.2012, 51, 9662–9665.10.1002/anie.201204052Search in Google Scholar

Chai, F.; Wang, C.; Wang, T.; Ma, Z.; Su, Z. L-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg2+ induced by ultraviolet light. Nanotechnology2009, 21, 025501.10.1088/0957-4484/21/2/025501Search in Google Scholar PubMed

Chakraborti, H.; Sinha, S.; Ghosh, S.; Pal, S. K. Interfacing water soluble nanomaterials with fluorescence chemosensing: graphene quantum dot to detect Hg2+ in 100% aqueous solution. Mater. Lett.2013, 97, 78–80.10.1016/j.matlet.2013.01.094Search in Google Scholar

Chandrasekharan, N.; Kelly, L. A. A dual fluorescence temperature sensor based on perylene/exciplex interconversion. J. Am. Chem. Soc.2001, 123, 9898–9899.10.1021/ja016153jSearch in Google Scholar PubMed

Chen, T.; Hu, Y.; Cen, Y.; Chu, X.; Lu, Y. A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species. J. Am. Chem. Soc.2013, 135, 11595–11602.10.1021/ja4035939Search in Google Scholar PubMed

Chow, C. W.; Kolev, S. D.; Davey, D. E.; Mulcahy, D. E. Determination of copper in natural waters by batch and oscillating flow injection stripping potentiometry. Anal. Chim. Acta1996, 330, 79–87.10.1016/0003-2670(96)00160-2Search in Google Scholar

Chu, C.-S.; Hsieh, M.-W.; Su, Z.-R. Optical sensing of H2O2 based on red-shift of emission wavelength of carbon quantum dots. Opt. Mater. Express2016, 6, 759–766.10.1364/OME.6.000759Search in Google Scholar

Daniel, M.-C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.2004, 104, 293–346.10.1021/cr030698+Search in Google Scholar PubMed

Dehghan, G.; Dolatabadi, J. E. N.; Jouyban, A.; Zeynali, K. A.; Ahmadi, S. M.; Kashanian, S. Spectroscopic studies on the interaction of quercetin-terbium(III) complex with calf thymus DNA. DNA Cell Biol.2011, 30, 195–201.10.1089/dna.2010.1063Search in Google Scholar PubMed

Deng, M.; Wang, S.; Liang, C.; Shang, H.; Jiang, S. A FRET fluorescent nanosensor based on carbon dots for ratiometric detection of Fe3+ in aqueous solution. RSC Adv.2016, 6, 26936–26940.10.1039/C6RA02679FSearch in Google Scholar

Dennis, A. M.; Rhee, W. J.; Sotto, D.; Dublin, S. N.; Bao, G. Quantum dot-fluorescent protein FRET probes for sensing intracellular pH. ACS Nano2012, 6, 2917–2924.10.1021/nn2038077Search in Google Scholar PubMed PubMed Central

Devi, P.; Thakur, A.; Chopra, S.; Kaur, N.; Kumar, P.; Singh, N.; Kumar, M.; Shivaprasad, S. M.; Nayak, M. K. Ultrasensitive and selective sensing of selenium using nitrogen-rich ligand interfaced carbon quantum dots. ACS Appl. Mater. Interfaces2017, 9, 13448–13456.10.1021/acsami.7b00991Search in Google Scholar PubMed

Ding, Y.; Shen, S. Z.; Sun, H.; Sun, K.; Liu, F. Synthesis of L-glutathione-capped-ZnSe quantum dots for the sensitive and selective determination of copper ion in aqueous solutions. Sens. Actuators B Chem.2014, 203, 35–43.10.1016/j.snb.2014.06.054Search in Google Scholar

Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano2015, 10, 484–491.10.1021/acsnano.5b05406Search in Google Scholar PubMed

Ding, J.; Zhou, Y.; Li, Y.; Guo, S.; Huang, X. MoS2 nanosheet assembling superstructure with a three-dimensional ion accessible site: a new class of bifunctional materials for batteries and electrocatalysis. Chem. Mater.2016, 28, 2074–2080.10.1021/acs.chemmater.5b04815Search in Google Scholar

Dong, Y.; Zhou, N.; Lin, X.; Lin, J.; Chi, Y.; Chen, G. Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem. Mater.2010, 22, 5895–5899.10.1021/cm1018844Search in Google Scholar

Du, J.-Z.; Du, X. J.; Mao, C. Q.; Wang, J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc.2011, 133, 17560–17563.10.1021/ja207150nSearch in Google Scholar PubMed

Du, F.; Ming, Y.; Zeng, F.; Yu, C.; Wu, S. A low cytotoxic and ratiometric fluorescent nanosensor based on carbon-dots for intracellular pH sensing and mapping. Nanotechnology2013, 24, 365101.10.1088/0957-4484/24/36/365101Search in Google Scholar PubMed

Duan, B.; Zhou, J.; Fang, Z.; Wang, C.; Wang, X.; Hemond, H. F.; Chan-Park, M. B.; Duan, H. Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection. Nanoscale2015, 7, 12606–12613.10.1039/C5NR02164BSearch in Google Scholar PubMed

Eda, G.; Lin, Y. Y.; Mattevi, C.; Yamaguchi, H.; Chen, H. A.; Chen, I. S.; Chen, C. W.; Chhowalla, M. Blue photoluminescence from chemically derived graphene oxide. Adv. Mater.2010, 22, 505–509.10.1002/adma.200901996Search in Google Scholar PubMed

Esposito, A.; Gralle, M.; Dani, M. A. C.; Lange, D.; Wouters, F. S. pHlameleons: a family of FRET-based protein sensors for quantitative pH imaging. Biochemistry2008, 47, 13115–13126.10.1021/bi8009482Search in Google Scholar PubMed

Fan, C.; Zheng, W.; Fu, X.; Li, X.; Wong, Y. S.; Chen, T. Enhancement of auranofin-induced lung cancer cell apoptosis by selenocystine, a natural inhibitor of TrxR1 in vitro and in vivo. Cell Death Dis.2014, 5, e1191.10.1038/cddis.2014.132Search in Google Scholar PubMed PubMed Central

Fang, Y.; Guo, S.; Li, D.; Zhu, C.; Ren, W.; Dong, S.; Wang, E. Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS Nano2011, 6, 400–409.10.1021/nn2046373Search in Google Scholar PubMed

Feng, J.; Tian, K.; Hu, D.; Wang, S.; Li, S.; Zeng, Y.; Li, Y.; Yang, G. A triarylboron-based fluorescent thermometer: sensitive over a wide temperature range. Angew. Chem. Int. Ed.2011, 50, 8072–8076.10.1002/anie.201102390Search in Google Scholar PubMed

Feng, L.; Zhao, A.; Ren, J.; Qu, X. Lighting up left-handed Z-DNA: photoluminescent carbon dots induce DNA B to Z transition and perform DNA logic operations. Nucleic Acids Res.2013, 41, 7987–7996.10.1093/nar/gkt575Search in Google Scholar PubMed PubMed Central

Fukuda, T.; Ewan, L.; Bauer, M.; Mattaliano, R. J.; Zaal, K.; Ralston, E.; Plotz, P. H.; Raben, N. Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease. Ann. Neurol.2006, 59, 700–708.10.1002/ana.20807Search in Google Scholar PubMed

Gao, J. J.; Xu, K. H.; Tang, B.; Yin, L. L.; Yang, G. W.; An, L. G. Selective detection of superoxide anion radicals generated from macrophages by using a novel fluorescent probe. FEBS J.2007, 274, 1725–1733.10.1111/j.1742-4658.2007.05720.xSearch in Google Scholar PubMed

Gholami, T.; Salavati-Niasari, M.; Sabet, M. Novel green synthesis of ZnAl2O4 and ZnAl2O4/graphene nanocomposite and comparison of electrochemical hydrogen storage and Coulombic efficiency. J. Clean. Prod.2018, 178, 14–21.10.1016/j.jclepro.2018.01.012Search in Google Scholar

Ghosh, I.; Stains, C. I.; Ooi, A. T.; Segal, D. J. Direct detection of double-stranded DNA: molecular methods and applications for DNA diagnostics. Mol. Biosyst.2006, 2, 551–560.10.1039/b611169fSearch in Google Scholar PubMed

Gonçalves, H.; da Silva, J. C. E. Fluorescent carbon dots capped with PEG200 and mercaptosuccinic acid. J. Fluoresc.2010, 20, 1023–1028.10.1007/s10895-010-0652-ySearch in Google Scholar PubMed

Guo, Q.; Bai, Z.; Liu, Y.; Sun, Q. A molecular beacon microarray based on a quantum dot label for detecting single nucleotide polymorphisms. Biosens. Bioelectron.2016, 77, 107–110.10.1016/j.bios.2015.09.031Search in Google Scholar PubMed

Han, J.; Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev.2009, 110, 2709–2728.10.1021/cr900249zSearch in Google Scholar PubMed

Han, Y.; Ding, C.; Zhou, J.; Tian, Y. Single probe for imaging and biosensing of pH, Cu2+ ions, and pH/Cu2+ in live cells with ratiometric fluorescence signals. Anal. Chem.2015, 87, 5333–5339.10.1021/acs.analchem.5b00628Search in Google Scholar PubMed

He, Y.; Guo, Z.; Jin, P.; Jiao, C.; Tian, H.; Zhu, W. Optimizing the chemical recognition process of a fluorescent chemosensor for α-ketoglutarate. Ind. Eng. Chem. Res.2015, 54, 2886–2893.10.1021/acs.iecr.5b00263Search in Google Scholar

Hu, H.; Xiong, L.; Zhou, J.; Li, F.; Cao, T.; Huang, C. Multimodal-luminescence core-shell nanocomposites for targeted imaging of tumor cells. Chemistry2009, 15, 3577–3584.10.1002/chem.200802261Search in Google Scholar PubMed

Hu, S.; Trinchi, A.; Atkin, P.; Cole, I. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light. Angew. Chem. Int. Ed.2015, 54, 2970–2974.10.1002/anie.201411004Search in Google Scholar PubMed

Huang, S.; Wang, L.; Zhu, F.; Su, W.; Sheng, J.; Huang, C.; Xiao, Q. A ratiometric nanosensor based on fluorescent carbon dots for label-free and highly selective recognition of DNA. RSC Adv.2015a, 5, 44587–44597.10.1039/C5RA05519ASearch in Google Scholar

Huang, J.; Ying, L.; Yang, X.; Yang, Y.; Quan, K.; Wang, H.; Xie, N.; Ou, M.; Zhou, Q.; Wang, K. Ratiometric fluorescent sensing of pH values in living cells by dual-fluorophore-labeled i-motif nanoprobes. Anal. Chem.2015b, 87, 8724–8731.10.1021/acs.analchem.5b01527Search in Google Scholar PubMed

Ignarro, L. J. Nitric Oxide: Biology and Pathobiology. Academic Press: Los Angles, California, 2000.Search in Google Scholar

Jaque, D.; Vetrone, F. Luminescence nanothermometry. Nanoscale2012, 4, 4301–4326.10.1039/c2nr30764bSearch in Google Scholar PubMed

Jin, Y.; Jang, J. W.; Han, C. H.; Lee, M. H. Development of immunoassays for the detection of kanamycin in veterinary fields. J. Vet. Sci.2006, 7, 111–117.10.4142/jvs.2006.7.2.111Search in Google Scholar PubMed PubMed Central

Ju, E.; Liu, Z.; Du, Y.; Tao, Y.; Ren, J.; Qu, X. Heterogeneous assembled nanocomplexes for ratiometric detection of highly reactive oxygen species in vitro and in vivo. ACS Nano2014, 8, 6014–6023.10.1021/nn501135mSearch in Google Scholar PubMed

Jung, Y. K.; Park, H. G. Colorimetric detection of clinical DNA samples using an intercalator-conjugated polydiacetylene sensor. Biosens. Bioelectron.2015, 72, 127–132.10.1016/j.bios.2015.04.093Search in Google Scholar PubMed

Khojasteh, H.; Salavati-Niasari, M.; Safajou, H.; Safardoust-Hojaghan, H. Facile reduction of graphene using urea in solid phase and surface modification by N-doped graphene quantum dots for adsorption of organic dyes. Diamond Relat. Mater.2017, 79, 133–144.10.1016/j.diamond.2017.09.011Search in Google Scholar

Kilpin, K. J.; Clavel, C. M.; Edafe, F.; Dyson, P. J. Naphthalimide-tagged ruthenium-arene anticancer complexes: combining coordination with intercalation. Organometallics2012, 31, 7031–7039.10.1021/om3007079Search in Google Scholar

Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon, J. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions. Chem. Soc. Rev.2008, 37, 1465–1472.10.1039/b802497aSearch in Google Scholar PubMed

Kim, M. I.; Park, K. S.; Park, H. G. Ultrafast colorimetric detection of nucleic acids based on the inhibition of the oxidase activity of cerium oxide nanoparticles. Chem. Commun.2014, 50, 9577–9580.10.1039/C4CC03841JSearch in Google Scholar

Kong, X.; Yu, Q.; Zhang, X.; Du, X.; Gong, H.; Jiang, H. Synthesis and application of surface enhanced Raman scattering (SERS) tags of Ag@SiO2 core/shell nanoparticles in protein detection. J. Mater. Chem.2012, 22, 7767–7774.10.1039/c2jm16397gSearch in Google Scholar

Korzeniowska, B.; Woolley, R.; DeCourcey, J.; Wencel, D.; Loscher, C. E.; McDonagh, C. Intracellular pH-sensing using core/shell silica nanoparticles. J. Biomed. Nanotechnol.2014, 10, 1336–1345.10.1166/jbn.2014.1815Search in Google Scholar PubMed

Krysmann, M. J.; Kelarakis, A.; Dallas, P.; Giannelis, E. P. Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc.2011, 134, 747–750.10.1021/ja204661rSearch in Google Scholar PubMed

Kudr, J.; Richtera, L.; Xhaxhiu, K.; Hynek, D.; Heger, Z.; Zitka, O.; Adam, V. Carbon dots based FRET for the detection of DNA damage. Biosens. Bioelectron.2017, 92, 133–139.10.1016/j.bios.2017.01.067Search in Google Scholar PubMed

Lai, C.-W.; Hsiao, Y. H.; Peng, Y. K.; Chou, P. T. Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release. J. Mater. Chem.2012, 22, 14403–14409.10.1039/c2jm32206dSearch in Google Scholar

Lan, M.; Zhang, J.; Chui, Y. S.; Wang, P.; Chen, X.; Lee, C. S.; Kwong, H. L.; Zhang, W. Carbon nanoparticle-based ratiometric fluorescent sensor for detecting mercury ions in aqueous media and living cells. ACS Appl. Mater. Interfaces2014, 6, 21270–21278.10.1021/am5062568Search in Google Scholar PubMed

Lee, J.; Kotov, N. A. Thermometer design at the nanoscale. Nano Today2007, 2, 48–51.10.1016/S1748-0132(07)70019-1Search in Google Scholar

Lehtonen, S. I.; Tullila, A.; Agrawal, N.; Kukkurainen, S.; Kähkönen, N.; Koskinen, M.; Nevanen, T. K.; Johnson, M. S.; Airenne, T. T.; Kulomaa, M. S.; Riihimäki, T. A. Artificial avidin-based receptors for a panel of small molecules. ACS Chem. Biol.2015, 11, 211–221.10.1021/acschembio.5b00906Search in Google Scholar PubMed

Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H. A.; Yang, X.; Lee, S. T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed.2010, 49, 4430–4434.10.1002/anie.200906154Search in Google Scholar PubMed

Li, H.; He, X.; Liu, Y.; Huang, H.; Lian, S.; Lee, S. T.; Kang, Z. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon2011a, 49, 605–609.10.1016/j.carbon.2010.10.004Search in Google Scholar

Li, L.; Rose, P.; Moore, P. K. Hydrogen sulfide and cell signaling. Annu. Rev. Pharmacol. Toxicol.2011b, 51, 169–187.10.1146/annurev-pharmtox-010510-100505Search in Google Scholar PubMed

Li, Q.; He, Y.; Chang, J.; Wang, L.; Chen, H.; Tan, Y. W.; Wang, H.; Shao, Z. Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature. J. Am. Chem. Soc.2013a, 135, 14924–14927.10.1021/ja407508vSearch in Google Scholar PubMed

Li, X.; Gao, X.; Shi, W.; Ma, H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem. Rev.2013b, 114, 590–659.10.1021/cr300508pSearch in Google Scholar PubMed

Liang, S.-S.; Qi, L.; Zhang, R. L.; Jin, M.; Zhang, Z. Q. Ratiometric fluorescence biosensor based on CdTe quantum and carbon dots for double strand DNA detection. Sens. Actuators B Chem.2017, 244, 585–590.10.1016/j.snb.2017.01.032Search in Google Scholar

Liou, G.-Y.; Storz, P. Reactive oxygen species in cancer. Free Rad. Res.2010, 44, 479–496.10.3109/10715761003667554Search in Google Scholar PubMed PubMed Central

Liu, H.; Ye, T.; Mao, C. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem. Int. Ed.2007, 46, 6473–6475.10.1002/anie.200701271Search in Google Scholar PubMed

Liu, R.; Wu, D.; Liu, S.; Koynov, K.; Knoll, W.; Li, Q. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew. Chem.2009, 121, 4668–4671.10.1002/ange.200900652Search in Google Scholar

Liu, C.; Pan, J.; Li, S.; Zhao, Y.; Wu, L. Y.; Berkman, C. E.; Whorton, A. R.; Xian, M. Capture and visualization of hydrogen sulfide by a fluorescent probe. Angew. Chem.2011a, 123, 10511–10513.10.1002/ange.201104305Search in Google Scholar

Liu, S.-N.; Tu, Y. Q.; Li, W.; Wu, P.; Zhang, H.; Cai, C. X. Assay methods of DNA methylation and their applications in cancer diagnosis and therapy. Chin. J. Anal. Chem.2011b, 39, 1451–1458.Search in Google Scholar

Liu, B.; Zeng, F.; Wu, G.; Wu, S. A FRET-based ratiometric sensor for mercury ions in water with multi-layered silica nanoparticles as the scaffold. Chem. Commun.2011c, 47, 8913–8915.10.1039/c1cc12544cSearch in Google Scholar PubMed

Liu, C.; Peng, B.; Li, S.; Park, C. M.; Whorton, A. R.; Xian, M. Reaction based fluorescent probes for hydrogen sulfide. Org. Lett.2012, 14, 2184–2187.10.1021/ol3008183Search in Google Scholar PubMed PubMed Central

Luo, P.; Li, C.; Shi, G. Synthesis of gold@carbon dots composite nanoparticles for surface enhanced Raman scattering. Phys. Chem. Chem. Phys.2012, 14, 7360–7366.10.1039/c2cp40767aSearch in Google Scholar PubMed

Mahdiani, M.; Soofivand, F.; Ansari, F.; Salavati-Niasari, M. Grafting of CuFe12O19 nanoparticles on CNT and graphene: eco-friendly synthesis, characterization and photocatalytic activity. J. Clean. Prod.2018, 176, 1185–1197.10.1016/j.jclepro.2017.11.177Search in Google Scholar

Mahmoudi, M.; Abdelmonem, A. M.; Behzadi, S.; Clement, J. H.; Dutz, S.; Ejtehadi, M. R.; Hartmann, R.; Kantner, K.; Linne, U.; Maffre, P.; Metzler, S. Temperature: the “ignored” factor at the nanobio interface. ACS Nano2013, 7, 6555–6562.10.1021/nn305337cSearch in Google Scholar PubMed

Marks, T. J. Chemistry and spectroscopy of f-element organometallics. Part 1: the lanthanides. Prog. Inorg. Chem.1978, 24, 51–107.10.1002/9780470166253.ch2Search in Google Scholar

Marzouk, S. A.; Al-Ariqui, W. T.; Hassan, S. S. A novel 1,10-phenanthroline-sensitive membrane sensor for potentiometric determination of Hg(II) and Cu(II) cations. Anal. Bioanal. Chem.2003, 375, 1186–1192.10.1007/s00216-003-1755-ySearch in Google Scholar PubMed

Mayer, B. Nitric Oxide, Handbook of Experimental Pharmocology. Springer-Verlag: Berlin, 2000; Vol. 143.10.1007/978-3-642-57077-3Search in Google Scholar

McQuade, L. E.; Lippard, S. J. Fluorescent probes to investigate nitric oxide and other reactive nitrogen species in biology (truncated form: fluorescent probes of reactive nitrogen species). Curr. Opin. Chem. Biol.2010, 14, 43–49.10.1016/j.cbpa.2009.10.004Search in Google Scholar PubMed

Mu, Q.; Li, Y.; Xu, H.; Ma, Y.; Zhu, W.; Zhong, X. Quantum dots-based ratiometric fluorescence probe for mercuric ions in biological fluids. Talanta2014, 119, 564–571.10.1016/j.talanta.2013.11.036Search in Google Scholar PubMed

Okabe, K.; Inada, N.; Gota, C.; Harada, Y.; Funatsu, T.; Uchiyama, S. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun.2012, 3, 705.10.1038/ncomms1714Search in Google Scholar PubMed PubMed Central

Olson, K. R. Is hydrogen sulfide a circulating “gasotransmitter” in vertebrate blood? Biochim. Biophys. Acta2009, 1787, 856–863.10.1016/j.bbabio.2009.03.019Search in Google Scholar PubMed

Parker, B. S.; Buley, T.; Evison, B. J.; Cutts, S. M.; Neumann, G. M.; Iskander, M. N.; Phillips, D. R. A molecular understanding of mitoxantrone-DNA adduct formation effect of cytosine methylation and flanking sequences. J. Biol. Chem.2004, 279, 18814–18823.10.1074/jbc.M400931200Search in Google Scholar PubMed

Peng, H.; Stich, M. I.; Yu, J.; Sun, L. N.; Fischer, L. H.; Wolfbeis, O. S. Luminescent europium(III) nanoparticles for sensing and imaging of temperature in the physiological range. Adv. Mater.2010, 22, 716–719.10.1002/adma.200901614Search in Google Scholar PubMed

Qu, Z.-b.; Zhou, X.; Gu, L.; Lan, R.; Sun, D.; Yu, D.; Shi, G. Boronic acid functionalized graphene quantum dots as a fluorescent probe for selective and sensitive glucose determination in microdialysate. Chem. Commun.2013, 49, 9830–9832.10.1039/c3cc44393kSearch in Google Scholar PubMed

Quinn, J. F.; Whittaker, M. R.; Davis, T. P. Glutathione responsive polymers and their application in drug delivery systems. Polym. Chem.2017, 8, 97–126.10.1039/C6PY01365ASearch in Google Scholar

Rattray, N. J.; Zalloum, W. A.; Mansell, D.; Latimer, J.; Schwalbe, C. H.; Blake, A. J.; Bichenkova, E. V.; Freeman, S. Fluorescent probe for detection of bacteria: conformational trigger upon bacterial reduction of an azo bridge. Chem. Commun.2012, 48, 6393–6395.10.1039/c2cc32521gSearch in Google Scholar PubMed

Rose, M. J.; Mascharak, P. K. Fiat Lux: selective delivery of high flux of nitric oxide (NO) to biological targets using photoactive metal nitrosyls. Curr. Opin. Chem. Biol.2008, 12, 238–244.10.1016/j.cbpa.2008.02.009Search in Google Scholar PubMed

Ruiyi, L.; Ling, L.; Hongxia, B.; Zaijun, L. Nitrogen-doped multiple graphene aerogel/gold nanostar as the electrochemical sensing platform for ultrasensitive detection of circulating free DNA in human serum. Biosens. Bioelectron.2016, 79, 457–466.10.1016/j.bios.2015.12.092Search in Google Scholar PubMed

Rurack, K.; Kollmannsberger, M.; Resch-Genger, U.; Daub, J. A selective and sensitive fluoroionophore for HgII, AgI, and CuII with virtually decoupled fluorophore and receptor units. J. Am. Chem. Soc.2000, 122, 968–969.10.1021/ja992630aSearch in Google Scholar

Safardoust-Hojaghan, H.; Salavati-Niasari, M. Degradation of methylene blue as a pollutant with N-doped graphene quantum dot/titanium dioxide nanocomposite. J. Clean. Prod.2017, 148, 31–36.10.1016/j.jclepro.2017.01.169Search in Google Scholar

Sammes, P. G.; Yahioglu, G. 1,10-Phenanthroline: a versatile ligand. Chem. Soc. Rev.1994, 23, 327–334.10.1039/cs9942300327Search in Google Scholar

Shahnazar, S.; Bagheri, S.; TermehYousefi, A.; Mehrmashhadi, J.; Karim, M. S. A.; Kadri, N. A. Structure, mechanism, and performance evaluation of natural gas hydrate kinetic inhibitors. Rev. Inorg. Chem.2018, 38, 1–19.10.1515/revic-2017-0013Search in Google Scholar

Shang, L.; Stockmar, F.; Azadfar, N.; Nienhaus, G. U. Intracellular thermometry by using fluorescent gold nanoclusters. Angew. Chem. Int. Ed.2013, 52, 11154–11157.10.1002/anie.201306366Search in Google Scholar PubMed

Sharon, E.; Freeman, R.; Willner, I. CdSe/ZnS quantum dots-G-quadruplex/hemin hybrids as optical DNA sensors and aptasensors. Anal. Chem.2010, 82, 7073–7077.10.1021/ac101456xSearch in Google Scholar PubMed

Shen, J.; Zhu, Y.; Yang, X.; Li, C. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun.2012, 48, 3686–3699.10.1039/c2cc00110aSearch in Google Scholar PubMed

Shen, L.; Zhang, L.; Chen, M.; Chen, X.; Wang, J. The production of pH-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging. Carbon2013, 55, 343–349.10.1016/j.carbon.2012.12.074Search in Google Scholar

Singh, P.; Gupta, R.; Sinha, M.; Kumar, R.; Bhalla, V. MoS2 based digital response platform for aptamer based fluorescent detection of pathogens. Microchim. Acta2016, 183, 1501–1506.10.1007/s00604-016-1762-2Search in Google Scholar

Song, K.-M.; Cho, M.; Jo, H.; Min, K.; Jeon, S. H.; Kim, T.; Han, M. S.; Ku, J. K.; Ban, C. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal. Biochem.2011, 415, 175–181.10.1016/j.ab.2011.04.007Search in Google Scholar PubMed

Sreelatha, S.; Padma, P.; Umadevi, M. Protective effects of Coriandrum sativum extracts on carbon tetrachloride-induced hepatotoxicity in rats. Food Chem. Toxicol.2009, 47, 702–708.10.1016/j.fct.2008.12.022Search in Google Scholar PubMed

Srivastava, S.; Gajbhiye, N. S. Carbogenic nanodots: photoluminescence and room-temperature ferromagnetism. ChemPhysChem2011, 12, 2624–2632.10.1002/cphc.201100188Search in Google Scholar PubMed

Sun, Y.-P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. S.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H.; Luo, P. G. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc.2006, 128, 7756–7757.10.1021/ja062677dSearch in Google Scholar PubMed

Sun, Y.-P.; Wang, X.; Lu, F.; Cao, L.; Meziani, M. J.; Luo, P. G.; Gu, L.; Veca, L. M. Doped carbon nanoparticles as a new platform for highly photoluminescent dots. J. Phys. Chem. C2008, 112, 18295–18298.10.1021/jp8076485Search in Google Scholar PubMed PubMed Central

Sun, X.; Brückner, C.; Lei, Y. One-pot and ultrafast synthesis of nitrogen and phosphorus co-doped carbon dots possessing bright dual wavelength fluorescence emission. Nanoscale2015a, 7, 17278–17282.10.1039/C5NR05549KSearch in Google Scholar

Sun, X.; Liu, P.; Wu, L.; Liu, B. Graphene-quantum-dots-based ratiometric fluorescent probe for visual detection of copper ion. Analyst2015b, 140, 6742–6747.10.1039/C5AN01297JSearch in Google Scholar PubMed

Tanaka, H.; Akai-Kasaya, M.; TermehYousefi, A.; Hong, L.; Fu, L.; Tamukoh, H.; Tanaka, D.; Asai, T.; Ogawa, T. A molecular neuromorphic network device consisting of single-walled carbon nanotubes complexed with polyoxometalate. Nat. Commun.2018, 9, 2693.10.1038/s41467-018-04886-2Search in Google Scholar PubMed PubMed Central

Tang, L.; Ji, R.; Li, X.; Bai, G.; Liu, C. P.; Hao, J.; Lin, J.; Jiang, H.; Teng, K. S.; Yang, Z.; Lau, S. P. Deep ultraviolet to near-infrared emission and photoresponse in layered n-doped graphene quantum dots. ACS Nano2014, 8, 6312–6320.10.1021/nn501796rSearch in Google Scholar PubMed

Tantama, M.; Hung, Y. P.; Yellen, G. Imaging intracellular pH in live cells with a genetically encoded red fluorescent protein sensor. J. Am. Chem. Soc.2011, 133, 10034–10037.10.1021/ja202902dSearch in Google Scholar PubMed PubMed Central

Tayade, K.; Bondhopadhyay, B.; Keshav, K.; Sahoo, S. K.; Basu, A.; Singh, J.; Singh, N.; Nehete, D. T.; Kuwar, A. A novel zinc(II) and hydrogen sulphate selective fluorescent “turn-on” chemosensor based on isonicotiamide: INHIBIT type’s logic gate and application in cancer cell imaging. Analyst2016, 141, 1814–1821.10.1039/C5AN02295ASearch in Google Scholar PubMed

TermehYousefi, A. Nanocomposite-Based Electronic Tongue: Carbon Nanotube Growth by Chemical Vapor Deposition and Its Application. Springer Series in Materials Science, Springer: Berlin, Heidelberg, Germany, 2017; Vol. 259.Search in Google Scholar

TermehYousefi, A. Experimental Procedures and Materials. Nanocomposite-Based Electronic Tongue. Springer: Berlin, Heidelberg, Germany, 2018; pp. 39–62.10.1007/978-3-319-66848-2_3Search in Google Scholar

TermehYousefi, A.; Bagheri, S.; Adib, N. Integration of biosensors based on microfluidic: a review. Sens. Rev.2015a, 35, 190–199.10.1108/SR-09-2014-697Search in Google Scholar

TermehYousefi, A.; Bagheri, S.; Shinji, K.; Rusop Mahmood, M.; Ikeda, S. Highly oriented vertically aligned carbon nanotubes via chemical vapour deposition for key potential application in CNT ropes. Mater. Res. Innov.2015b, 19, 212–216.10.1179/1433075X14Y.0000000246Search in Google Scholar

TermehYousefi, A.; Bagheri, S.; Shahnazar, S.; Rahman, M. H.; Kadri, N. A. Computational local stiffness analysis of biological cell: High aspect ratio single wall carbon nanotube tip. Mater. Sci. Eng. C.2016, 59, 636–642.10.1016/j.msec.2015.10.041Search in Google Scholar PubMed

TermehYousefi, A.; Tateno, K.; Bagheri, S.; Tanaka, H. Development of frequency based taste receptors using bioinspired glucose nanobiosensor. Sci. Rep.2017, 7, 1623.10.1038/s41598-017-01855-5Search in Google Scholar PubMed PubMed Central

Teymourinia, H.; Salavati-Niasari, M.; Amiri, O.; Farangi, M. Facile synthesis of graphene quantum dots from corn powder and their application as down conversion effect in quantum dot-dye-sensitized solar cell. J. Mol. Liquids2018, 251, 267–272.10.1016/j.molliq.2017.12.059Search in Google Scholar

Trusheim, M. E.; Li, L.; Laraoui, A.; Chen, E. H.; Bakhru, H.; Schröder, T.; Gaathon, O.; Meriles, C. A.; Englund, D. Scalable fabrication of high purity diamond nanocrystals with long-spin-coherence nitrogen vacancy centers. Nano Lett.2013, 14, 32–36.10.1021/nl402799uSearch in Google Scholar PubMed

Verhaegh, G. W.; Richard, M.-J.; Hainaut, P. Regulation of p53 by metal ions and by antioxidants: dithiocarbamate down-regulates p53 DNA-binding activity by increasing the intracellular level of copper. Mol. Cell. Biol.1997, 17, 5699–5706.10.1128/MCB.17.10.5699Search in Google Scholar PubMed PubMed Central

Vetrone, F.; Naccache, R.; Zamarrón, A.; Juarranz de la Fuente, A.; Sanz-Rodríguez, F.; Martinez Maestro, L.; Martín Rodriguez, E.; Jaque, D.; García Solé, J.; Capobianco, J. A. Temperature sensing using fluorescent nanothermometers. ACS Nano2010, 4, 3254–3258.10.1021/nn100244aSearch in Google Scholar PubMed

Walker, G. W.; Sundar, V. C.; Rudzinski, C. M.; Wun, A. W.; Bawendi, M. G.; Nocera, D. G. Quantum-dot optical temperature probes. Appl. Phys. Lett.2003, 83, 3555–3557.10.1063/1.1620686Search in Google Scholar

Wan, Q.; Chen, S.; Shi, W.; Li, L.; Ma, H. Lysosomal pH rise during heat shock monitored by a lysosome-targeting near-infrared ratiometric fluorescent probe. Angew. Chem.2014, 126, 11096–11100.10.1002/ange.201405742Search in Google Scholar

Wang, X.; Cao, L.; Lu, F.; Meziani, M. J.; Li, H.; Qi, G.; Zhou, B.; Harruff, B. A.; Kermarrec, F.; Sun, Y. P. Photoinduced electron transfers with carbon dots. Chem. Commun. 2009a, 3774–3776.10.1039/b906252aSearch in Google Scholar PubMed PubMed Central

Wang, K.; Tang, Z.; Yang, C. J.; Kim, Y.; Fang, X.; Li, W.; Wu, Y.; Medley, C. D.; Cao, Z.; Li, J.; Colon, P. Molecular engineering of DNA: molecular beacons. Angew. Chem. Int. Ed.2009b, 48, 856–870.10.1002/anie.200800370Search in Google Scholar PubMed PubMed Central

Wang, X.; Cao, L.; Yang, S. T.; Lu, F.; Meziani, M. J.; Tian, L.; Sun, K. W.; Bloodgood, M. A.; Sun, Y. P. Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew. Chem.2010a, 122, 5438–5442.10.1002/ange.201000982Search in Google Scholar

Wang, F.; Kreiter, M.; He, B.; Pang, S.; Liu, C. Y. Synthesis of direct white-light emitting carbogenic quantum dots. Chem. Commun.2010b, 46, 3309–3311.10.1039/c002206cSearch in Google Scholar PubMed

Wang, F.; Chen, Y. H.; Liu, C. Y.; Ma, D. G. White light-emitting devices based on carbon dots’ electroluminescence. Chem. Commun.2011, 47, 3502–3504.10.1039/c0cc05391kSearch in Google Scholar PubMed

Wang, C.; Ling, L.; Yao, Y.; Song, Q. One-step synthesis of fluorescent smart thermo-responsive copper clusters: a potential nanothermometer in living cells. Nano Res.2015, 8, 1975.10.1007/s12274-015-0707-0Search in Google Scholar

Wang, C.; Lin, H.; Xu, Z.; Huang, Y.; Humphrey, M. G.; Zhang, C. Tunable carbon-dot-based dual-emission fluorescent nanohybrids for ratiometric optical thermometry in living cells. ACS Appl. Mater. Interfaces2016, 8, 6621–6628.10.1021/acsami.5b11317Search in Google Scholar PubMed

Wang, H.; Zhang, P.; Chen, J.; Li, Y.; Yu, M.; Long, Y.; Yi, P. Polymer nanoparticle-based ratiometric fluorescent probe for imaging Hg2+ ions in living cells. Sens. Actuators B Chem.2017, 242, 818–824.10.1016/j.snb.2016.09.177Search in Google Scholar

Wei, W.; Xu, C.; Ren, J.; Xu, B.; Qu, X. Sensing metal ions with ion selectivity of a crown ether and fluorescence resonance energy transfer between carbon dots and graphene. Chem. Commun.2012, 48, 1284–1286.10.1039/C2CC16481GSearch in Google Scholar PubMed

Wessig, P.; Behrends, N.; Kumke, M. U.; Eisold, U.; Meiling, T.; Hille, C. Two-photon FRET pairs based on coumarin and DBD dyes. RSC Adv.2016, 6, 33510–33513.10.1039/C6RA03983ASearch in Google Scholar

Xing, Y.-P.; Liu, C.; Zhou, X. H.; Shi, H. C. Label-free detection of kanamycin based on a G-quadruplex DNA aptamer-based fluorescent intercalator displacement assay. Sci. Rep.2015, 5, 8125.10.1038/srep08125Search in Google Scholar PubMed PubMed Central

Yang, R.; Jin, J.; Chen, Y.; Shao, N.; Kang, H.; Xiao, Z.; Tang, Z.; Wu, Y.; Zhu, Z.; Tan, W. Carbon nanotube-quenched fluorescent oligonucleotides: probes that fluoresce upon hybridization. J. Am. Chem. Soc.2008, 130, 8351–8358.10.1021/ja800604zSearch in Google Scholar PubMed

Yang, S.-T.; Wang, X.; Wang, H.; Lu, F.; Luo, P. G.; Cao, L.; Meziani, M. J.; Liu, J. H.; Liu, Y.; Chen, M.; Huang, Y. Carbon dots as nontoxic and high-performance fluorescence imaging agents. J. Phys. Chem. C2009, 113, 18110–18114.10.1021/jp9085969Search in Google Scholar PubMed PubMed Central

Yang, Y.; Cui, J.; Zheng, M.; Hu, C.; Tan, S.; Xiao, Y.; Yang, Q.; Liu, Y. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan. Chem. Commun.2012, 48, 380–382.10.1039/C1CC15678KSearch in Google Scholar PubMed

Yang, Z.; Cao, J.; He, Y.; Yang, J. H.; Kim, T.; Peng, X.; Kim, J. S. Macro-/micro-environment-sensitive chemosensing and biological imaging. Chem. Soc. Rev.2014, 43, 4563–4601.10.1039/C4CS00051JSearch in Google Scholar PubMed

Yang, L.; Li, N.; Pan, W.; Yu, Z.; Tang, B. Real-time imaging of mitochondrial hydrogen peroxide and pH fluctuations in living cells using a fluorescent nanosensor. Anal. Chem.2015, 87, 3678–3684.10.1021/ac503975xSearch in Google Scholar PubMed

Yin, J.; Hu, Y.; Yoon, J. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH. Chem. Soc. Rev.2015, 44, 4619–4644.10.1039/C4CS00275JSearch in Google Scholar PubMed

Yousefi, A.; Termeh, S. I.; Mohamad, R.; Haleh T. Y. Simulation of nano sensor based on carbon nanostructures in order to form multifunctional delivery platforms. Adv. Mater. Res.2014, 832, 778–782.10.4028/www.scientific.net/AMR.832.778Search in Google Scholar

Yousefi, A.; Bagheri, S.; Kadri, N. A.; Mahmood, M. R.; Ikeda, S. Constant glucose biosensor based on vertically aligned carbon nanotube composites. Int. J. Electrochem. Sci.2015a, 10, 4183–4192.Search in Google Scholar

Yousefi, A. T.; Tanaka, H.; Bagheri, S.; Elfghi, F.; Mahmood, M. R.; Ikeda, S. Vectorial crystal growth of oriented vertically aligned carbon nanotubes using statistical analysis. Cryst. Growth Des.2015b, 15, 3457–3463.10.1021/acs.cgd.5b00534Search in Google Scholar

Yousefi, A. T.; Tanaka, H.; Bagheri, S.; Kadri, N. A.; Ikeda, S.; Mahmood, M. R.; Miyake, M. Possible high efficiency platform for biosensors based on optimum physical chemistry of carbon nanotubes. Chem. Vapor Depos.2015c, 21, 263–266.10.1002/cvde.201507184Search in Google Scholar

Yu, F.; Li, P.; Song, P.; Wang, B.; Zhao, J.; Han, K. An ICT-based strategy to a colorimetric and ratiometric fluorescence probe for hydrogen sulfide in living cells. Chem. Commun.2012a, 48, 2852–2854.10.1039/c2cc17658kSearch in Google Scholar PubMed

Yu, C.; Luo, M.; Zeng, F.; Wu, S. A fast-responding fluorescent turn-on sensor for sensitive and selective detection of sulfite anions. Anal. Methods2012b, 4, 2638–2640.10.1039/c2ay25496dSearch in Google Scholar

Yu, P.; Wen, X.; Toh, Y. R.; Tang, J. Temperature-dependent fluorescence in carbon dots. J. Phys. Chem. C2012c, 116, 25552–25557.10.1021/jp307308zSearch in Google Scholar

Yu, C.; Li, X.; Zeng, F.; Zheng, F.; Wu, S. Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem. Commun.2013, 49, 403–405.10.1039/C2CC37329GSearch in Google Scholar PubMed

Yuan, L.; Lin, W.; Xie, Y.; Chen, B.; Zhu, S. Single fluorescent probe responds to H2O2, NO, and H2O2/NO with three different sets of fluorescence signals. J. Am. Chem. Soc.2011, 134, 1305–1315.10.1021/ja2100577Search in Google Scholar PubMed

Zhang, L.; Tang, B.; Ding, Y. Study of 2-(2-pyridyl) benzothiazoline as a novel fluorescent probe for the identification of superoxide anion radicals and the determination of superoxide dismutase activity in scallion genus foods. J. Agric. Food Chem.2005, 53, 549–553.10.1021/jf049724aSearch in Google Scholar PubMed

Zhang, Y.; Goncalves, H.; da Silva, J. C. E.; Geddes, C. D. Metal-enhanced photoluminescence from carbon nanodots. Chem. Commun.2011, 47, 5313–5315.10.1039/c0cc03832fSearch in Google Scholar PubMed

Zhang, H.; Huang, H.; Ming, H.; Li, H.; Zhang, L.; Liu, Y.; Kang, Z. Carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced photocatalytic activity and stability under visible light. J. Mater. Chem.2012, 22, 10501–10506.10.1039/c2jm30703kSearch in Google Scholar

Zhang, Z.; Shi, Y.; Pan, Y.; Cheng, X.; Zhang, L.; Chen, J.; Li, M. J.; Yi, C. Quinoline derivative-functionalized carbon dots as a fluorescent nanosensor for sensing and intracellular imaging of Zn2+. J. Mater. Chem. B2014, 2, 5020–5027.10.1039/C4TB00677ASearch in Google Scholar

Zhang, L.; Han, Y.; Zhu, J.; Zhai, Y.; Dong, S. Simple and sensitive fluorescent and electrochemical trinitrotoluene sensors based on aqueous carbon dots. Anal. Chem.2015, 87, 2033–2036.10.1021/ac5043686Search in Google Scholar PubMed

Zhao, P.; He, K.; Han, Y.; Zhang, Z.; Yu, M.; Wang, H.; Huang, Y.; Nie, Z.; Yao, S. Near-infrared dual-emission quantum dots-gold nanoclusters nanohybrid via co-template synthesis for ratiometric fluorescent detection and bioimaging of ascorbic acid in vitro and in vivo. Anal. Chem.2015, 87, 9998–10005.10.1021/acs.analchem.5b02614Search in Google Scholar PubMed

Zhou, L.; Lin, Y.; Huang, Z.; Ren, J.; Qu, X. Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem. Commun.2012, 48, 1147–1149.10.1039/C2CC16791CSearch in Google Scholar PubMed

Zhou, D.; Zhang, H. Critical growth temperature of aqueous CdTe quantum dots is non-negligible for their application as nanothermometers. Small2013, 9, 3195–3197.10.1002/smll.201201060Search in Google Scholar PubMed

Zhou, D.; Lin, M.; Liu, X.; Li, J.; Chen, Z.; Yao, D.; Sun, H.; Zhang, H.; Yang, B. Conducting the temperature-dependent conformational change of macrocyclic compounds to the lattice dilation of quantum dots for achieving an ultrasensitive nanothermometer. ACS Nano2013, 7, 2273–2283.10.1021/nn305423pSearch in Google Scholar PubMed

Zhu, Y.; Chandra, P.; Song, K. M.; Ban, C.; Shim, Y. B. Label-free detection of kanamycin based on the aptamer-functionalized conducting polymer/gold nanocomposite. Biosens. Bioelectron.2012a, 36, 29–34.10.1016/j.bios.2012.03.034Search in Google Scholar PubMed

Zhu, A.; Qu, Q.; Shao, X.; Kong, B.; Tian, Y. Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angew. Chem.2012b, 124, 7297–7301.10.1002/ange.201109089Search in Google Scholar

Zhu, H.; Zhang, W.; Zhang, K.; Wang, S. Dual-emission of a fluorescent graphene oxide-quantum dot nanohybrid for sensitive and selective visual sensor applications based on ratiometric fluorescence. Nanotechnology2012c, 23, 315502.10.1088/0957-4484/23/31/315502Search in Google Scholar PubMed

Zhu, A.; Ding, C.; Tian, Y. A two-photon ratiometric fluorescence probe for cupric ions in live cells and tissues. Sci. Rep.2013, 3, 2933.10.1038/srep02933Search in Google Scholar PubMed PubMed Central

Zhu, J.-H.; Li, M. M.; Liu, S. P.; Liu, Z. F.; Li, Y. F.; Hu, X. L. Fluorescent carbon dots for auramine O determination and logic gate operation. Sens. Actuators B Chem.2015a, 219, 261–267.10.1016/j.snb.2015.05.032Search in Google Scholar

Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res.2015b, 8, 355–381.10.1007/s12274-014-0644-3Search in Google Scholar

Zhuo, S.; Shao, M.; Lee, S.-T. Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano2012, 6, 1059–1064.10.1021/nn2040395Search in Google Scholar PubMed

Received: 2019-01-28
Accepted: 2019-05-09
Published Online: 2019-08-01
Published in Print: 2019-12-18

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2019-0002/html
Scroll to top button