Home Structural chemistry of anionic fluoride and mixed-ligand fluoride complexes of indium(III)
Article
Licensed
Unlicensed Requires Authentication

Structural chemistry of anionic fluoride and mixed-ligand fluoride complexes of indium(III)

An erratum for this article can be found here: https://doi.org/10.1515/revic-2016-0009
  • Ruven L. Davidovich

    Ruven L. Davidovich graduated from Kishinev University, Moldova in 1955, received his PhD degree from Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia in 1966 under the supervision of Prof. Yuri A. Buslaev, and obtained his Dr. Sci. habilitation in 1993. He joined the Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia in 1958. His research interests focus on the synthesis and properties of fluoride and chelate complexes of Group III-V metals.

    EMAIL logo
    , Pavel P. Fedorov

    Pavel P. Fedorov graduated from the Lomonosov Moscow Institute of Fine Chemical Technology in 1972, received his PhD degree from Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia in 1977 under the supervision of Prof. Kh. S. Bagdasarov, and obtained his Dr. Sci. habilitation in 1991. He joined Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia in 2003. His research interests focus on the synthesis and properties of transition metal fluorides and fluoride optical materials.

    EMAIL logo
    and Artur I. Popov

    Artur I. Popov graduated from the Lomonosov Moscow State University in 1985 and received his PhD degree from the same university in 1988 under the supervision of Prof. Victor I. Spitsyn. He joined Cardinal Intellectual Property, Inc. in 2014. His scientific interests focus on the synthesis and properties of inorganic fluorides and chemical informatics.

    EMAIL logo
Published/Copyright: February 27, 2016

Abstract

A total of 88 crystal lattice structures of indium(III) anionic fluoride and mixed-ligand fluoride complexes have been discussed and systematized. Most of these structures have been established by single-crystal X-ray diffraction techniques, but some were characterized by powder X-ray diffraction methods. The presented crystallography data were compared with known isotypical compounds. This paper offers a discussion of the geometry of indium and outer sphere cation coordination polyhedra; the association of indium atoms in dimer, oligomer, and polymer formations (chains, layers, frameworks); types of cation-anion interactions; and their contributions in actual three-dimensional crystal structures including types of the crystal lattices formed. We also used structural examples of potassium fluoroindates(III) to describe the basics of the structural depolymerization model for fluoride compounds, which is used to depict the formation and transformation of complex metal fluorides and predict structural types of novel or uncharacterized fluorides in the corresponding compound series. For the readers’ convenience, we have compiled structural information in a single table containing phase compositions and corresponding standard crystallographic data (such as crystal system, space group, unit cell parameters, number of formula units per cell [Z], reliability factors [R], and In-F and In-O bond lengths).

About the authors

Ruven L. Davidovich

Ruven L. Davidovich graduated from Kishinev University, Moldova in 1955, received his PhD degree from Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia in 1966 under the supervision of Prof. Yuri A. Buslaev, and obtained his Dr. Sci. habilitation in 1993. He joined the Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia in 1958. His research interests focus on the synthesis and properties of fluoride and chelate complexes of Group III-V metals.

Pavel P. Fedorov

Pavel P. Fedorov graduated from the Lomonosov Moscow Institute of Fine Chemical Technology in 1972, received his PhD degree from Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russia in 1977 under the supervision of Prof. Kh. S. Bagdasarov, and obtained his Dr. Sci. habilitation in 1991. He joined Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia in 2003. His research interests focus on the synthesis and properties of transition metal fluorides and fluoride optical materials.

Artur I. Popov

Artur I. Popov graduated from the Lomonosov Moscow State University in 1985 and received his PhD degree from the same university in 1988 under the supervision of Prof. Victor I. Spitsyn. He joined Cardinal Intellectual Property, Inc. in 2014. His scientific interests focus on the synthesis and properties of inorganic fluorides and chemical informatics.

Acknowledgments

The authors greatly appreciate the kindest help of Richard L. Simoneaux and Elena V. Chernova in the preparation of this manuscript.

References

Aleksandrov, K. S.; Misyul’, S. V.; Molokeev, M. S.; Voronov, V. N. Structures of phases and critical and noncritical atomic displacements of elpasolite Rb2KInF6 during phase transitions. Fiz. Tverd. Tela. 2009, 51, 2359–2364. (Phys. Solid State2009, 51, 2505–2512).10.1134/S1063783409120130Search in Google Scholar

Babel, D. Die Struktur des RbNiCrF6-Typs und ihre Beziehung zur Pyrochlorstruktur. Z. Anorg. Allg. Chem. 1972, 387, 161–178.10.1002/zaac.19723870205Search in Google Scholar

Babel, D.; Tressaud, A. Crystal Chemistry of Fluorides. In Inorganic Fluorides; Hagenmuller, P., Ed. Academic Press: New York, 1985; pp 77–203.10.1016/B978-0-12-313370-0.50008-6Search in Google Scholar

Babel, D.; Wall, F.; Heger, G. Strukturen cäsiumhaltiger Fluoride, II. Die Kristall-und Magnetische Struktur von CsFeF4. Z. Naturforsch. 1974, 29b, 139–148.10.1515/znb-1974-3-401Search in Google Scholar

Ban, I.; Kristl, M.; Volavšek, B.; Golič, L. Kristallstruktur und thermische Analyse von Hydroxylammonium-hexafluorotitanat(IV)-dihydrat und Hydroxyalammonium-hexafluoroindat(III). Monatsh. Chem. 1999, 130, 401–408.Search in Google Scholar

Beck, L. K.; Kugler, B. H.; Haendler, H. M. The thermal decomposition of ammonium hexafluorogallate and ammonium hexafluoroindate. New crystalline forms of gallium fluoride and indium fluoride. J. Solid State Chem. 1973, 8, 312–317.10.1016/S0022-4596(73)80027-1Search in Google Scholar

Benkič, P.; Rahten, A.; Jesih, A.; Pejov, L. J. Crystal structure and vibrational spectra of hydrazinium(2+) aquatetrafluoroindate(III), N2H6(InF4H2O)2. J. Chem. Crystallogr. 2002, 32, 227–235.10.1023/A:1020244905386Search in Google Scholar

Bhalla, R.; Darby, C.; Levason, W.; Luthra, S. K.; McRobbie, G.; Reid, G.; Sanderson, G.; Zhang, W. Triaza-macrocyclic complexes of aluminium, gallium and indium halides: fast 18F and 19F incorporation via halide exchange under mild conditions in aqueous solution. Chem. Sci. 2014, 5, 381–391.10.1039/C3SC52104DSearch in Google Scholar

Bhalla, R.; Levason, W.; Luthra, S. K; McRobbie, G.; Monzittu, F. M.; Palmer, J.; Reid, G.; Sanderson, G.; Zhang, W. Hydrothermal synthesis of group 13 metal trifluoride complexes with neutral N-donor ligands. Dalton Trans. 2015, 44, 9569–9580.10.1039/C5DT01120ESearch in Google Scholar

Bode, H.; Voss, E. Strukturen der Hexafluorometallate(III). Z. Anorg. Allg. Chem. 1957, 290, 1–16.10.1002/zaac.19572900102Search in Google Scholar

Bokii, G. B.; Khodashova, T. S. The X-ray investigation of the crystals InF3·3H2O. Kristallografiya. 1956, 1, 197–204 (in Russian).Search in Google Scholar

Boutarfaia, A.; Poulain, M. Etude de stabilization de verres a base de YF3. Ann. Chim. Sci. Mater. 2002, 27, 27–35.10.1016/S0151-9107(02)80029-0Search in Google Scholar

Brekhovskikh, M. N.; Popov, A. I.; Kiselev, Y. M.; Ilinskii, A. L.; Fedorov, V. A. Study of LnF3-TbF4 systems. Zh. Neorg. Khim. 1989, 34, 1021–1024 (In Russian).Search in Google Scholar

Brown, G. M.; Walker, L. A. Refinement of the structure of potassium heptafluoroniobate, K2NbF7, from neutron-diffraction data. Acta Crystalogr.1966, 20, 220–229.10.1107/S0365110X66000458Search in Google Scholar

Buchinskaya, I. I.; Fedorov, P. P. Lead difluoride and related systems. Russ. Chem. Rev. 2004, 73, 371–400.10.1070/RC2004v073n04ABEH000811Search in Google Scholar

Bukovec, P. Untersuchungen von Fluorometallaten(III), 11. Mitt.: Synthese und Kristallstruktur von Guanidinium Hexafluoroaluminat, -gallat und -indat. Kurze Mitteilung. Monatsh. Chem. 1983, 114, 277–279.10.1007/BF00798950Search in Google Scholar

Bukovec, P.; Golič, L. Hydrazinium(1+) tetrafluoroaquoindate(III). Acta Crystalogr.1976, B32, 948–950.10.1107/S0567740876004287Search in Google Scholar

Bukovec, P.; Kaučič, V. Reinvestigation of the crystal structure of indium trifluoride trihydrate. Inorg. Nucl. Chem. Lett. 1978, 14, 79–81.10.1016/0020-1650(78)80034-8Search in Google Scholar

Bukvetskii, B. V.; Polishchuk, S. A.; Simonov, V. I. Determination and refinement of the crystal structures of heptahydrate fluorides ZnInF5·7H2O and CdGaF5·7H2O. Koord. Khim.1977, 3, 926–938 (in Russian).Search in Google Scholar

Byström, A. The structure of weberite, Na2MgA1F7. Ark. Kemi. Mineral. Geol. 1944, 18, 1 (Cited from Caramanian, 2001).Search in Google Scholar

Caramanian, A.; Souron, J.-P.; Gredin, P.; de Kozak, A. The crystal structure of the weberite Na2MgInF7. J. Solid State Chem. 2001, 159, 234–238.10.1006/jssc.2001.9184Search in Google Scholar

Caramanian, A.; Souron, J.-P.; Gredin, P.; de Kozak, A.; Derouet, J.; Viana, B. Indofluorides in the AMF3-InF3 systems (A=K, Rb, Cs and M=Mg, Zn) and optical properties of Cr3+:K0.38Mg0.38In0.62F3. J. Lumines. 2003, 104, 161–173.10.1016/S0022-2313(03)00013-9Search in Google Scholar

Champarnaud-Mesjard, J.-C.; Frit, B. Structure Cristalline du Fluoroindate de Potassium KIn2F7. Acta Crystallogr. 1977, B33, 3722–3726.10.1107/S0567740877011935Search in Google Scholar

Champarnaud-Mesjard, J. C.; Frit, B. Structure cristalline du fluoroindate de rubidium Rb2In3F11. Acta Crystallogr. 1978, B34, 736–741.10.1107/S0567740878003970Search in Google Scholar

Champarnaud-Mesjard, J.-C.; Laval, J.-P.; Gaudreau, B. Fluorozirconates d’indium et de titane Rev. Chim. Miner. 1974a, 11, 735–741.Search in Google Scholar

Champarnaud-Mesjard, J.-C.; Grannec, J.; Gaudreau, B. Le système NH4F-InF3. C. R. Acad. Sc. Paris, Série C. 1974b, 278, 171–173.Search in Google Scholar

Champarnaud-Mesjard, J.-C.; Mercurio, D.; Frit, B. Structure cristalline du fluoroindate de rubidium RbIn3F10. J. Inorg. Nucl. Chem. 1977, 39, 947–951.10.1016/0022-1902(77)80241-8Search in Google Scholar

Champarnaud-Mesjard, J.-C.; Frit, B.; Gaudreau, B. Étude cristallographique de qelques fluoroindates d’éléments monovalents. Rev. Chim. Miner. 1978, 15, 328–339.Search in Google Scholar

Chassaing, J. Composés fluorés du type Na2MgMIIIF7 (M-Ga, In, Sc, V, Cr, Fe). C. R. Acad. Sc. Paris, Série C. 1969, 268, 2188–2191.Search in Google Scholar

Chen, R.; Zhang, Q. Phase diagram of KF-InF3 system. J. Fluor. Chem. 2003, 124, 1–3.10.1016/S0022-1139(03)00167-2Search in Google Scholar

Chen, J.; Huang, H.; Wang, P.; Zhou M. Holmium-doped fluorination gallium indium glass up-conversion luminescent material, preparation method and application thereof. China Patent CN104059645, 2014.Search in Google Scholar

Comprehensive Coordination Chemistry. Editor-in-Chief: Sir G. Wilkinson, FRS. Volume 3. Main Group & Early Transition Elements. Pergamon press, 1987.Search in Google Scholar

Davidovich, R. L. Atlas derivatograms of III-V group metal fluoride complexes. Moscow, Ed. “Nauka”, 1976. 284 pp (in Russian).Search in Google Scholar

Davidovich, R. L. Depolarizing action of fluoride ions on transition metal fluorides. Koord. Khim.1986, 12, 281–282 (in Russian).Search in Google Scholar

Davidovich, R. L.; Zhemnukhova, L. A.; Fedorishcheva, G. A.; Teplukhina, L. V. Fluoroselenate complexes of indium(III). Koord. Khim.1989, 15, 1035–1038 (in Russian).Search in Google Scholar

Davidovich, R. L.; Logvinova, V. B.; Tkachev, V. V.; Shilov, G. V. Synthesis and crystal structure of mixed fluorooxalatoindates(III) M2[InF3(C2O4)(H2O)] (M=K, Rb). J. Struct. Chem.2016, in press.Search in Google Scholar

Deichman, É. N.; Krysina, L. S. Solubility of indium fluoride in aqueous solutions of cesium fluoride. Zh. Neorg. Khim. 1965, 10, 476–479 (in Russian).Search in Google Scholar

Deichman, É. N.; Tsapkin, V. V. Interaction of indium and ammonium fluorides in aqueous solutions. Zh. Neorg. Khim. 1967, 12, 307–311 (in Russian).Search in Google Scholar

Deichman, É. N.; Yartseva, R. D. Solubility of indium fluoride in aqueous solutions of rubidium fluoride. Zh. Neorg. Khim. 1969, 14, 2204–2207 (in Russian).Search in Google Scholar

Deichman, É. N.; Rodicheva, G. V.; Cheltsov, P. A. Synthesis of fluorosulfate and phosphate complexes of indium. Zh. Neorg. Khim. 1965, 10, 89–91 (in Russian).Search in Google Scholar

Deichman, É. N.; Yartseva, R. D.; Ezhova, Zh. A. Solubility of indium fluoride in aqueous solutions of potassium fluoride. Zh. Neorg. Khim. 1968, 13, 1404–1407 (in Russian).Search in Google Scholar

de Kozak, A.; Samouël, M.; Renaudin, J.; Férey, G. Structure of BaCuInF7: the interpretation between a pyrochlor-like edge-sharing network of octahedra and a defect fluorite structure. Complex copper(II) fluorides – XI. Z. Kristallogr. 1989, 189, 77–87.10.1524/zkri.1989.189.14.77Search in Google Scholar

de Kozak, A.; Dupont, N.; Gredin, P.; Riou, D. The crystal structure of Ba5In3F19: a new structural type in fluoride crystal chemistry. Solid State Sci. 1999, 1, 409–419.10.1016/S1293-2558(00)80094-1Search in Google Scholar

de Pape, R.; Portier, J.; Gauthier, G.; Hagenmuller, P. Les grenats fluorés des éléments de transition Li3Na3In2F12 (M=Ti, V, Cr, Fe ou Co). C. R. Acad. Sc. Paris, Série C. 1967, 265, 1244–1246.Search in Google Scholar

de Pape, R.; Portier, J.; Grannec, J.; Gauthier, G.; Hagenmuller, P. Sur quelques nouveaux grenats fluorés. C. R. Acad. Sc. Paris, Série C. 1969, 269, 1120–1121.Search in Google Scholar

de Viry, D.; Denis, J. P.; Blazant, B. Spectroscopic properties of trivalent chromium in the fluoride garnet Na3In2Li3F12. J. Solid State Chem. 1987, 71, 109–114.10.1016/0022-4596(87)90148-4Search in Google Scholar

Domesle, R.; Hoppe, R. Neue Fluororhodate(III). Zur Kenntnis von Pb2RhF7 und Sr2RhF7. Z. Anorg. Allg. Chem. 1983, 501, 102–110.10.1002/zaac.19835010612Search in Google Scholar

Fedorov, P. P. Criteria of fluoride-glass formation. Inorg. Mater.1997a, 33, 1197–1205.Search in Google Scholar

Fedorov, P. P. Crystallochemical aspects of fluoride-glass formation. Crystallogr. Rep. 1997b, 42, 1064–1075.Search in Google Scholar

Fedorov, P. P. Heterovalent isomorphism and solid solutions with a variable number of ions in the unit cell. Russ. J. Inorg. Chem. 2000, 45, Suppl. 3, S268–S291.Search in Google Scholar

Fedorov, P. I.; Akhchurin, R. Kh. Indium. Moscow: Ed. “Nauka”. 2000 (in Russian); Peking Ed. University Press, 2005 (in Chinese).Search in Google Scholar

Fedorov, P. P.; Fedorov, P. I. Prediction of complex-formation in double salt systems with common-type anion. Zh. Neorg. Khim. 1973, 18, 205–208 (in Russian).Search in Google Scholar

Fedorov, P. P.; Zibrov, I. P.; Tarasova, E. V.; Medvedeva, L. V.; Sobolev, B. P.; Shishkin, I. V.; Fedorov, P. I. BaF2-InF3, PbF2-InF3 systems. Zh. Neorg. Khim.1989a, 34, 3150–3152 (in Russian).Search in Google Scholar

Fedorov, P. P.; Zibrov, I. P.; Sobolev, B. P.; Shishkin, I. V.; Fedorov, P. I.; Sviderskii, M. F.; Petranin, N. P. Physicochemical study of the LiF-InF3 and YbF3-InF3 systems. Russ. J. Inorg. Chem. 1989b, 34, 412–414.Search in Google Scholar

Fedorov, P. P.; Fedorov, P. I.; Shishkin, I. B.; Zibrov, I. P.; Sobolev, B. P. Indium fluoride and fluoroindates. Institute of Crystallography USSR (preprint № 10), Moscow, 1989c (in Russian).Search in Google Scholar

Fedorov, P. P.; Bondareva, O. S.; Buchinskaya, I. I.; Vistin’, L. L.; Sobolev, B. P. A new form of sodium tetrafluorolutetate NaLuF4. Russ. J. Inorg. Chem. 1992, 37, 125–126.Search in Google Scholar

Fedorov, P. P.; Bondareva, O. S.; Stasjuk, V. A.; Sobolev, B. P.; Fedorov, P. I. Slow hydration of indium trifluoride. Russ. J. Inorg. Chem. 1997, 42, 618–619.Search in Google Scholar

Fedorov, P. P.; Zakalyukin, R. M.; Ignat’eva, L. N.; Bouznik, V. M. Fluoroindate glasses. Uspekhi Khim. 2000a, 69, 767–779. (Russ. Chem. Rev. 2000, 69, 705–716).10.1070/RC2000v069n08ABEH000582Search in Google Scholar

Fedorov, P. P.; Popov, A. I.; Simoneaux, R.; Fedorov, P. I. Indium iodides. Russ. Chem. Rev. 2017, 86, accepted for publication (Uspekhi Khim.2017, 86).10.1070/RCR4609Search in Google Scholar

Feng, M.-L.; Li, X.-L.; Mao, J.-G. New organically templated gallium and indium selenites or selenates with one-, two-, and three-dimensional structures. Cryst. Growth Des. 2007, 7, 770–777.10.1021/cg060824dSearch in Google Scholar

Fitz, H.; Müller, B. G. InBF4, das erste komplexe Fluorid mit Indium(1). Z. Anorg. Allg. Chem. 1997, 623, 579–582.10.1002/zaac.19976230190Search in Google Scholar

Flerov, I. N.; Gorev, M. V.; Mel’nikova, S. V.; Misyul’, S. V.; Voronov, V. N.; Aleksandrov, K. S.; Tressaud, A.; Grannec, J.; Chaminade, J.-P.; Rabardel, L.; Guingard, H. Study of successive phase transitions FmmI4/mP21/n in Rb2KInF6 and Rb2KLuF6 elpasolites. Fiz. Tverd. Tela. 1992, 34, 3493–3500. (Phys. Solid State. 1992, 34, 1870–1877).Search in Google Scholar

Frenzen, G.; Massa, W.; Babel, D.; Ruchaud, N.; Grannec, J.; Tressaud, A.; Hagenmuller, P. Structure and magnetic behavior of the Na2NiInF7 weberite. J. Solid State Chem. 1992, 98, 121–127.10.1016/0022-4596(92)90076-8Search in Google Scholar

Friese, K.; Gesland, J.-Y.; Grzechnik, A. The structure of multiple twinned CsMgInF6 and its relationship to other pyrochlore derived fluorides. Z. Kristallogr.2005, 220, 614–621.10.1524/zkri.220.7.614.67100Search in Google Scholar

Gabuda, S. P.; Polishchuk, S. A.; Avkhutskii, L. M.; Gagarinskii, Yu. V. Nuclear magnetic relaxation (NMR) of protons and fluorine in the trihydrates of aluminum, gallium, and indium(III) fluorides and structure of InF3·3H2O. Zh. Strukt. Khim. 1969, 10, 240–246. (J. Struct. Chem. 1969, 10, 225–230).Search in Google Scholar

Gaile, J.; Rüdorff, W.; Viebahn, W. Zur Struktur der LiMIIMIIIF6-Verbindungen. Neue Verbindungen mit MIII=In und Ti. Z. Anorg. Allg. Chem. 1977, 430, 161–174.10.1002/zaac.19774300116Search in Google Scholar

Giuseppetti, G.; Tadini, C. Re-examination of the crystal structure of weberite. Tschermaks Min. Petr. Mitt. 1978, 25, 57–62.10.1007/BF01082204Search in Google Scholar

Glover, R. L.; Seng, W. F. Optical fibers produced in microgravity environments and method of production. US Patent Application US 2015/0266767, 2015.Search in Google Scholar

Grannec, J.; Ravez, J. Sur quelques nouveaux composés fluorés de l’indium. C. R. Acad. Sc. Paris, Série C. 1970a, 271, 1084–1085.Search in Google Scholar

Grannec, J.; Ravez, J. Les systèmes MF2-InF3 (M=Ca, Sr, Ba). C. R. Acad. Sc. Paris, Série C. 1970b, 270, 2059–2061.Search in Google Scholar

Grannec, J.; Champarnaud, J.-C.; Portier, J. Les systèmes MF-InF3 (M=Li, Na, K). Bul. Soc. Chim. Fr.1970, 11, 3862–3864.Search in Google Scholar

Grannec, J.; Portier, J.; Hagenmuller, P. Les systèmes MF-TlF3 (M=Li, Na, K). J. Solid State Chem.1971, 2, 227–233.10.1016/0022-4596(71)90032-6Search in Google Scholar

Grannec, J.; Champarnaud, J.-C.; Costy, G. P.; Cousseins, J. C.; Gaudreau, B. Les systèmes MF-InF3 (M=Rb, Cs, Tl). Rev. Chim. Miner.1972, 8, 569–580.Search in Google Scholar

Grannec, J.; Lagassie, P.; Fournes, L. On new ternary fluoroatannates MSnF7. Mater. Letters.1989, 9, 33–37.10.1016/0167-577X(89)90127-4Search in Google Scholar

Gravereau, P.; Chaminade, J. P.; Gaewdang, T.; Grannec, J.; Pouchard, M.; Hagenmuller, P. Structure of lithium tetrafluoroindate. Acta Crystallogr. 1992, C48, 769–771.10.1107/S0108270191011915Search in Google Scholar

Grzechnik, A.; Krüger, H.; Kahlenberg, V.; Friese, K. Thermal expansion of Li3Na3In2F12 garnet. J. Phys.: Condens Matter. 2006, 18, 8925–8934.Search in Google Scholar

Grzechnik, A.; Morgenroth, W.; Friese, K. Disordered pyrochlore CsMgInF6 at high pressures. J. Solid State Chem. 2009, 182, 1792–1797.10.1016/j.jssc.2009.04.026Search in Google Scholar

Guelin, J.; Yacoubi, A; Ravez, J; Grannec, J. New A0,50A′0,50F3 ferroelastic phases with VF3 structure (A, A′=Al, Ti, Cr, In, Tl). Z Anorg. Allg. Chem.1988, 557, 225–233.10.1002/zaac.19885570124Search in Google Scholar

Hamadène, M; Ravez, J; Grannec, J.; Laidoudi-Guehria, A. Phase transition, ferroelasticity and ferroelectricity in Li3InF6. Mater. Lett.1996, 27, 33–39.10.1016/0167-577X(95)00257-XSearch in Google Scholar

Hamadène, M.; Balegroune, F.; Guehria-Laidoudi, A.; Grannec, J.; Ravez, J. α-Li3InF6, a ternary fluoride with a new structure type. J. Chem. Crystallogr.2006, 36, 1–5.10.1007/s10870-005-9003-2Search in Google Scholar

Hannebohn, O.; Klemm, W. Messungen an Gallium-und Indiumverbindungen. XI. Fluoride von Gallium, Indium und Thallium. Z. Anorg. Chem. 1936, 229, 342–351.10.1002/zaac.19362290402Search in Google Scholar

Hawthorne, F. C.; Ferguson, R. B. Refinement of the crystal structure of cryolite. Can. Mineral.1975, 13, 377–382.Search in Google Scholar

Hebecker, C. Neue ternare Fluoride mit einwertigem Thallium und Silber als Kationen. Naturwissenschaften. 1973, 60, 154.10.1007/BF00594787Search in Google Scholar

Hebecker, C. Die Kristallstruktur von KT1F4. Z. Naturforsch. 1975, 30b, 305–312.10.1515/znb-1975-5-603Search in Google Scholar

Hebecker, C.; Hoppe, R. Zur Kristallstruktur von Indium-und Thalliumtrifluorid. Naturwissenschaften. 1966, 53, 104.10.1007/BF00601468Search in Google Scholar

Heger, G.; Geller, R.; Babel, D. Crystal structure and magnetic properties of the two-dimensional antiferromagnet KFeF4. Solid State Comm.1971, 9, 335–340.10.1016/0038-1098(71)90006-8Search in Google Scholar

Hernandes-Rodrigues, M. A.; Imanieh, M. H.; Martin, L. L.; Martin, I. R. Experimental enchanceent of the photocurrent in a solar cell using upconversion process in fluoroindate glasses exiting at 1480 nm. Solar Energy Materials and Solar Cells. 2013, 116, 171–175.Search in Google Scholar

Hoard, J. L. Structures of complex fluorides. Potassium heptafluocolumbate and potassium heptafluotantalate. The configuration of the heptafluocolumbate and heptafluotantalate ions. J. Am. Chem. Soc. 1939, 61, 1252–1259.10.1021/ja01874a073Search in Google Scholar

Hoppe, R.; Jesse, R. Quaternäre Fluoride mit zweiwertigem Kupfer: MICuIIMIIIF6 (MI: Cs, Rb, K und MIII: Al, Ga, In, TI, Sc, Fe, Co, Mn, Rh). Z. Anorg. Allg. Chem. 1973, 402, 29–38.10.1002/zaac.19734020104Search in Google Scholar

Hoppe, R.; Kissel, D. Zur Kenntnis von AlF3 und InF3. J. Fluor. Chem.1984, 24, 327–340.10.1016/S0022-1139(00)81321-4Search in Google Scholar

Ignat’eva, L. N.; Merkulov, E. B.; Stremousova, E. A.; Plotnichenko, V. G.; Koltashev, V. V.; Buznik, V. M. Effect of bismuth trifluoride on the characteristics of fluoroindate glasses: the InF3-BiF3-BaF2 system. Russ. J. Inorg. Chem. 2006, 51, 1641–1645.10.1134/S0036023606100202Search in Google Scholar

Ilyukhin, A. B.; Malyarik, M. A. Complexes of indium trihalogenides with 1,10-phenanthroline-crystal and molecular-structure of [InCl3(Phen)H2O], [InCl3(Phen)ETOH]·ETOH, and [InF3(Phen)H2O]. Kristallografiya. 1994, 39, 439–445.Search in Google Scholar

Ilyukhin, A. B.; Malyarik, M. A. Crystal structure of orthorhombic [InF3(Bipy)(H2O)]·2H2O. Russ. J. Inorg. Chem. 1999, 44, 1432–1434.Search in Google Scholar

Ivanov, S. P.; Buchinskaya, I. I.; Fedorov, P. P. Distribution coefficients of impuriries in cadmium fluoride. Inorg. Mater. 2000, 36, 392–396.10.1007/BF02758088Search in Google Scholar

Jack, K. H.; Gutmann, V. The crystal structure of vanadium trifluoride, VF3. Acta Crystallogr.1951, 4, 246–249.10.1107/S0365110X51000829Search in Google Scholar

Jacoboni, C.; Leble, A.; Rousseau, J. J. Détermination précise de la structure de la chiolite Na5Al3F14 etétude par R.P.E. de Na5Al3F14:Cr3+. J. Solid State Chem. 1981, 36, 297–304.10.1016/0022-4596(81)90440-0Search in Google Scholar

Jayasundera, A. C. A.; Finch, A. A.; Wormald, P.; Lightfoot, P. Solvothermal synthesis and luminescent properties of two organically templated chain-structure fluorides, [C4H14N2][MF5] (M=In, Sc). Chem. Mater. 2008, 20, 6810–6815.10.1021/cm802049dSearch in Google Scholar

Jayasundera, A. C. A.; Goff, R. J.; Li, Y.; Finch, A. A.; Lightfoot, P. Solvothermal indium fluoride chemistry: syntheses and crystal structures of K5In3F14, β-(NH4)3InF6 and [NH4]3[C6H21N4]2[In4F21]. J. Solid State Chem. 2010, 183, 356–360.10.1016/j.jssc.2009.11.022Search in Google Scholar

Kacim, S.; Champarnaud-Mesjard, J.-C.; Frit, B. Synthesis and crystallographic study of solid phases of the PbF2-InF3 system. Rev. Chim. Miner.1982, 19, 199–210.Search in Google Scholar

Kharitonov, Yu. Ya.; Davidovich, R. L.; Kostin, V. I. Atlas of far IR spectra of III-V group metal fluoride and uranyl complexes. Moscow, Ed. “Nauka”, 1977. 284 pp (in Russian).Search in Google Scholar

Knop, O.; Cameron, T. S.; Jochem, K. What is the true space group of weberite? J. Solid State Chem. 1982, 43, 213–221.10.1016/0022-4596(82)90231-6Search in Google Scholar

Koch, J.; Hebecker, C. Neue Verbindungen vom Weberit-Typ mit der Zusammensetzung Na2MIIMIIIF7 und Ag2MIIMIIIF7. Naturwissenschaften. 1988, 75, 360.10.1007/BF00368330Search in Google Scholar

Koch, J.; Hebecker, C.; John, H. Neue Vertreter vom Weberittyp mit der Zusammensetzung Ag2MIIMIIIF7. Z. Naturforsch. 1982, 37b, 1659–1660.10.1515/znb-1982-1232Search in Google Scholar

Kohler, J.; Chang, J.-H. [PtIn6]10+ octahedra in PtIn7F13: the first compound of a new class of metal-cluster fluorides. Angew. Chem. Inter. Ed.2000, 39, 1998–2000.10.1002/1521-3773(20000602)39:11<1998::AID-ANIE1998>3.0.CO;2-XSearch in Google Scholar

Labeguerie, j.; Gredin, P.; Marrot, J.; Kozak, A. de. Sol-gel synthesis of K3InF6 and structural characterization of K2InC10H6F9, of K3InC12O14H4F18, and of K3InC12O12F18. J. Solid State Chem. 2005, 178, 3249–3257.Search in Google Scholar

Laval, J. P.; Gervais, J. F.; Fournès, L.; Grannec, J.; Gravereau, P.; Abaouz, A.; Yacoubi, A. Cationic distribution in α-MZr3F15 Series (M=Y, In, Ln, Tl). J. Solid State Chem. 1995, 118, 389–396.10.1006/jssc.1995.1359Search in Google Scholar

Le Bail, A. The anion-excess fluorite structure of β-Pb1-xFexF2+x (0.25≤x≤0.27). Powder Diffraction. 2011, 26, 303–307.10.1154/1.3659491Search in Google Scholar

Lhoste, J.; Gervier, R.; Maisonneuve, V.; Leblanc, M.; Adil, K. Crystal chemistry of three new monodimensional fluorometalates templated with ethylenediamine. Solid State Sci. 2009, 11. 1582–1586.10.1016/j.solidstatesciences.2009.06.020Search in Google Scholar

Lösch, R.; Hebecker, Ch. Über neue ternäre Fluoride vom Typ Ag3MF6 und AgMF4. Z.Naturforsch.1979, 34b, 1765–1766.10.1515/znb-1979-1225Search in Google Scholar

Lösch, R.; Hebecker, Ch.; Ranft, Z. Röntgenographische Untersuchungen an neuen ternären Fluoriden vom Typ TlIIIMF6 (M=Ga, In, Sc) sowie an Einkristallen von ScF3. Z. Anorg. Allg. Chem. 1982, 491, 199–202.10.1002/zaac.19824910125Search in Google Scholar

Machulin, I. N.; Nikolaev, S. V.; Skorochvatov, M. D.; Terekhin, M. A.; Etenko, A. V.; Fedorov, P. P.; Bondareva, O. S.; Stasyk, V. A.; Sobolev, B. P.; Fedorov, P. I.; Machov, V. Development of new scintillation materials on the base of indium fluorides for neutrino detection. Preprint IAE-6016/2. Russian Research Centre “Kurchatov Institute”. M., 1996. 9 pp. (in Russian).Search in Google Scholar

Maguer, J.-J.; Courbion, G. A tri-α-PbO2 Related Structure: Li4ZnIn2F12. J. Solid State Chem. 1993, 103, 466–471.10.1006/jssc.1993.1124Search in Google Scholar

Malyarik, M. A; Petrosyants, S. P.; Ilyukhin, A. B.; Buslaev, Y. A. Indium(III) Fluoro complexes with N-donor molecules. Zh. Neorg. Khim. 1991, 36, 2816–2820 (in Russian).Search in Google Scholar

Mazej, Z. Indium(I) hexafluoropnictates (InPnF6; Pn=P, As, Sb). Eur. J. Inorg. Chem. 2005, 3983–3987.10.1002/chin.200549017Search in Google Scholar

Mazej, Z; Benkič, P. Copper(I) hexafluoroantimonate – an example of a compound with Cu-I in a solely fluorine environment. J. Fluor. Chem. 2005, 126, 803–808.10.1016/j.jfluchem.2005.03.004Search in Google Scholar

Menzer, G. Über die Kristallstrukturen der Kryolithgruppe. Fortschr. Miner.1932, 17, 61.Search in Google Scholar

Muhler, J. C. Indium fluorogermanate, In2(GeF6)3, and compositions for caries prophylaxis incorporating same. UK Patent GB 1,256,276, 1971.Search in Google Scholar

Muhler, J. C.; Stokey, G. K.; Beck, C. W. Preparation and properties of indium heptafluorzirkonate. J. Dent. Res. 1970, 49, 529–531.10.1177/00220345700490031001Search in Google Scholar

Müller, B. G. New Ag(II)- and Au(III)-fluorides. J. Fluor. Chem. 1985, 29, 69.10.1016/S0022-1139(00)83304-7Search in Google Scholar

Müller, B.; Hoppe, R. Neue Fluoride mit zweiwertigem Silber: MIAgIIMIIIF6 mit MI=K, Rb, Cs und M=Al, Ga, In, Tl, Sc, Fe, Co. Z. Anorg. Allg. Chem. 1973, 395, 239–248.10.1002/zaac.19733950212Search in Google Scholar

Naray-Szábó, St. V.; Sasvári, K. Die Struktur des Kryoliths Na3AlF6. Z Kristallogr.1938, 99, 27–31.10.1524/zkri.1938.99.1.27Search in Google Scholar

Petrosyants, S. P. Coordination polymers of indium, scandium, and yttrium. Russ. J. Inorg. Chem.2013, 58, 1605–1624.10.1134/S0036023613130032Search in Google Scholar

Petrosyants, S. P.; Ilyukhin, A. B. Organometallic polymers MF3(4,4′-Bipy) with M=Ga and In. Zh. Neorg. Khim. 2010, 55, 33–36 (in Russian).10.1134/S0036023610010079Search in Google Scholar

Petrosyants, S. P.; Ilyukhin, A. B. Ensembles of indium and gallium fluoroanions with HF molecules and bipyridine cations. Zh. Neorg. Khim. 2011a, 56, 1320–1327. (Russ. J. Inorg. Chem.2011a, 56, 1250–1257).10.1134/S0036023611080213Search in Google Scholar

Petrosyants, S. P.; Ilyukhin, A. B. Indium(III) coordination compounds. Russ. J. Inorg. Chem. 2011b, 56, 2047–2069.10.1134/S0036023611130055Search in Google Scholar

Popov, A. I.; Valkovskii, M. D.; Fedorov, P. P; Kiselev, Yu, M. Structure of Ln-III(M-IVF5)3 binary fluorides where Ln-III=REE, M-IV=Zr, Hf, Tb. Zh. Neorg. Khim. 1991, 36, 842–846. (in Russian).Search in Google Scholar

Ravez, J.; Darriet, M.; Von der Mühll, R.; Hagenmuller, P. Le Système PbF2-InF3. Étude Comparative Des Systèmes PbF2-TF3 (T=Al, Ti, V, Cr, Fe, Ga, In). J. Solid State Chem. 1971, 3, 234–237.10.1016/0022-4596(71)90033-8Search in Google Scholar

Roloff, A.; Trinschek, D.; Jansen, M. Kristallstrukturanalyse von (NH4)2NaInF6. Z. Anorg. Allg. Chem. 1995, 621, 737–739.10.1002/zaac.19956210507Search in Google Scholar

Roos, M.; Wittrock, J.; Meyer, G.; Strähle, J. Abläufe der Ammonolysen der Ammoniumhexafluorometallate des Aluminiums, Galliums und Indiums, (NH4)3MF6 (M=Al, Ga, In). Z. Anorg. Allg, Chem. 2000, 626, 1179–1185.10.1002/(SICI)1521-3749(200005)626:5<1179::AID-ZAAC1179>3.0.CO;2-YSearch in Google Scholar

Ruchaud, N.; Grannec, J.; Gravereau, P.; Nunez, P.; Tressaud, A.; Massa, W.; Frenzen, G.; Babel, D. Copper weberites: crystal structure and magnetic investigation of Na2CuGaF7 and Na2CuInF7. Z. Anorg. Allg. Chem. 1992, 610, 67–74.10.1002/zaac.19926100112Search in Google Scholar

Ryskin, A. I.; Fedorov, P. P. Donor impurities and DX centers in the ionic semiconductor CdF2. Phys. Solid State.1997, 39, 943–947.10.1134/1.1130113Search in Google Scholar

Ryskin, A. I.; Shcheulin, A. S.; Kaziarska, B.; Langer, J. M.; Suchocki, A.; Buczinskaya, I. I.; Fedorov, P. P.; Sobolev, B. P. CdF2:In: a novel material for optically written storage of information. Appl. Phys. Letters.1995, 65, 31–33.10.1063/1.115482Search in Google Scholar

Samouël, M; de Kozak, A.; Renaudin, J.; Ferey, G. The ternary system BaF2-CuF2-InF3. Z. Anorg. Allg. Chem. 1989, 569, 169–176.10.1002/zaac.19895690118Search in Google Scholar

Schneider, S.; Hoppe, R. Über neue Verbindungen Cs2NaMF6 und K2NaMF6 sowie über Cs2KMnF6. Z. Anorg. Allg. Chem. 1970a, 376, 268–276.10.1002/zaac.19703760309Search in Google Scholar

Schneider, S.; Hoppe, R. Die Kristallstruktur von Cs2NalnF6.Z. Anorg. Allg. Chem. 1970b, 376, 277–281.10.1002/zaac.19703760310Search in Google Scholar

Scheffler, J.; Hoppe, R. Sr2InF7-Sr2[InF7] oder Sr2F[InF6]? J. Fluor. Chem. 1984, 25, 27–40.10.1016/S0022-1139(00)81192-6Search in Google Scholar

Scheffler, J.; Hoppe, R. Das erste oligomere Fluoroindat: α-Ba3[In2F12]. Z. Anorg. Allg. Chem. 1985, 521, 79–88.10.1002/zaac.19855210211Search in Google Scholar

Senegas, J.; Mikou, A.; Laval, J. P.; Frit, B. Etude par R.M.N. du 19F de la mobilite anionique dans la solution solide de type fluorine Pb1-xInxF2+x et dans la phase ordonnee Pb2InF7. J. Fluor. Chem. 1987, 37, 67–84.10.1016/S0022-1139(00)83088-2Search in Google Scholar

Sorokin, N. I.; Fedorov, P. P.; Sobolev, B. P. Superionic materials based on lead fluoride. Inorg. Mater. 1997, 33, 1–11.Search in Google Scholar

Strelkov, M. A.; Zhizhin, M. G.; Simonov, S. V.; Smirnova, O. V.; Komissarova, L. N. Synthesis, crystal structures, and some properties of guanidinium-scandium and guanidinium-indium complex fluorides. Zh. Neorg. Khim. 2005, 50, 2002–2009. (Russ. J. Inorg. Chem. 2005, 50, 1877–1883).Search in Google Scholar

Swiderski, J.; Theberge, F.; Michalska, M.; Mathieu, P.; Vincent, D. High average power supercontinuum generation in a fluoroindate fiber. Laser Phys. Letters. 2014, 11, 015106.10.1088/1612-2011/11/1/015106Search in Google Scholar

Thiel, A. Studien über das Indium. Z. Anorg. Chem. 1904, 40, 280–336.10.1002/zaac.19040400120Search in Google Scholar

Thoma, R. E.; Karraker, R. H. The sodium fluoride-scandium trifluoride system. Inorg. Chem. 1966, 5, 1933–1937.10.1021/ic50045a021Search in Google Scholar

Touret, J.; Bourdon, X.; Leblanc, M.; Retoux, R.; Renaudin, J.; Maisonneuve, V. Crystal structure of new hydroxide fluorides with isolated F- anions: [H3N(CH2)6NH3]2M(F, OH)6(F, OH)·H2O (M=Al, In). J. Fluor. Chem.2001, 110, 133–138.10.1016/S0022-1139(01)00420-1Search in Google Scholar

Unrau, U.; Goebel, D. Glass composition for producing optical transmission elements. WPTO Patent Application WO 2004/000744, 2003.Search in Google Scholar

Von der Mühll, R.; Daut, F.; Ravez, J. Structure Cristalline de SrFeF5. J. Solid State Chem. 1973, 8, 206–212.10.1016/0022-4596(73)90086-8Search in Google Scholar

Zhemnukhova, L. A.; Davidovich, R. L.; Fedorishcheva, G. A. Fluorosulfate complexes of indium(III). IX All-union symposium on chemistry of inorganic fluorides. Abstracts. Cherepovets, 1990, 142 (in Russian).Search in Google Scholar

Received: 2015-11-26
Accepted: 2016-1-20
Published Online: 2016-2-27
Published in Print: 2016-10-1

©2016 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2015-0019/html
Scroll to top button