Home The broad diversity of CpCo(I) complexes
Article
Licensed
Unlicensed Requires Authentication

The broad diversity of CpCo(I) complexes

  • Indre Thiel

    Indre Thiel studied biochemistry at the Heinrich-Heine University Düsseldorf, Germany, and did her bachelor thesis at the University of Cincinnati in Prof. Dr. Mack’s group in 2008. She obtained her MSc degree in 2010 in the field of bioinorganic chemistry in the group of Prof. Dr. Kläui in Düsseldorf. She then joined Dr. Hapke’s research group at the Leibniz-Institut für Katalyse (LIKAT) in Rostock for her PhD studies, supported by a Kekulé scholarship of the Fonds der Chemischen Industrie. She recently finished her PhD, with her thesis focusing on the synthesis of novel CpCo(I) complexes and their application in [2+2+2] cycloaddition reactions.

    and Marko Hapke

    Marko Hapke received his scientific education at the University of Oldenburg, where he completed his PhD working on supramolecular metal complex chemistry and cross-coupling reactions in the group of Arne Lützen. After his postdoctoral studies in the area of C-H functionalization chemistry with John F. Hartwig at Yale University, he joined the LIKAT in 2006. The focus of his independent working group’s research centers on the development of novel cobalt catalysts for cycloaddition reactions and the understanding of factors determining the reactivity and selectivity. Aside from organometallic chemistry, the application of these catalysts in synthetic transformations is also investigated.

    EMAIL logo
Published/Copyright: May 9, 2014

Abstract

The presented review will focus on the systematic overview of the available synthetic approaches and the reactivity and the structural characteristics of selected mononuclear CpCo(I) complexes with (non)chelating neutral donor ligands. The complexes containing symmetrical or unsymmetrical neutral ligand combinations aside from the anionic cyclopentadienyl (Cp) ligand will be discussed and the differences to complexes with substituted Cp ligands will be considered in selected cases.


Corresponding author: Marko Hapke, Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany, e-mail:

About the authors

Indre Thiel

Indre Thiel studied biochemistry at the Heinrich-Heine University Düsseldorf, Germany, and did her bachelor thesis at the University of Cincinnati in Prof. Dr. Mack’s group in 2008. She obtained her MSc degree in 2010 in the field of bioinorganic chemistry in the group of Prof. Dr. Kläui in Düsseldorf. She then joined Dr. Hapke’s research group at the Leibniz-Institut für Katalyse (LIKAT) in Rostock for her PhD studies, supported by a Kekulé scholarship of the Fonds der Chemischen Industrie. She recently finished her PhD, with her thesis focusing on the synthesis of novel CpCo(I) complexes and their application in [2+2+2] cycloaddition reactions.

Marko Hapke

Marko Hapke received his scientific education at the University of Oldenburg, where he completed his PhD working on supramolecular metal complex chemistry and cross-coupling reactions in the group of Arne Lützen. After his postdoctoral studies in the area of C-H functionalization chemistry with John F. Hartwig at Yale University, he joined the LIKAT in 2006. The focus of his independent working group’s research centers on the development of novel cobalt catalysts for cycloaddition reactions and the understanding of factors determining the reactivity and selectivity. Aside from organometallic chemistry, the application of these catalysts in synthetic transformations is also investigated.

Acknowledgments

We thank Prof. Uwe Rosenthal for his enduring support, helpful discussions, and comments on the chemistry of Cp-metal complexes. M.H. thanks Dr. Nico Weding for his sparkling contributions to the development of CpCo-olefin complexes and Fabian Fischer for his excellent technical support. Dr. Anke Spannenberg is gratefully acknowledged for the accomplishment of many demanding X-ray structure analyses and the provision of figures for this review. I.T. is grateful for a Kekulé scholarship provided by the Fond der Chemischen Industrie. We thank the DFG (HA3511/3-1) and the Leibniz-Gemeinschaft for the financial support and the referees for the additional insightful comments and suggestions.

References

Amiet, R.G.; Pettit, R. Cyclobutadiene(π-cyclopentadienyl)cobalt. J. Am. Chem. Soc.1968, 90, 1059–1060.10.1021/ja01006a039Search in Google Scholar

Angermund, K.; Jonas, K.; Krüger, C.; Latten, J.L.; Tsay, Y.-H. The synthesis and crystal structure of Sn(C6 H4 CH2 NMe2-o)2, and its reaction with Co(η5-C5 H5)(η2-C2 H4)2. J. Organomet. Chem.1988, 353, 17–25.Search in Google Scholar

Aubert, C.; Bertrand, G.; Fichou, D.; Gandon, V.; Malacria, M.; Tortech, L. Cobalt Sandwich Cyclobutadiene-Cyclopentadienyl Complexes as Luminescent Materials for Organic Light-Emitting Devices. FR2973379 (A1), C.N.R.S. U.P. Curie, France, 2012a.Search in Google Scholar

Aubert, C.; Bertrand, G.; Fichou, D.; Gandon, V.; Malacria, M.; Tortech, L. Cobalt Sandwich Cyclopentadienyl-Cyclobutadiene Complexes as Electron Donor Materials for Preparing an Active Layer in an Organic Photovoltaic Cells. WO2012131257 A1, C.N.R.S. U.P. Curie, France, 2012b.Search in Google Scholar

Aubert, C.; Bertrand, G.; Fichou, D.; Gandon, V.; Malacria, M.; Tortech, L. Use of Cobalt Complexes for Preparing an Active Layer in a Photovoltaic Cell, and Corresponding Photovoltaic Cell. FR2973574 (A1), C.N.R.S. U.P. Curie, France, 2012c.Search in Google Scholar

Azhakar, R.; Ghadwal, R.S.; Roesky, H.W.; Hey, J.; Stalke, D. Facile access to transition-metal-carbonyl complexes with an amidinate-stabilized chlorosilylene ligand. Chem. Asian J.2012, 7, 528–533.Search in Google Scholar

Becker, P.N.; Bergman, R.G. Reversible exchange of (η5-cyclopentadienyl)(dinitrosoalkane)cobalt complexes with alkenes. Kinetic and spectroscopic evidence for cyclopentadienyldinitrosylcobalt as a reactive intermediate. J. Am. Chem. Soc.1983a, 105, 2985–2995.Search in Google Scholar

Becker, P.N.; Bergman, R.G. A transition-metal-based method for 1,2-diamination of alkenes. Synthesis of cobalt dinitrosoalkanes from alkenes, nitric oxide, and (η5-cyclopentadienyl)(nitrosyl)cobalt dimer and their reduction to primary vicinal diamines. Organometallics1983b, 2, 787–796.10.1021/om50001a001Search in Google Scholar

Benisch, C.; Chávez, J.; Gleiter, R.; Nuber, B.; Irngartinger, H.; Oeser, T.; Pritzkow, H.; Rominger, F. Replacement of one CO unit in dicarbonyl(η5-cyclopentadienyl)cobalt derivatives by bis(tert-butylsulfonyl)acetylene. Eur. J. Inorg. Chem.1998, 1998, 629–632.Search in Google Scholar

Benn, R.; Cibura, K.; Hofmann, P.; Jonas, K.; Rufinska, A. 59Co NMR spectroscopy of organocobalt(I) and -cobalt(III) compounds and its relation to chemical properties of the complexes. Organometallics1985, 4, 2214–2221.Search in Google Scholar

Bönnemann, H. Organocobalt compounds in the synthesis of pyridines – an example of structure-effectivity relationships in homogeneous catalysis. Angew. Chem. Int. Ed. Engl.1985, 24, 248–262.Search in Google Scholar

Bönnemann, H.; Bogdanović, B.; Brinkmann, R.; He, D.-W.; Spliethoff, B. “Organically solvated” magnesium for the synthesis of transition-metal complexes and catalysts. Angew. Chem. Int. Ed. Engl.1983, 22, 728–728.Search in Google Scholar

Bönnemann, H.; Brijoux, W.; Brinkmann, R.; Meurers, W.; Mynott, R.; von Philipsborn, W.; Egolf, T. A correlation between 13C and 59Co NMR data and the catalytic activity of organocobalt complexes in the synthesis of pyridine derivatives. J. Organomet. Chem.1984, 272, 231–249.Search in Google Scholar

Braunschweig, H.; Forster, M.; Radacki, K.; Seeler, F.; Whittell, G.R. Stepwise intermetal borylene transfer: synthesis and structure of mono- and dinuclear cobalt-borylene complexes. Angew. Chem. Int. Ed.2007, 46, 5212–5214.Search in Google Scholar

Brookhart, M.; Grant, B.E. Mechanism of a cobalt(III)-catalyzed olefin hydrosilation reaction: direct evidence for a silyl migration pathway. J. Am. Chem. Soc.1993, 115, 2151–2156.Search in Google Scholar

Brookhart, M.; Lincoln, D.M.; Volpe, A.F.; Schmidt, G.F. Ligand and substituent effects on the dynamics and structure of agostic ethylenecobalt complexes of the type C5 R5(L)Co(CH2 CHR′-μ-H)+ BF4- [L=P(OMe)3, PMe3; R=H, Me; R′=H, Me]. Organometallics1989, 8, 1212–1218.10.1021/om00107a014Search in Google Scholar

Brookhart, M.; Grant, B.; Volpe, A.F. [(3,5-(CF3)2 C6 H3)4 B]-[H(OEt2)2]+: a convenient reagent for generation and stabilization of cationic, highly electrophilic organometallic complexes. Organometallics1992, 11, 3920–3922.Search in Google Scholar

Brookhart, M.; Grant, B.E.; Lenges, C.P.; Prosenc, M.H.; White, P.S. High oxidation state organocobalt complexes: synthesis and characterization of dihydridodisilyl cobalt(V) species. Angew. Chem. Int. Ed.2000, 39, 1676–1679.Search in Google Scholar

Brunner, H. Über Nitrosyl-Metall-Komplexe III. Cyclopentadienylnitrosylkobalt. J. Organomet. Chem.1968, 12, 517–522.Search in Google Scholar

Brunner, H.; Loskot, S. Incorporation of olefin and nitric oxide into organocobalt compounds. Angew. Chem. Int. Ed. Engl.1971, 10, 515–516.Search in Google Scholar

Brunner, H.; Loskot, S. Über Nitrosyl-Metall-Komplexe: XV. Die Reaktion von Organokobalt-verbindungen mit NO und Olefinen-eine neue Dreikomponentensynthese. J. Organomet. Chem.1973, 61, 401–414.Search in Google Scholar

Butenschön, H.; Kettenbach, R.T.; Krüger, C. Inhibition of the [2+2+2] cyclization by the formation of chelates: alkyne and vinylidene complexes with cyclopentadienylcobalt(I). Angew. Chem. Int. Ed. Engl.1992, 31, 1066–1068.Search in Google Scholar

Cannon, J.S.; Kirsch, S.F.; Overman, L.E.; Sneddon, H.F. Mechanism of the cobalt oxazoline palladacycle (COP)-catalyzed asymmetric synthesis of allylic esters. J. Am. Chem. Soc.2010, 132, 15192–15203.Search in Google Scholar

Crichton, O.; Rest, A.J.; Taylor, D.J. Photochemistry of dicarbonylcyclopentadienylcobalt in frozen gas matrices at 12 K. Infrared spectroscopic evidence for tricarbonylcyclopentadienylcobalt and carbonylcyclopentadienyl(dinitrogen)cobalt complexes. J. Chem. Soc., Dalton Trans.1980, 167–173.10.1039/dt9800000167Search in Google Scholar

Delgado, S.; Moreno, C.; Macazaga, M.J. Carbonyl substitution reactions of cyclopentadienyldicarbonyl cobalt(I) and acetylcyclopentadienyldicarbonyl cobalt(I) with bis(1,3-dimethylimidazolin-2-ylidene). A kinetic and mechanistic study. Polyhedron1991, 10, 725–729.Search in Google Scholar

Diversi, P.; Giusti, A.; Ingrosso, G.; Lucherini, A. π-Cyclopentadienyl-like derivatives of cobalt: synthesis of indenyl- and fluorenyl-bis(phosphite)-cobalt(I). J. Organomet. Chem.1981, 205, 239–246.Search in Google Scholar

Dougherty, T.P.; Heilweil, E.J. Transient infrared spectroscopy of (η5-C5 H5)Co(CO)2 photoproduct reactions in hydrocarbon solutions. J. Chem. Phys.1994, 100, 4006–4009.Search in Google Scholar

Dürr, S.; Ertler, D.; Radius, U. Symmetrical P4 cleavage at cobalt: characterization of intermediates on the way from P4 to coordinated P2 units. Inorg. Chem.2012a, 51, 3904–3909.Search in Google Scholar

Dürr, S.; Zarzycki, B.; Ertler, D.; Ivanović-Burmazović, I.; Radius, U. Aerobic CO oxidation of a metal-bound carbonyl in a NHC-stabilized cobalt half-sandwich complex. Organometallics2012b, 31, 1730–1742.10.1021/om201037wSearch in Google Scholar

Eaton, B.; O’Connor, J.M.; Vollhardt, K.P.C. Stepwise assembly of a trinuclear bis(carbyne) complex from cyclopentadienylcobalt units and bis(trimethylsilyl)acetylene: isolation and conversion of Cp2 M2(RC≡CR) and (CpM)3(RC≡CR) [M=Co and R=(CH3)3 Si]. Organometallics1986, 5, 394–397.Search in Google Scholar

Fischer, E.O.; Pfab, W. Cyclopentadiene-metallic complex, a new type of organo-metallic compound. Z. Naturforsch.1952, 7b, 377–379.Search in Google Scholar

Foerstner, J.; Kettenbach, R.; Goddard, R.; Butenschön, H. Improved access to {[ω-(phosphanyl)alkyl]cyclopentadienyl}cobalt(I) complexes: decomplexation of the phosphane arm; alkyne complexes; synthesis of mononuclear vinylidenecobalt(I) complexes. Chem. Ber.1996a, 129, 319–325.Search in Google Scholar

Foerstner, J.; Olbrich, F.; Butenschön, H. A new mode of reaction of tert-butyl-phosphaethyne: trinuclear cyclopentadienyl-cobalt clusters with P, PS, and PO as μ3 complex ligands. Angew. Chem. Int. Ed. Engl.1996b, 35, 1234–1237.Search in Google Scholar

Foerstner, J.; Kakoschke, A.; Stellfeldt, D.; Butenschön, H.; Wartchow, R. Reactions of a chelated cyclopentadienylcobalt(I) complex with 3,3-disubstituted cyclopropenes: formation of isoprene, vinylcarbene, and 1-phosphadiene ligands at the metal. Organometallics1998, 17, 893–896.Search in Google Scholar

Foerstner, J.; Kakoschke, A.; Wartchow, R.; Butenschön, H. Reactions of cyclopropenone derivatives with a cyclopentadienylcobalt(I) chelate: formation of a cobaltacyclobutenone and a transformation of 2,2-dimethoxycyclopropenone to methyl acrylate at cobalt. Organometallics2000, 19, 2108–2113.Search in Google Scholar

Foerstner, J.; Kakoschke, A.; Goddard, R.; Rust, J.; Wartchow, R.; Butenschön, H. New carbene and vinylidene chelate complexes of cyclopentadienylcobalt bearing a phosphorus tether. J. Organomet. Chem.2001, 617–618, 412–422.Search in Google Scholar

Fooladi, E.; Dalhus, B.; Tilset, M. Synthesis and characterization of half-sandwich N-heterocyclic carbene complexes of cobalt and rhodium. Dalton Trans.2004, 3909–3917.10.1039/b408750jSearch in Google Scholar

Franke, R.; Selent, D.; Börner, A. Applied hydroformylation. Chem. Rev.2012, 112, 5675–5732.Search in Google Scholar

Fritch, J.R.; Vollhardt, K.P.C. Biscarbyne cluster by alkyne cleavage: a general reaction. Angew. Chem. Int. Ed. Engl.1980, 19, 559–561.Search in Google Scholar

Gath, S.; Gleiter, R.; Schaller, R.J.; Rominger, F. Synthesis and properties of a superphane with one thiophene and one CpCo-stabilized cyclobutadiene ring. Organometallics2004, 23, 1116–1121.Search in Google Scholar

Gath, S.; Gleiter, R.; Rominger, F.; Bleiholder, C. Transannular interactions in mixed superphanes with one thiophene and one CpCo-stabilized cyclobutadiene ring: syntheses, structures, and electrochemistry. Organometallics2007, 26, 644–650.Search in Google Scholar

Geny, A.; Agenet, N.; Iannazzo, L.; Malacria, M.; Aubert, C.; Gandon, V. Air-stable {(C5 H5)Co} catalysts for [2+2+2] cycloadditions. Angew. Chem. Int. Ed.2009, 48, 1810–1813.Search in Google Scholar

Gesing, E.R.F.; Tane, J.P.; Vollhardt, K.P.C. Cobalt mediated [2+2+2]-cycloadditions: a simple route to substituted cyclopentadienones. Angew. Chem. Int. Ed. Engl.1980, 19, 1023–1024.Search in Google Scholar

Ghadwal, R.S.; Azhakar, R.; Pröpper, K.; Holstein, J.J.; Dittrich, B.; Roesky, H.W. N-heterocyclic carbene stabilized dichlorosilylene transition-metal complexes of V(I), Co(I), and Fe(0). Inorg. Chem.2011, 50, 8502–8508.Search in Google Scholar

Gleiter, R. Cycloalkadiyne – from bent triple bonds to strained cage compounds. Angew. Chem. Int. Ed. Engl.1992, 31, 27–44.Search in Google Scholar

Gleiter, R.; Kratz, D. Cycloaddition reactions of CpCo-stabilized cyclobutadiene derivatives. Angew. Chem. Int. Ed. Engl.1990a, 29, 276–279.Search in Google Scholar

Gleiter, R.; Kratz, D. Isolation of a donor-acceptor superphane with a quinone and a CpCo-cyclobutadiene unit. Tetrahedron Lett.1990b, 31, 5893–5896.Search in Google Scholar

Gleiter, R.; Merger, M. Phanes with three- and four-membered rings as building elements. Angew. Chem. Int. Ed. Engl.1997, 36, 2426–2439.Search in Google Scholar

Gleiter, R.; Pflaesterer, G. Reaction of 1,6-cyclodecadiyne and 1,8-cyclotetradecadiyne with substituted CpCo(cod). Organometallics1993, 12, 1886–1889.10.1021/om00029a051Search in Google Scholar

Gleiter, R.; Werz, D.B. Reactions of metal-complexed carbocyclic 4π systems. Organometallics2005, 24, 4316–4329.10.1021/om0504351Search in Google Scholar

Gleiter, R.; Karcher, M.; Ziegler, M.L.; Nuber, B. A superphane of cyclobutadiene capped by cyclopentadienylcobalt. Tetrahedron Lett.1987, 28, 195–198.Search in Google Scholar

Gleiter, R.; Stahr, H.; Nuber, B. Silabridged cyclobutadiene-superphanes. Tetrahedron Lett.1995, 36, 4607–4610.10.1016/0040-4039(95)00846-5Search in Google Scholar

Gleiter, R.; Hellbach, B.; Gath, S.; Schaller, R.J. From superphanes to beltenes. Pure Appl. Chem.2006, 78, 699–706.Search in Google Scholar

Goswami, A.; Staeb, T.H.; Rominger, F.; Gleiter, R.; Siebert, W. Reactivity of the [η2-bis(tert-butylsulfonyl)acetylene](carbonyl)(η5-cyclopentadienyl)cobalt complex towards electron-rich and -poor acetylenes. Eur. J. Inorg. Chem.2005, 4086–4089.10.1002/ejic.200500308Search in Google Scholar

Graham, W.A.G.; Hart-Davis, A.J. Kinetics and mechanism of oxidative addition reactions. I. Reactions of methyl iodide and ethyl iodide with π-cyclopentadienylcarbonylphosphine complexes of cobalt, rhodium, and iridium. Inorg. Chem.1970, 9, 2658–2663.Search in Google Scholar

Gutnov, A.; Heller, B.; Drexler, H.-J.; Spannenberg, A.; Oehme, G. Tartrate-derived cyclopentadienes for the synthesis of chiral substituted (η5-cyclopentadiene)(η4-cycloocta-1,5-diene)cobalt(I) complexes. Organometallics2003, 22, 1550–1553.Search in Google Scholar

Gutnov, A.; Drexler, H.-J.; Spannenberg, A.; Oehme, G.; Heller, B. Syntheses of chiral nonracemic half-sandwich cobalt complexes with menthyl-derived cyclopentadienyl, indenyl, and fluorenyl ligands. Organometallics2004, 23, 1002–1009.Search in Google Scholar

Halterman, R.L. Synthesis and applications of chiral cyclopentadienylmetal complexes. Chem. Rev.1992, 92, 965–994.Search in Google Scholar

Hapke, M.; Spannenberg, A. [Co(C5 H5)(C18 H15 P)2] x 0.2 C7 H8 x 0.25 C6 H14. Acta Cryst.2009, E65 (m93).10.1107/S1600536808042268Search in Google Scholar PubMed PubMed Central

Hapke, M.; Kral, K.; Fischer, C.; Spannenberg, A.; Gutnov, A.; Redkin, D.; Heller, B. Asymmetric synthesis of axially chiral 1-Aryl-5,6,7,8-tetrahydroquinolines by cobalt-catalyzed [2+2+2] cycloaddition reaction of 1-aryl-1,7-octadiynes and nitriles. J. Org. Chem.2010a, 75, 3993–4003.Search in Google Scholar

Hapke, M.; Weding, N.; Spannenberg, A. Highly reactive cyclopentadienylcobalt(I) olefin complexes. Organometallics2010b, 29, 4298–4304.10.1021/om100692kSearch in Google Scholar

Harcourt, E.M.; Yonis, S.R.; Lynch, D.E.; Hamilton, D.G. Microwave-assisted synthesis of cyclopentadienyl-cobalt sandwich complexes from diaryl acetylenes. Organometallics2008, 27, 1653–1656.Search in Google Scholar

Harder, V.; Müller, J.; Werner, H. Ligandenverdrängungsreaktion von Kobalt-dicyclopentadienyl mit tertiären Phosphiten – Darstellung und Eigenschaften der Komplexe C5 H5 Co[P(OR)3]2. Helv. Chim. Acta1971, 54, 1–6.Search in Google Scholar

Harlow, R.L.; McKinney, R.J.; Whitney, J.F. Paramagnetic organometallic complexes. Comparison of geometric and electronic structures of paramagnetic bis(triethylphosphine)cyclopentadienylcobalt(II) tetrafluoroborate and diamagnetic bis(triethylphosphine)cyclopentadienylcobalt(I). Organometallics1983, 2, 1839–1842.Search in Google Scholar

Harrison, D.J.; Gorelsky, S.I.; Lee, G.M.; Korobkov, I.; Baker, R.T. Cobalt fluorocarbene complexes. Organometallics2012, 32, 12–15.Search in Google Scholar

Heller, B.; Sundermann, B.; Buschmann, H.; Drexler, H.-J.; You, J.; Holzgrabe, U.; Heller, E.; Oehme, G. Photocatalyzed [2+2+2]-cycloaddition of nitriles with acetylene: an effective method for the synthesis of 2-pyridines under mild conditions. J. Org. Chem.2002, 67, 4414–4422.Search in Google Scholar

Hofmann, L.; Werner, H. Basische metalle: LII. Synthese von Carbenoid- und Ylidcobalt(III)-Komplexen aus substitutionslabilen Cobalt(I)-Vorstufen. J. Organomet. Chem.1985, 289, 141–155.Search in Google Scholar

Hoffmann, F.; Wagler, J.; Roewer, G. Die Molekül- und Kristallstrukturen von (η5-Cyclopentadienyl)bis-(triphenylphosphan)cobalt(I)-(Hexan/Toluol) (2/1), (η5-Cyclopentadienyl)-{1,1-[(1,2-)-ethin-1,2-diyl]bis(benzol)}(triphenylphosphan)cobalt(I) und (η5-Cyclopentadienyl)(1,2,3,4-tetraphenyl-buta-1,3-dien-1,4-diyl)(triphenyl-phosphan)cobalt(I). Z. Anorg. Allg. Chem.2008, 634, 1133–1139.Search in Google Scholar

Hong, P.; Yamamoto, Y.; Yamazaki, H. Preparation and some properties of cyclopentadienylcobalt(I)-olefin complexes. J. Organomet. Chem.1982, 232, 71–79.Search in Google Scholar

Hung-Low, F.; Bradley, C.A. Indenyl ligands as supports for reactive, low-valent cobalt(I) fragments. Organometallics2011, 30, 2636–2639.10.1021/om200139xSearch in Google Scholar

Hung-Low, F.; Bradley, C.A. Synthesis of a bis(indenyl) Co(I) anion: a reactive source of a 14 electron indenyl Co(I) equivalent. Inorg. Chem.2013, 52, 2446–2457.Search in Google Scholar

Janowicz, A.H.; Bryndza, H.E.; Bergman, R.G. Phosphine substitution in (η5-cyclopentadienyl)bis(triphenylphosphine)cobalt(I): evidence for a dissociative mechanism. J. Am. Chem. Soc.1981, 103, 1516–1518.Search in Google Scholar

Jonas, K. Reactive organometallic compounds obtained from metallocenes and related compounds and their synthetic applications. Angew. Chem. Int. Ed. Engl.1985, 24, 295–311.Search in Google Scholar

Jonas, K.; Deffense, E.; Habermann, D. Synthesis and Reactions of η5-Cyclopentadienylbis(ethene)cobalt. Angew. Chem. Int. Ed. Engl.1983a, 22, 716–717.Search in Google Scholar

Jonas, K.; Deffense, E.; Habermann, D. Synthese und Reaktionen von η5-Cyclopentadienylbis(ethen) cobalt. Angew. Chem. Suppl.1983b, 1005–1016.Search in Google Scholar

Jonas, K.; Koepe, G.; Krüger, C. Heterometallic dinuclear complexes by ethene displacement with Grignard compounds or diorganomagnesium compounds. Angew. Chem. Int. Ed. Engl.1986, 25, 923–925.Search in Google Scholar

Kakoschke, A.; Yong, L.; Wartchow, R.; Butenschön, H. Reaction of a cyclopentadienylcobalt(I) phosphane chelate with trimethylsilyl chloride and some pseudohalides: unanticipated formation of new cyclopentadienylcobalt(II) and (III) chelates. J. Organomet. Chem.2003, 674, 86–95.Search in Google Scholar

Kettenbach, R.T.; Bonrath, W.; Butenschön, H. [ω-(phosphanyl)alkyl]cyclopentadienyl complexes. Chem. Ber.1993, 126, 1657–1669.Search in Google Scholar

Kim, D.-H.; Ko, J.; Park, K.; Cho, S.; Kang, S.O. Addition reactions of the novel mononuclear dithio-o-carboranylcobalt(III) complex (η5-C5 H5)Co(η2-S2 C2 B10 H10). Organometallics1999, 18, 2738–2740.Search in Google Scholar

King, R.B. Organometallic chemistry of the transition metals. XI. Some new cyclopentadienyl derivatives of cobalt and rhodium. Inorg. Chem.1966, 5, 82–87.Search in Google Scholar

King Jr., J.A.; Vollhardt, K.P.C. The thermally-induced prototropic isomerization of η4-1,3-, η4-1,4-, η4-1,5-dialkenes complexed to (η5-cyclopentadienyl)cobalt. J. Organomet. Chem.1993, 460, 91–96.Search in Google Scholar

King Jr., J.A.; Vollhardt, K.P.C. Thermally and photochemically induced vinyl-hydrogen activation of [η4-1,2:3,4-(trans-1,3,5-hexatriene)](η5-cyclopentadienyl)cobalt: regio- and stereospecific hydrogen migrations. J. Organomet. Chem.1994, 470, 207–222.Search in Google Scholar

Kirsch, S.F.; Overman, L.E.; Watson, M.P. Monomeric cobalt oxazoline palladacycles (COP). Useful catalysts for catalytic asymmetric rearrangement of allylic trichloroacetimidates. J. Org. Chem.2004, 69, 8101–8104.Search in Google Scholar

Kolb, O.; Werner, H. Komplexe mit Kohlenstoffsulfiden und -seleniden als Liganden: XIII. Reaktionen der Metall-Basen C5 H5 M(PR3)2 und C5 H5 M(PR3)L (M=Co, Rh) mit CSSe und CSe2: Synthese und Eigenschaften von Cyclopentadienylcobalt- und Rhodium-Komplexen mit CS, CSe, CSSe, CSe2, CSSe22-, CSe32-, C2 S2 Se22- und C2 Se42- als Liganden. J. Organomet. Chem.1984, 268, 49–62.Search in Google Scholar

Kozhushkov, S.I.; Foerstner, J.; Kakoschke, A.; Stellfeldt, D.; Yong, L.; Wartchow, R.; de Meijere, A.; Butenschön, H. Syntheses and structures of sterically congested linear and branched cobalta[n]triangulanes. Chem. Eur. J.2006, 12, 5642–5647.Search in Google Scholar

Krebs, A.; Wilke, J. Angle strained cycloalkynes. Top. Curr. Chem1983, 109, 189–233.10.1007/BFb0018059Search in Google Scholar

Kruck, T.; Hieber, W.; Lang, W. Cyclopentadienylbis(trifluorophosphine)cobalt. Angew. Chem. Int. Ed. Engl.1966, 5, 247–247.10.1002/anie.196602472Search in Google Scholar

Kuhn, N.; Zauder, E. Synthese und Reaktivität von Dienylmetall-Verbindungen: XXXIV. Zur Existenz von C5 H5 Co(SMe2)2. J. Organomet. Chem.1989, 362, 217–223.Search in Google Scholar

Lenges, C.P.; Brookhart, M.; Grant, B.E. H/D exchange reactions between C6 D6 and C5 Me5 Co(CH2=CHR)2 (R=H, SiMe3): evidence for oxidative addition of bonds to the [C5 Me5(L)Co] moiety. J. Organomet. Chem.1997, 528, 199–203.Search in Google Scholar

Lenges, C.P.; White, P.S.; Brookhart, M. Mechanistic and synthetic studies of the addition of alkyl aldehydes to vinylsilanes catalyzed by Co(I) complexes. J. Am. Chem. Soc.1998, 120, 6965–6979.Search in Google Scholar

Li, L.; Han, S.; Li, Q.; Chen, Z.; Pang, Z. Synthesis and reactivity of cobalt complexes with pendant nitrogen functional groups. Eur. J. Inorg. Chem.2007, 5127–5137.10.1002/ejic.200700447Search in Google Scholar

Macomber, D.W.; Rogers, R.D. Preparation and reactivity of mononuclear (η5-cyclopentadienyl)cobalt carbene complexes. Organometallics1985, 4, 1485–1487.Search in Google Scholar

Malacria, M.; Aubert, C.; Renaud, J.L. Product class 4: organometallic complexes of cobalt. Sci. Synth.2002, 1, 439–530.Search in Google Scholar

McKinney, R.J. Paramagnetic organometallic complexes. Synthesis of 17-electron cyclopentadienylcobalt complexes. Inorg. Chem.1982, 21, 2051–2056.Search in Google Scholar

Miller, E.J.; Brill, T.B. The metal atom’s view of the bonding in o-benzoquinone, o-dithiobenzoquinone, and o-benzoquinone diimine metallacycles of cyclopentadienylcobalt. A cobalt-59 NQR study of the cis-a3b2 ligand geometry. Inorg. Chem.1983, 22, 2392–2398.Search in Google Scholar

Montilla, F.; Galindo, A.; Rosa, V.; Aviles, T. Effect of trimethylsilyl substitution on the chemical properties of triarylphosphines and their corresponding metal-complexes: solubilising effect in supercritical carbon dioxide. Dalton Trans.2004, 2588–2592.10.1039/B406691JSearch in Google Scholar PubMed

Moreno, C.; Macazaga, M.J.; Delgado, S. Systematic ligand effects on the rates of CO substitution of (η5-C5 H4 CO2 Me)Co(CO)2. Organometallics1991, 10, 1124–1130.Search in Google Scholar

Müller, C.; Vos, D.; Jutzi, P. Results and perspectives in the chemistry of side-chain-functionalized cyclopentadienyl compounds. J. Organomet. Chem.2000, 600, 127–143.Search in Google Scholar

Nakamura, A.; Hagihara, N. New stable olefin complexes of cobalt(I). Bull. Chem. Soc. Jpn.1961, 34, 452–453.Search in Google Scholar

Nguyen, H.V.; Yeamine, M.R.; Amin, J.; Motevalli, M.; Richards, C.J. Synthesis and 1H NMR spectroscopic properties of substituted (η4-tetraarylcyclobutadiene)(η5-cyclopentadienyl)cobalt metallocenes. J. Organomet. Chem.2008, 693, 3668–3676.Search in Google Scholar

O’Connor, J.M.; Bunker, K.D. Conversion of (η5-C5 H5)Co(PPh3)2 and nitro compounds to mononuclear η1(N)-nitrosoalkyl and dinuclear μ-η1(N):η2(N,O)-nitrosoaryl complexes. Organometallics2003, 22, 5268–5273.Search in Google Scholar

Okamoto, S. Synthesis of 2,2′-bipyridines by transition metal-catalyzed alkyne/nitrile [2+2+2] cycloaddition reactions. Heterocycles2012, 85, 1579–1602.10.3987/REV-12-737Search in Google Scholar

Ondráček, J.; Schehlmann, V.; Maixner, J.; Kratochvíl, B. The structure of (1-2:5-6-η-cycloocta-1,5-diene)-(η5-cyclopentadienyl)cobalt(I). Collect. Czech. Chem. Commun.1990, 55, 2447–2452.Search in Google Scholar

Orchin, M. Tetracarbonylhydrocobalt, the quintessential catalyst. Acc. Chem. Res.1981, 14, 259–266.Search in Google Scholar

Pandey, K.K. Bis(borylene) complexes of cobalt, rhodium, and iridium [(η5-C5 H5)M(BNX2)2] (X=Me, SiH3, SiMe3): a bonding analysis. Organometallics2011, 30, 5851–5858.10.1021/om200695jSearch in Google Scholar

Pandey, K.K.; Musaev, D.G. Structure and bonding energy analysis of cobalt, rhodium, and iridium borylene complexes [(η5-C5 H5)(CO)M(BNX2] (X=Me, SiH3, SiMe3) and [(η5-C5 H5)(PMe3)M{BN(SiH3)2}] (M=Co, Rh, Ir). Organometallics2009, 29, 142–148.Search in Google Scholar

Pfeffer, M.; Grellier, M. 7.01 – cobalt organometallics. In Comprehensive Organometallic Chemistry III. Mingos, D.M.P.; Crabtree, R.H., Eds. Elsevier: Oxford, 2007, pp 1–119.10.1016/B0-08-045047-4/00096-0Search in Google Scholar

Piper, T.S.; Cotton, F.A.; Wilkinson, G. Cyclopentadienyl-carbon monoxide and related compounds of some transitional metals. J. Inorg. Nucl. Chem.1955, 1, 165–174.Search in Google Scholar

Pospech, J.; Fleischer, I.; Franke, R.; Buchholz, S.; Beller, M. Alternative metals for homogeneous catalyzed hydroformylation reactions. Angew. Chem. Int. Ed.2013, 52, 2852–2872.Search in Google Scholar

Rausch, M.D.; Genetti, R.A. Organometallic π complexes. XXII. The chemistry of π-cyclopentadienyltetraphenylcyclobutadienecobalt and related compounds. J. Org. Chem.1970, 35, 3888–3897.Search in Google Scholar

Rerek, M.E.; Basolo, F. Kinetics and mechanism of the substitution reactions of (η5-pentamethylcyclopentadienyl)dicarbonylrhodium(I) and (η5-pentamethylcyclopentadienyl)dicarbonylcobalt(I). Organometallics1983, 2, 372–376.Search in Google Scholar

Rinze, P.V.; Lorberth, J.; Nöth, H.; Stutte, B. Cyclopentadienylbis(Triarylphosphin)Kobalt(I). J. Organomet. Chem.1969, 19, 399–403.10.1016/S0022-328X(00)85313-9Search in Google Scholar

Rosenblum, M.; North, B. Photochemical synthesis of cyclobutadiene(cyclopentadienyl)cobalt. J. Am. Chem. Soc.1968, 90, 1060–1061.Search in Google Scholar

Rosenblum, M.; North, B.; Wells, D.; Giering, W.P. Synthesis and chemistry of η4-cyclobutadiene (η5-cyclopentadienyl)cobalt. J. Am. Chem. Soc.1972, 94, 1239–1246.Search in Google Scholar

Schaefer, C.; Werz, D.B.; Staeb, T.H.; Gleiter, R.; Rominger, F. CpCo-stabilized cyclopentadienones from cyclobutadiene complexes: experimental and theoretical investigations. Organometallics2005, 24, 2106–2113.Search in Google Scholar

Schmidt, G.F.; Brookhart, M. Implications of three-center, two-electron M--H--C bonding for related alkyl migration reactions: design and study of an ethylene polymerization catalyst. J. Am. Chem. Soc.1985, 107, 1443–1444.Search in Google Scholar

Schneider, J.J. Metal atom chemistry. (η5-Cyclopentadienyl)metal and (η6-arene)metal fragments as building blocks for transition metal clusters. Synlett1997, 635–642.10.1055/s-1997-3238Search in Google Scholar

Schomaker, J.M.; Boyd, W.C.; Stewart, I.C.; Toste, F.D.; Bergman, R.G. Cobalt dinitrosoalkane complexes in the C-H functionalization of olefins. J. Am. Chem. Soc.2008, 130, 3777–3779.Search in Google Scholar

Schuster-Woldan, H.G.; Basolo, F. Kinetics and mechanism of substitution reactions of π-cyclopentadienyldicarbonylrhodium. J. Am. Chem. Soc.1966, 88, 1657–1663.Search in Google Scholar

Spencer, A.; Werner, H. XVI. Interconversion of alkyl- and acyl-cobalt(III) complexes derived from cyclopentadienylcarbonyl(trimethylphosphine)cobalt(I). J. Organomet. Chem.1979, 171, 219–228.Search in Google Scholar

Staeb, T.H.; Chávez, J.; Gleiter, R.; Nuber, B. The role of [η2-bis(tert-butylsulfonyl)acetylene](carbonyl)(η5-cyclopentadienyl)cobalt(I) as an intermediate in the alkyne dimerisation. Eur. J. Inorg. Chem.2005, 4090–4093.10.1002/ejic.200500394Search in Google Scholar

Strecker, B.; Werner, H. Zur Reaktion von [C5 H5 Co(CNR)(PMe3)] mit Hydroxamsäurechloriden und Triethylamin: Ein unerwarteter Zugang zu Carbamoyl-Komplexes. Z. Anorg. Allg. Chem.1991, 605, 59–65.Search in Google Scholar

Tanaka, K. Transition-Metal-Mediated Aromatic Ring Construction. Hoboken: John Wiley & Sons, 2013.10.1002/9781118629871Search in Google Scholar

Theopold, K.H.; Becker, P.N.; Bergman, R.G. Asymmetric induction in reactions employing enolates generated from cyclic organo transition metal acyl complexes. J. Am. Chem. Soc.1982, 104, 5250–5252.Search in Google Scholar

Thiel, I.; Jiao, H.; Spannenberg, A.; Hapke, M. Fine-tuning reactivity and stability by systematic ligand variations in CpCo(I) complexes as catalysts for [2+2+2] cycloaddition reactions. Chem. Eur. J.2013a, 19, 2548–2554.Search in Google Scholar

Thiel, I.; Spannenberg, A.; Hapke, M. Synthesis of air-stable and recyclable CpCoI-complexes. ChemCatChem2013b, 5, 2865–2868.10.1002/cctc.201300294Search in Google Scholar

tom Dieck, H.; Haarich, M. Halbsandwichkomplexe mit Stickstoffliganden: II. Cyclopentadienyl-Diazadien-Kobalt(I)-Komplexe. J. Organomet. Chem.1985, 291, 71–87.Search in Google Scholar

Vélez, C.L.; Markwick, P.R.L.; Holland, R.L.; DiPasquale, A.G.; Rheingold, A.L.; O’Connor, J.M. Cobalt 1,3-diisopropyl-1H-imidazol-2-ylidene complexes: synthesis, solid-state structures, and quantum chemistry calculations. Organometallics2010, 29, 6695–6702.Search in Google Scholar

Vollhardt, K.P.C. Transition-metal-catalyzed acetylene cyclizations in organic synthesis. Acc. Chem. Res.1977, 10, 1–8.Search in Google Scholar

Vollhardt, K.P.C. Cobalt-mediated [2+2+2]-cycloadditions: a maturing synthetic strategy Angew. Chem. Int. Ed. Engl.1984, 23, 539–556.Search in Google Scholar

Wadepohl, H.; Metz, A. From C-H-activation to arene clusters and back – organometallic cluster chemistry with cyclopentadienyl cobalt fragments and olefins. In Metal Clusters in Chemistry. (eds P. Braunstein, L. A. Oro and P. R. Raithby), Wiley-VCH Verlag GmbH: Weinheim, Germany, 2008, pp. 269–289.10.1002/9783527618316.ch1oSearch in Google Scholar

Wadepohl, H.; Borchert, T.; Pritzkow, H. C-H bond activation of simple alkenes with cyclopentadienylcobalt fragments: preparation and structure of tri- and tetra-cobalt μ-cycloalkyne cluster complexes. J. Chem. Commun. Chem Soc.1995, 1447–1448.10.1039/C39950001447Search in Google Scholar

Wadepohl, H.; Borchert, T.; Pritzkow, H. C–H bond activation of simple alkenes with (C5 H5)CO fragments: preparation, molecular structure, and dynamical behaviour of tri- and tetranuclear cyclopentadienylcobalt cluster complexes with μ-cycloalkyne ligands. Chem. Ber.1997, 130, 593–603.Search in Google Scholar

Wasserman, E.P.; Bergman, R.G.; Moore, C.B. IR flash kinetic spectroscopy of transients generated by irradiation of (C5 H5)Co(CO)2 in the gas phase and in solution. J. Am. Chem. Soc.1988, 110, 6076–6084.Search in Google Scholar

Weding, N.; Hapke, M. Preparation and synthetic applications of alkene complexes of group 9 transition metals in [2+2+2] cycloaddition reactions. Chem. Soc. Rev.2011, 40, 4525–4538.Search in Google Scholar

Weding, N.; Jackstell, R.; Jiao, H.; Spannenberg, A.; Hapke, M. Synthesis of group 9 metal-olefin complexes with identical ligand frameworks and comparison of their catalytic activity in [2+2+2] cycloaddition and other addition reactions. Adv. Synth. Catal.2011, 353, 3423–3433.Search in Google Scholar

Weding, N.; Spannenberg, A.; Jackstell, R.; Hapke, M. Formation and reactivity of a Co4-μ-alkyne cluster from a Co(I)-alkene complex. Organometallics2012, 31, 5660–5663.Search in Google Scholar

Weiner, W.P.; Bergman, R.G. Kinetics and mechanism of the formation of nitrosoalkane complexes by migratory insertion of coordinated nitric oxide into cobalt-carbon bonds. J. Am. Chem. Soc.1983, 105, 3922–3929.Search in Google Scholar

Weiner, W.P.; White, M.A.; Bergman, R.G. Direct observation of alkyl/nitrosyl migratory insertion in an organotransition metal complex. J. Am. Chem. Soc.1981, 103, 3612–3614.Search in Google Scholar

Werner, H. Novel coordination compounds formed from CS2 and heteroallenes. Coord. Chem. Rev.1982, 43, 165–185.Search in Google Scholar

Werner, H.; Strecker, B. Cycloadditionsreaktionen von Organometallkomplexen: XIII. Synthese und Reaktivität viergliedriger Cobalta-Heterocyclen aus C5 H5 Co(CNR)(PMe3) und Isocyanaten bzw. Isothiocyanaten sowie eine ungewöhnliche Fragmentierung des chiralen Isocyanid-Liganden (S)-CNCH(Me)Ph. J. Organomet. Chem.1991, 413, 379–397.Search in Google Scholar

Werner, H.; Hofmann, W. Basische Metalle, III. Stabile kationische Hydrido-, Methyl- und Acylcobalt-Komplexe. Chem. Ber.1977, 110, 3481–3493.Search in Google Scholar

Werner, H.; Juthani, B. XXIX. C5 H5 Co(PMe3)CO, eine vielseitig verwendbare Ausgangsverbindung für die Synthese von Cyclopentadienylcobalt(I)- und -Cobalt(III)-Komplexen. J. Organomet. Chem.1981, 209, 211–218.Search in Google Scholar

Werner, H.; Neukomm, H.; Kläui, W. Basische Metalle. II. Protonierungs- und Alkylierungsreaktionen von π-Cyclopentadienyl-metall-bis(tert.-phosphit)-Komplexen. Helv. Chim. Acta1977, 60, 326–333.Search in Google Scholar

Werner, H.; Lotz, S.; Heiser, B. Basische Metalle: XXVIII. Zur Reaktivität von Isothiocyanaten gegenüber C5 H5 Co(PMe3)2- Synthese und Eigenschaften von C5 H5 Co(PMe3)CNR und Cobaltaheterocyclen C5 H5(PMe3)CoSC(NR)SC(NR). J. Organomet. Chem.1981, 209, 197–210.Search in Google Scholar

Werner, H.; Feser, R.; Harder, V.; Hofmann, W.; Neukomm, H.; Jones, W.D. Cyclopentadienylbis (trimethylphosphine) and cyclopentadienylbis (trimethylphosphite) complexes of Co and Rh. In Inorg. Synth.1989, 25, 158–164.Search in Google Scholar

Werz, D.B.; Gleiter, R.; Rominger, F. Mono(alkyne)cobalt complexes and electron-rich alkynes – the formation of an alkyne-bridged dinuclear cobalt complex by a one-pot procedure. Eur. J. Inorg. Chem.2004, 4021–4027.10.1002/ejic.200400339Search in Google Scholar

Wilkinson, G.; Rosenblum, M.; Whiting, M.C.; Woodward, R.B. The structure of iron biscyclopentadienyl. J. Am. Chem. Soc.1952, 74, 2125–2126.10.1021/ja01128a527Search in Google Scholar

Won, J.-H.; Kim, D.-H.; Kim, B.Y.; Kim, S.-J.; Lee, C.; Cho, S.; Ko, J.; Kang, S.O. Investigation of new coordination modes for coordinatively unsaturated (dithiolato)cobalt(III) complex [(η5-Cp)Co(1,2-S2 C2 B10 H10-S,S′)]. Organometallics2002, 21, 1443–1453.Search in Google Scholar

Xu, B.-H.; Wu, D.-H.; Li, Y.-Z.; Yan, H. Reactivity of CpCo 16e half-sandwich complexes containing a chelating 1,2-dicarba-closo-dodecaborane-1,2-dichalcogenolate ligand toward phenylacetylene. Organometallics2007, 26, 4344–4349.Search in Google Scholar

Xu, B.-H.; Tao, J.-C.; Li, Y.-Z.; Li, S.-H.; Yan, H. Metal-induced B-H bond activation: addition of methyl acetylene monocarboxylate to CpCo half-sandwich complexes containing a chelating 1,2-dicarba-closo-dodecaborane-1,2-dichalcogenolate ligand. Organometallics2008, 27, 334–340.Search in Google Scholar

Yamazaki, H.; Hagihara, N. Bis(triphenylphosphine)-π-cyclopentadienyl-cobalt(I) and -rhodium(I). Bull. Chem. Soc. Jpn.1971, 44, 2260–2261.Search in Google Scholar

Yong, L.; Kirleis, K.; Butenschön, H. Stereodivergent formation of alkenylsilanes: syn or anti hydrosilylation of alkynes catalyzed by a cyclopentadienylcobalt(I) chelate bearing a pendant phosphane tether. Adv. Synth. Catal.2006, 348, 833–836.Search in Google Scholar

Zarzycki, B.; Bickelhaupt, F.M.; Radius, U. Symmetrical P4 cleavage at cobalt half sandwich complexes [(η5-C5 H5)Co(L)] (L=CO, NHC) – a computational case study on the mechanism of symmetrical P4 degradation to P2 ligands. Dalton Trans.2013, 42, 7468–7481.Search in Google Scholar

Zhao, C.; Toste, F.D.; Bergman, R.G. Direct Michael addition of alkenes via a cobalt-dinitrosyl mediated vinylic C-H functionalization reaction. J. Am. Chem. Soc.2011, 133, 10787–10789.Search in Google Scholar

Zhong, W.; Yang, Q.; Shang, Y.; Liu, G.; Zhao, H.; Li, Y.; Yan, H. Synthesis and reactivity of the imido-bridged metallothiocarboranes CpCo(S2 C2 B10 H10)(NSO2 R). Organometallics2012, 31, 6658–6668.Search in Google Scholar

Ziegler, M.L.; Weidenhammer, K.; Herrmann, W.A. Carbene addition to dicarbonyl(η-cyclopentadienyl)cobalt. Angew. Chem. Int. Ed. Engl.1977, 16, 555–556.10.1002/anie.197705552Search in Google Scholar

Received: 2014-2-13
Accepted: 2014-4-4
Published Online: 2014-5-9
Published in Print: 2014-12-1

©2014 by De Gruyter

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2014-0001/html
Scroll to top button