Home Organometallic water splitting – from coordination chemistry to catalysis
Article
Licensed
Unlicensed Requires Authentication

Organometallic water splitting – from coordination chemistry to catalysis

  • Marcus Klahn

    Marcus Klahn studied chemistry at the University of Rostock. In 2009, he obtained his PhD on chiral-substituted group 4 metallocene complexes under the supervision of Uwe Rosenthal at the Leibniz Institute for Catalysis in Rostock. He rejoined the group after a research stay with Doug Stephan at the University of Toronto in 2009, where he was working on frustrated Lewis pairs and is now a senior scientist in the group “Organometallic Water Splitting”.

    and Torsten Beweries

    Torsten Beweries studied chemistry at the University of Rostock. He obtained his PhD under the supervision of Uwe Rosenthal (Leibniz Institute for Catalysis, Rostock) in 2008 for studies on the organometallic chemistry of hafnocene complexes. After a postdoctoral stay with Robin N. Perutz at the University of York in 2009, working on halogen bonding and transition metal fluoride complexes, he returned to Rostock, where he is now head of the group “Organometallic Water Splitting”. His current research is focussed towards photocatalytic water splitting and hydrogen storage as well as small-molecule activation using transition metal complexes.

    EMAIL logo
Published/Copyright: February 7, 2014

Abstract

This review gives an overview on the recent developments in the field of coordination chemistry of water at transition metal centres, which could give implications for a better understanding of the elementary steps of light-driven overall water splitting. Additionally, selected examples for homogeneous catalyst systems that are capable of producing hydrogen and/or oxygen from water are presented, focussing on the mechanistic aspects of water reduction and water oxidation.


Corresponding author: Torsten Beweries, Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany, e-mail:

About the authors

Marcus Klahn

Marcus Klahn studied chemistry at the University of Rostock. In 2009, he obtained his PhD on chiral-substituted group 4 metallocene complexes under the supervision of Uwe Rosenthal at the Leibniz Institute for Catalysis in Rostock. He rejoined the group after a research stay with Doug Stephan at the University of Toronto in 2009, where he was working on frustrated Lewis pairs and is now a senior scientist in the group “Organometallic Water Splitting”.

Torsten Beweries

Torsten Beweries studied chemistry at the University of Rostock. He obtained his PhD under the supervision of Uwe Rosenthal (Leibniz Institute for Catalysis, Rostock) in 2008 for studies on the organometallic chemistry of hafnocene complexes. After a postdoctoral stay with Robin N. Perutz at the University of York in 2009, working on halogen bonding and transition metal fluoride complexes, he returned to Rostock, where he is now head of the group “Organometallic Water Splitting”. His current research is focussed towards photocatalytic water splitting and hydrogen storage as well as small-molecule activation using transition metal complexes.

Acknowledgments

We are grateful to the Deutsche Forschungsgemeinschaft and the Bundesministerium für Bildung und Forschung (project Light2Hydrogen) for generous funding. T.B. would like to thank Prof. Uwe Rosenthal (LIKAT) for continuous support and fruitful discussions.

References

Bennett, M. A.; Yoshida, T. Synthesis and reactivity of zerovalent platinum complexes of short-lived cyclic alkynes. Formation of monomeric platinum(II) hydroxo-, methoxo-, and σ-carbon-bonded complexes by oxidative addition reactions with water, methanol, and activated hydrocarbons and catalysis of nitrile to amide hydration. J. Am. Chem. Soc.1978, 100, 1750–1759.Search in Google Scholar

Beweries, T.; Burlakov, V. V.; Peitz, S.; Arndt, P.; Baumann, W.; Spannenberg, A.; Rosenthal, U. Synthesis and reactions of Cp*2Hf(η2-PhC2SiMe3) with water and carbon dioxide. Organometallics2008, 27, 3954–3959.Search in Google Scholar

Blakemore, J. D.; Schley, N. D.; Balcells, D.; Hull, J. F.; Olack, G. W.; Incarvito, C. D.; Eisenstein, O.; Brudvig, G. W.; Crabtree, R. H. Half-sandwich iridium complexes for homogeneous water-oxidation catalysis. J. Am. Chem. Soc.2010, 132, 16017–16029.Search in Google Scholar

Blum, O.; Milstein, D. Oxidative addition of water and aliphatic alcohols by IrCl(trialkylphosphine)3. J. Am. Chem. Soc.2002, 124, 11456–11467.Search in Google Scholar

Bockris, J. O. M. A Hydrogen economy. Science1972, 176, 1323.10.1126/science.176.4041.1323Search in Google Scholar PubMed

Burgess, J. Metal Ions in Solution. Ellis Honvood: Chichester, UK, 1978, p. 335.Search in Google Scholar

Burn, M. J.; Fickes, M. G.; Hartwig, J. F.; Hollander, F. J.; Bergman, R. G. Synthesis of monomeric ruthenium hydroxo complexes (PMe3Ru(R)(OH) (R=H, Me) and a unique dimeric ruthenium hydroxo-water complex [trans-Ru(H)(OH)(DMPE). J. Am. Chem. Soc.1993, 115, 5875–5876.Search in Google Scholar

Camara, J. M.; Rauchfuss, T. B. Mild redox complementation enables H2 activation by [FeFe]-hydrogenase models. J. Am. Chem. Soc.2011, 133, 8098–8101.Search in Google Scholar

Canty, A. J.; Jin, H.; Roberts, A. S.; Skelton, B. W.; White, A. H. Oxidation of diorganopalladium(II) complexes by water and halogens: reactions involving methyl group transfer and structural studies of hydrogen-bonded adducts formed by aryl alcohols with the pallada(IV)cyclopentane complex Pd(CH2CH2CH2CH2)(OH){(pz)3BH} ([(pz)3BH]-=Tris(pyrazol-1-yl)borate). Organometallics1996, 15, 5713–5722.Search in Google Scholar

Concepcion, J. J.; Jurss, J. W.; Templeton, J. L.; Meyer, T. J. One site is enough. Catalytic water oxidation by [Ru(tpy)(bpm)(OH2)]2+ and [Ru(tpy)(bpz)(OH2)]2+. J. Am. Chem. Soc.2008, 130, 16462–16463.Search in Google Scholar

Concepcion, J. J.; Tsai, M.-K.; Muckerman, J. T.; Meyer, T. J. Mechanism of water oxidation by single-site ruthenium complex catalysts. J. Am. Chem. Soc.2010, 132, 1545–1557.Search in Google Scholar

Dadci, L.; Elias, H.; Frey, U.; Hörnig, A.; Koelle, U.; Merbach, A. E.; Paulus, H.; Schneider, J. S. π-Arene aqua complexes of cobalt, rhodium, iridium, and ruthenium: preparation, structure, and kinetics of water exchange and water substitution. Inorg. Chem.1995, 34, 306–315.Search in Google Scholar

Dogutan, D. K.; McGuire Jr., R.; Nocera, D. G. Electocatalytic water oxidation by cobalt(III) hangman β-octafluoro corroles. J. Am. Chem. Soc. 2011, 133, 9178–9180.Search in Google Scholar

Dorta, R.; Togni, A. Facile and reversible O-H and C-H activation by a chiral iridium(I) complex. Organometallics1998, 17, 3423–3428.10.1021/om980189bSearch in Google Scholar

Dorta, R.; Rozenberg, H.; Shimon, L. J. W.; Milstein, D. Oxidative addition of water to novel Ir(I) complexes stabilized by dimethyl sulfoxide ligands. J. Am. Chem. Soc.2002, 124, 188.Search in Google Scholar

Du, P.; Schneider, J.; Luo, G.; Brennessel, W. W.; Eisenberg, R. Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts. Inorg. Chem.2009, 48, 4952–4962.Search in Google Scholar

Duan, L.; Bozoglian, F.; Mandal, S.; Stewart, B.; Privalov, T.; Llobet, A.; Sun, L. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nature Chem. 2012, 4, 418–423.Search in Google Scholar

Elizarova, G. L.; Matvienko, L. G.; Lozhkina, N. V.; Maizlish, V. E.; Parmon, V. N. Homogeneous catalysts for dioxygen evolution from water. Oxidation of water by trisbipyridylruthenium(III) in the presence of metallophthalocyanines. React. Kinet. Catal. Lett.1981, 16, 285–288.Search in Google Scholar

Fafard, C. M.; Adhikari, D.; Foxman, B. M.; Mindiola, D. J.; Ozerov, O. V. Addition of ammonia, water, and dihydrogen across a single Pd-Pd bond. J. Am. Chem. Soc.2007, 129, 10318–10319.Search in Google Scholar

Fraze, K.; Wilson, A. D.; Appel, A. M.; Rakowski DuBois, M.; DuBois, D. L. Thermodynamic properties of the Ni-H bond in complexes of the type [HNi(P2RN2R′)2](BF4) and evaluation of factors that control catalytic activity for hydrogen oxidation/production. Organometallics 2007, 26, 3918–3924.Search in Google Scholar

Fukuzumi, S.; Kobayashi, T.; Suenobu, T. Photocatalytic production of hydrogen by disproportionation of one-electron-reduced rhodium and iridium-ruthenium complexes in water. Angew. Chem. Int. Ed.2011, 50, 728–731.Search in Google Scholar

Gärtner, F.; Sundararaju, B.; Surkus, A.-E.; Boddien, A.; Loges, B.; Junge, H.; Dixneuf, P. H.; Beller, M. Light-driven hydrogen generation: efficient iron-based water reduction catalysts. Angew. Chem. Int. Ed.2009, 48, 9962–9965.Search in Google Scholar

Gärtner, F.; Boddien, A.; Barsch, E.; Fumino, K.; Losse, H.; Junge, H.; Hollmann, D.; Brückner, A.; Ludwig, R.; Beller, M. Photocatalytic hydrogen generation from water with iron carbonyl phosphine complexes: improved water reduction catalysts and mechanistic insights. Chem. Eur. J. 2011, 17, 6425–6436.Search in Google Scholar

Geletii, Y. V.; Huang, Z.; Hou, Y.; Musaev, D. G.; Lian, T.; Hill, C. L. Homogeneous light-driven water oxidation catalyzed by a tetraruthenium complex with all inorganic ligands. J. Am. Chem. Soc.2009, 131, 7522–7523.Search in Google Scholar

Getty, A. D.; Goldberg, K. I. Reaction of a palladium(II) complex chelated by a tridentate PNC ligand with water to produce a [(PN)Pd(μ-OH)]22+ dimer: a rare observation of a well-defined hydrolysis of a Pd(II)-Aryl compound. Organometallics2001, 20, 2545–2551.Search in Google Scholar

Godemann, C.; Kessler, M.; Hollmann, D.; Spannenberg, A.; Brückner, A.; Beweries, T. Bridged titanocenes for the investigation of elemental steps of overall water splitting. Seminar talk given at a joint workshop CaSuS Göttingen and LIKAT Rostock, September 16, 2013, Rostock, Germany.Search in Google Scholar

Grotjahn, D. B.; Brown, D. B.; Martin, J. K.; Marelius, D. C.; Abadjian, M.-C.; Tran, H. N.; Kalyuzhny, G.; Vecchio, K. S.; Specht, Z. G.; Cortes-Llamas, S. A.; Miranda-Soto, V.; van Niekerk, C.; Moore, C. E.; Rheingold, A. L. Evolution of iridium-based molecular catalysts during water oxidation with ceric ammonium Nitrate. J. Am. Chem. Soc.2011, 133, 19024–19027.Search in Google Scholar

Gutsulyak, D. V.; Piers, W. E.; Borau-Garcia, J.; Parvez, M. Activation of water, ammonia, and other small molecules by PCcarbeneP nickel pincer complexes. J. Am. Chem. Soc.2013, 135, 11776–11779.Search in Google Scholar

Han, J.; Zhang, W.; Zhou, T.; Wang, X.; Xu, R. Nickel-complexes with a mixed-donor ligand for photocatalytic hydrogen evolution from aqueous solutions under visible light. RSC Adv.2012a, 2, 8293–8296.Search in Google Scholar

Han, Z.; McNamara, W. R.; Eum, M.-S.; Holland, P. L.; Eisenberg, R. A Nickel thiolate catalyst for the long-lived photocatalytic production of hydrogen in a noble-metal-free system. Angew. Chem. Int. Ed.2012b, 51, 1667–1670.Search in Google Scholar

Hansen, S.; Klahn, M.; Beweries, T.; Rosenthal, U. An intermolecular heterobimetallic system for photocatalytic water reduction. ChemSusChem2012, 5, 656–660.Search in Google Scholar

Hansen, S.; Pohl, M.-M.; Klahn, M.; Spannenberg, A.; Beweries, T. Investigation and enhancement of the stability and performance of water reduction systems based on cyclometalated iridium(III) complexes. ChemSusChem2013, 6, 92–101.Search in Google Scholar

Henbest, K.; Douglas, P.; Garley, M. S.; Mills, A. Persulphate quenching of the excited state of ruthenium(II) tris-bipyridyl dication: thermal reactions. J. Photochem. Photobiol. A1994, 80, 299–305.Search in Google Scholar

Hillhouse, G. L.; Bercaw, J. E. Reactions of water and ammonia with bis(pentamethylcyclopentadienyl) complexes of zirconium and hafnium. J. Am. Chem. Soc.1984, 106, 5412–5418.Search in Google Scholar

Hintermair, U.; Hashmi, S. M.; Elimelech, M.; Crabtree, R. H. Particle formation during oxidation catalysis with Cp* iridium complexes. J. Am. Chem. Soc.2012, 134, 9785–9795.Search in Google Scholar

Hollmann, D.; Grabow, K.; Jiao, H.; Kessler, M.; Spannenberg, A.; Beweries, T.; Bentrup, U.; Brückner, A. Hydrogen generation by water reduction with [Cp*2Ti(OTf)]: identifying elemental mechanistic steps by combined in situ FTIR and in situ EPR spectroscopy supported by DFT calculations. Chem. Eur. J. 2013, 19, 13705–13713.Search in Google Scholar

Junge, H.; Marquet, N.; Kammer, A.; Denurra, S.; Bauer, M.; Wohlrab, S.; Gärtner, F.; Pohl, M.-M.; Spannenberg, A.; Gladiali, S.; Beller, M. Water oxidation with molecularly defined iridium complexes: insights into homogeneous versus heterogeneous catalysis. Chem. Eur. J.2012, 18, 12749–12758.Search in Google Scholar

Karunadasa, H. I.; Chang, C. J.; Long, J. R. A molecular molybdenum-oxo catalyst for generating hydrogen from water. Nature2010, 464, 1329–1333.Search in Google Scholar

Kessler, M.; Hansen, S.; Hollmann, D.; Klahn, M.; Beweries, T.; Spannenberg, A.; Brückner, A.; Rosenthal, U. Synthesis of Cp*2Ti(OTf) and its reaction with water. Eur. J. Inorg. Chem.2011, 627–631.10.1002/ejic.201001225Search in Google Scholar

Kessler, M.; Schüler, S.; Hollmann, D.; Klahn, M.; Beweries, T.; Spannenberg, A.; Brückner, A.; Rosenthal, U. Photo-assisted Ti-O activation in a decamethyltitanocene dihydroxide complex – insights into the elemental steps of water splitting. Angew. Chem. Int. Ed.2012, 51, 6272–6275.Search in Google Scholar

Kessler, M.; Hansen, S.; Godemann, C.; Spannenberg, A.; Beweries, T. Synthesis and Structures of ansa-titanocene complexes with diatomic bridging units for overall water splitting. Chem. Eur. J.2013, 19, 6350–6357.Search in Google Scholar

Kimoto, A.; Yamauchi, K.; Yoshida, M.; Masaoka, S.; Sakai, K. Kinetics and DFT studies on water oxidation by Ce4+ catalyzed by [Ru(terpy)(bpy)(OH2)]2+. Chem. Commun.2012, 48, 239–241.Search in Google Scholar

Kläring, P.; Pahl, S.; Braun, T.; Penner, A. Facile oxidative addition of water at iridium: reactivity of trans-[Ir(4-C5NF4)(H)(OH)(PiPr3)2] towards CO2 and NH3. Dalton Trans.2011, 40, 6785–6791.Search in Google Scholar

Koelle, U. Organometallic aqua ions of the transition metals. Coord. Chem. Rev.1994, 135/136, 623–650.Search in Google Scholar

Kohl, S. W.; Weiner, L.; Schwartsburd, L.; Konstantinovski, L.; Shimon, L. J. W.; Ben-David, Y.; Iron, M. A.; Milstein, D. Consecutive thermal H2 and light-induced O2 evolution from water promoted by a metal complex. Science2009, 324, 74–77.Search in Google Scholar

Kunkely, H.; Vogler, A. Water splitting by light with osmocene as photocatalyst. Angew. Chem. Int. Ed.2009, 48, 1685–1687.Search in Google Scholar

Lacy, D. C.; Park, Y. J.; Ziller, J. W.; Yano, J.; Borovik, A. S. Assembly and properties of heterobimetallic CoII/III/CaII complexes with aqua and hydroxo ligands. J. Am. Chem. Soc.2012, 134, 17526–17535.Search in Google Scholar

Lalrempuia, R.; McDaniel, N. D.; Müller-Bunz, H.; Bernhard, S.; Albrecht, M. Water oxidation catalyzed by strong carbene-type donor-ligand complexes of iridium. Angew. Chem. Int. Ed.2010, 49, 9765–9768.Search in Google Scholar

Legzdins, P.; Rettig, S. J.; Sayers, S. F. Stepwise hydrolysis of a terminal nitrosyl ligand. J. Am. Chem. Soc.1994, 116, 12105–12106.Search in Google Scholar

Lei, P.; Hedlund, M.; Lomoth, R.; Rensmo, H.; Johansson, O.; Hammarström, L. the role of colloid formation in the photoinduced H2 production with a Ru(II)-Pd(II) supramolecular complex: a study by GC, XPS, and TEM. J. Am. Chem. Soc.2007, 130, 26–27.Search in Google Scholar

Lincoln, S. F.; Richens, D. T.; Sykes, A. G. Metal aqua ions. Compr. Coord. Chem. II2003, 1, 515–555.Search in Google Scholar

Liu, F.; Concepcion, J. J.; Jurss, J. W.; Cardolaccia, T.; Templeton, J. L.; Meyer, T. J. Mechanisms of water oxidation from the blue dimer to photosystem II. Inorg. Chem.2008, 47, 1727–1752.Search in Google Scholar

Luo, S.-P.; Mejía, E.; Friedrich, A.; Pazidis, A.; Junge, H.; Surkus, A.-E.; Jackstell, R.; Denurra, S.; Gladiali, S.; Lochbrunner, S.; Beller, M. Photocatalytic water reduction with copper-based photosensitizers: a noble-metal-free system. Angew. Chem. Int. Ed.2013, 52, 419–423.Search in Google Scholar

Ma, E. S. F.; Patrick, B. O.; James, B. R. Reversible binding of water, methanol, and ethanol to a five-coordinate ruthenium(II) complex. Dalton Trans.2013, 42, 4291.Search in Google Scholar

Marquet, N.; Gärtner, F.; Losse, S.; Pohl, M.-M.; Junge, H.; Beller, M. Simple and efficient iridium(III)-catalyzed water oxidations. ChemSusChem2011, 4, 1598–1600.Search in Google Scholar

Masaoka, S.; Sakai, K. Clear evidence showing the robustness of a highly active oxygen-evolving mononuclear ruthenium complex with an aqua ligand. Chem. Lett.2009, 182–183.10.1246/cl.2009.182Search in Google Scholar

McDaniel, N. D.; Coughlin, F. J.; Tinker, L. L.; Bernhard, S. Cyclometalated iridium(III) aqua complexes: efficient and tunable catalysts for the homogeneous oxidation of water. J. Am. Chem. Soc.2008, 130, 210–217.Search in Google Scholar

McLaughlin, M. P.; McCormick, T. M.; Eisenberg, R.; Holland, P. L. A stable molecular nickel catalyst for the homogeneous photogeneration of hydrogen in aqueous solution. Chem. Commun.2011, 47, 7989–7991.Search in Google Scholar

McNamara, W. R.; Han, Z.; Alperin, P. J.; Brennessel, W. W.; Holland, P. L.; Eisenberg, R. A cobalt dithiolene complex for the photocatalytic and electrocatalytic reduction of protons. J. Am. Chem. Soc.2011, 133, 15368–15371.Search in Google Scholar

Milet, A.; Dedieu, A.; Canty, A. J. Reduction of water to H2 by diorganopalladium(II) complexes of tris(pyrazol-1-yl)borate: ab-initio theoretical study of the mechanism. Organometallics1997, 16, 5331–5341.Search in Google Scholar

Millard, M. D.; Moore, C. E.; Rheingold, A. L.; Figueroa, J. S. Four-coordinate iridium(I) monohydrides: reversible dinitrogen binding, bond activations, and deprotonations. J. Am. Chem. Soc.2010, 132, 8921–8923.Search in Google Scholar

Milstein, D.; Calabrese, J. C.; Williams, I. D. Formation, structures, and reactivity of cis-hydroxy-, cis-methoxy-, and cis-mercaptoiridium hydrides. Oxidative addition of water to Ir(I). J. Am. Chem. Soc.1986, 108, 6387–6389.Search in Google Scholar

Monaghan, P. K.; Puddephatt, R. J. Oxidation of dimethylplatinum(II) complexes with alcohols: synthesis and characterization of alkoxoplatinum(IV) complexes. Organometallics1984, 3, 444–449.Search in Google Scholar

Morales-Morales, D.; Lee, D. W.; Wang, Z.; Jensen, C. M. Oxidative addition of water by an iridium PCP pincer complex: catalytic dehydrogenation of alkanes by IrH(OH){C6H3-2,6-(CH2PBut2)2}. Organometallics2001, 20, 1144–1147.Search in Google Scholar

Moyer, B. A.; Meyer, T. J. Oxobis(2,2′-bipyridine)pyridineruthenium(IV) ion, [(bpy)2(py)Ru=O]2+. J. Am. Chem. Soc.1978, 100, 3601–3603.Search in Google Scholar

Moyer, B. A.; Meyer, T. J. Properties of the oxo/aqua system (bpy)2(py)RuO2+/(bpy)2(py)Ru(OH2)2+. Inorg. Chem.1981, 20, 436–444.Search in Google Scholar

Nakazono, T.; Parent, A. R.; Sakai, K. Cobalt porphyrins as homogeneous catalysts for water oxidation. Chem. Commun.2013, 49, 6325–6327.Search in Google Scholar

Nocera, D. G. Chemistry of personalized solar energy. Inorg. Chem.2009, 48, 10001–10017.Search in Google Scholar

Ozawa, H.; Sakai, K. Photo-hydrogen-evolving molecular devices driving visible-light-induced water reduction into molecular hydrogen: structure-activity relationship and reaction mechanism. Chem. Commun.2011, 47, 2227.Search in Google Scholar

Ozerov, O. V. Oxidative addition of water to transition metal complexes. Chem. Soc. Rev.2009, 28, 83–88.Search in Google Scholar

Pellny, P.-M.; Burlakov, V. V.; Baumann, W.; Spannenberg, A.; Rosenthal, U. The influence of the ligands Cp*(η5-C5Me5) and Cp(η5-C5H5) on the stability and reactivity of titanocene and zirconocene complexes: reactions of the bis(trimethylsilyl)acetylene permethylmetallocene complexes (η5-C5Me5)2M(η2-Me3SiC2SiMe3), M=Ti, Zr, with H2O and CO2. Z. Anorg. Allg. Chem.1999, 625, 910–918.Search in Google Scholar

Piers, W. E. Future trends in organometallic chemistry: organometallic approaches to water splitting. Organometallics2011, 30, 13–16.10.1021/om100910dSearch in Google Scholar

Poverenov, E. E.; Frenkel, A. I.; Ben-David, Y.; Shimon, L. J. W.; Leitus, G.; Konstantinovski, L.; Martin, J. M. L.; Milstein, D. Evidence for a terminal Pt(IV)-oxo complex exhibiting diverse reactivity. Nature2008, 455, 1093–1096.Search in Google Scholar

Rau, S.; Schäfer, B.; Gleich, D.; Anders, E.; Rudolph, M.; Friedrich, M.; Görls, H.; Henry, W.; Vos, J. G. A supramolecular photocatalyst for the production of hydrogen and the selective hydrogenation of tolane. Angew. Chem. Int. Ed.2006, 45, 6215–6218.Search in Google Scholar

Stracke, J. J.; Finke, R. G. Electrocatalytic water oxidation beginning with the cobalt polyoxometalate [Co4(H2O)2(PW9O34)2]10-: identification of heterogeneous CoOx as the dominant catalyst. J. Am. Chem. Soc.2011, 133, 14872–14875.Search in Google Scholar

Tanaka, S.; Annaka, M.; Sakai, K. Visible light-induced water oxidation catalyzed by molybdenum-based polyoxometalates with mono- and dicobalt(III) cores as oxygen-evolving centers. Chem. Commun.2012, 48, 1653–1655.Search in Google Scholar

Tani, K.; Iseki, A.; Yamagata, T. Facile oxidative addition of o-h bonds of methanol and water to IrI complexes having peraryldiphosphane ligands. Angew. Chem. Int. Ed.1998, 37, 3381–3383.Search in Google Scholar

Taqui Khan, M. M.; Halligudi, S. B.; Shukla, S. Oxidative addition of water to the RuII catalyst K[RuII(Hedta)(CO)]: homogeneous catalysis of the water-gas shift reaction under ambient conditions. Angew. Chem. Int. Ed. Engl.1988, 27, 1735–1736.Search in Google Scholar

Tschierlei, S.; Presselt, M.; Kuhnt, C.; Yartsev, A.; Pascher, T.; Sundström, V.; Karnahl, M.; Schwalbe, M.; Schäfer, B.; Rau, S.; Schmitt, M.; Dietzek, B.; Popp, J. Photophysics of an intramolecular hydrogen-evolving Ru-Pd photocatalyst. Chem. Eur. J.2009, 15, 7678–7688.Search in Google Scholar

Wasylenko, D. J.; Palmer, R. D.; Berlinguette, C. P. Homogeneous water oxidation catalysts containing a single metal site. Chem. Commun.2013, 49, 218–227.Search in Google Scholar

White, H. S.; Becker, W. G.; Bard, A. J. Photochemistry of the Ru(bpy)32+-peroxydisulfate system in acetonitrile-water solutions. Evidence for a long-lived photoexcited ion-pair. J. Phys. Chem.1984, 88, 1840–1846.Search in Google Scholar

Yang, X.; Hall, M. B. Mechanism of water splitting and oxygen-oxygen bond formation by a mononuclear ruthenium complex. J. Am. Chem. Soc.2010, 132, 120–130.Search in Google Scholar

Yoshida, T.; Matsuda, T.; Okano, T.; Kitani, T.; Otsuka, S. Activation of water molecule. 2. Generation of strong hydroxo bases by the reaction of water with platinum(0) phosphine complexes and the applications as catalysts for H-D exchange and hydration reactions. J. Am. Chem. Soc.1979, 101, 2027–2038.Search in Google Scholar

Zhang, P.; Jacques, P.-A.; Chavarot-Kerlidou, M.; Wang, M.; Sun, L.; Fontecave, M.; Artero, V. Phosphine coordination to a cobalt diimine-dioxime catalyst increases stability during light-driven H2 Production. Inorg. Chem.2012, 51, 2115–2120.Search in Google Scholar

Zong, R. Z.; Thummel, R. P. A new family of Ru complexes for water oxidation. J. Am. Chem. Soc.2005, 127, 12802–12803.Search in Google Scholar

Received: 2013-11-11
Accepted: 2013-12-20
Published Online: 2014-2-7
Published in Print: 2014-10-1

©2014 by De Gruyter

Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2013-0019/html
Scroll to top button