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Abstract: Exposure to PM,s is the most significant air
pollutant for health risk. The testosterone level in male
is vulnerable to environmental toxicants. In the past,
researchers focused more attention on the impacts of PM; 5
on respiratory system, cardiovascular system, and nervous
system, and few researchers focused attention on the
reproductive system. Recent studies have reported that
PM; 5 involved in male testosterone biosynthesis disrup-
tion, which is closely associated with male reproductive
health. However, the underlying mechanisms by which
PM, 5 causes testosterone biosynthesis disruption are still
not clear. To better understand its potential mechanisms,
we based on the existing scientific publications to critically
and comprehensively reviewed the role and potential
mechanisms of PM, 5 that are participated in testosterone
biosynthesis in male. In this review, we summarized the
potential mechanisms of PM,s triggering the change of
testosterone level in male, which involve in oxidative
stress, inflammatory response, ferroptosis, pyroptosis,
autophagy and mitophagy, microRNAs (miRNAs), endo-
plasmic reticulum (ER) stress, and N6-methyladenosine
(m6A) modification. It will provide new suggestions and
ideas for prevention and treatment of testosterone
biosynthesis disruption caused by PM,s; for future
research.
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Introduction

The rapid urbanization and industrialization have accompa-
nied with a growing number of air pollution. Ambient fine
particulate matter (aero dynamic diameter <2.5 um, PM,5s) is
believed to be the most hazardous air pollution and has
become a major public health problem, attracting accumu-
lating attention in bioscience research [1]. PM,5 is a complex
mixture of suspending particles originated from traffic
exhaust emission, coal combustion and open heating sources
[2]. The main chemical composition of PM, 5 includes metal
elements, inorganic ions, polycyclic aromatic hydrocarbons
(PAHs) and endocrine disrupting chemicals [3]. However, the
constituents of PM, 5 varies with location, season, and source,
which indicated that PM,s adverse effects on health are
complex and extensive. Due to the particles with small size,
large surface area and complicated toxic substance, PM, 5 is
very easily to enter and accumulate in human various organs
and has a marked adverse health on the human [4, 5]. For
decades, the relationship between PM, 5 exposure and repro-
ductive dysfunctions in male has attracted an increasing public
attention. The epidemiological and experimental evidence
have suggested that PM, 5 exposure can impair sperm quality
and the level of sex hormones via testicular damage [6, 7].
Over the past decades, there has been a worldwide
decline on male sperm quality and an increase on the inci-
dence of infertility [8]. Testosterone is the main male
androgen, which is essential for secondary sexual develop-
ment, metabolism, and spermatogenesis. In the absence of
testosterone, males are infertile because of spermatogenesis
dysfunction [9]. Testosterone contributes to the maintain of
the blood-testis barrier (BTB) [10, 11], which provides nutri-
ents and safe space for the development, survival, and
maturation of germ cells [12]. The BTB is one of the tightest
blood-tissue barriers in the mammalian animals, constituted
by tight junction, gap junction, ectoplasmic specialization,
and desmosomes [13]. The tight structure of the BTB
can prevent the environmental toxicants from entering.
Toxicological studies have shown that the decreasing of
testosterone impairs the BTB components in mice [14, 15],
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which means that testosterone biosynthesis disruption may
accelerate PM,5 accumulation in testis via reducing the
integrity of the BTB to impair Leydig cells which is the center
of testosterone synthesis and secretion in male. When the level
of testosterone reduced, the developing spermatids detached
from Sertoli cells in the seminiferous epithelium, which
demonstrated that testosterone is important for keeping the
BTB function [16]. In addition, PM, 5 can also accumulate in
testis and directly damage the BTB through reducing the
BTB-related proteins [17, 18]. Thus, PM,s may directly or
indirectly disrupt the complete structure of the BTB to accel-
erate Leydig cell damage via multiple toxic mechanisms. The
absence of testosterone results in abnormal attachment and
release of germ cells via caused the dysfunction of Sertoli cells,
which suggested the occurrence of infertility.

Testosterone biosynthesis is vulnerable to exposure to
various toxic substances. Recently, several studies have
demonstrated that PM, 5 exposure is inversely associated with
testosterone biosynthesis [14, 19, 20]. Leydig cells are the major
site of testosterone biosynthesis and secretion in male. Testos-
terone production depends on the function of Leydig cells,
which is tightly regulated via complex testosterone biosyn-
thesis pathways (Figure 1) [21]. Testosterone is biosynthesized
by various enzymes from cholesterol. First, cholesterol is
transported to the inner mitochondrial membrane by StAR and
then is converted to pregnenolone by CYP11A1. Pregnenolone is
converted to testosterone through two pathways. On the one
hand, pregnenolone is converted to androstenediol catalyzed
by CYP17A1, AKRIC3 and CYP17B1/2. On the other hand, preg-
nenolone is converted to androstenedione catalyzed by
HSD3B1/2 and CYP17A1. Thereafter, both androstenediol and
androstenedione are converted to testosterone via HSD3B1/2
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Figure 1: Testosterone biosynthesis pathways are shown.
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and HSD17B2/3, respectively. Thus, PM,s may impair testos-
terone bhiosynthesis via targeting Leydig cell. However, there is
less reports on whether PM,5 exposure impairs Leydig cells
function and its underlying mechanisms.

A growing number of evidence has shown that PM,5
impairs male testosterone biosynthesis (Table 1). After the
human body inhales small particles matter (such as PM;,
PM,5 and PMj,), it will enter the systemic circulation and
organs of the body, and even reach the testis [18]. We sum-
marized epidemiological and experimental studies and found
that most studies have shown that PM,s; decreased the
testosterone level and is accompanied with reproductive
impairment such as infertility, the decrease of sperm pro-
duction and the increase of sperm abnormalities, although
several articles have proposed opposite results on the change
of testosterone level. Nevertheless, its potential molecular
mechanism has not been fully clear. Further studies are
needed for further exploring the potential mechanisms of
PM, s-induced decline of testosterone level. In the review, we
focus on reviewing the existing epidemiological and experi-
mental studies and summarize potential molecular mecha-
nisms. We propose a hypothesis that the process of PM,5
exposure impairing male testosterone biosynthesis involved
in multiple mechanisms.

Search strategy

A careful literature search was carried out on April 2023 for
eligible articles using the PubMed database according to the
PRISMA criteria. Only studies in English were included. This
review includes studies which used healthy participants,
patients, animals in vivo, and cell cultures in vitro. We search
the following terms for the search using the Advanced Search
Builder: (relevant mechanism [Title/Abstract]) AND ((PM2.5
[Title/Abstract]) OR (particulate matter [Title/Abstract]) OR (PM
[Title/Abstract])) and (relevant mechanisms [Title/Abstract])
AND (testosterone [Title/Abstract]). The search terms of rele-
vant mechanisms include endoplasmic reticulum stress,
ER stress, autophagy, mitophagy, ferroptosis, inflammatory
response, inflammation, miR, N6-methyladenosine (m6A) RNA
modification, m6A, pyroptosis, ROS and oxidative stress.

Potential mechanisms of PM, s-
induced testosterone biosynthesis
disruption

PM, 5 exposure can cause testosterone biosynthesis disrup-
tion, while the alteration of testosterone level is associated
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Table 1: Summary of epidemiological and experimental studies on the relationship between PM2.5 exposure and testosterone biosynthesis.

Subject Location PM, 5 exposure Effects on testosterone biosynthesis Reference

Fischer male rat (beginning Tokyo, Japan Inhalation, 5.63 mg/m?, 6 h/day, 5 days/week  Testosterone?, impairs sperm quality and [22]

at birth) for 90 days (diesel exhaust particle) production

BALB/c male mice Tokyo, Japan Dorsal subcutaneous injection, 24.7, 74.0 or TestosteroneT, decreases sperm pro- [23]
220 pg/mouse, 10 times for 5 weeks (diesel ductions and viabilities, increases sperm
exhaust particle) abnormalities

Men Poland Inhalation, arithmetic mean for a period of Testosterone|, increases sperm [7]
90 days before semen collection abnormalities

Sprague-Dawley (SD) male  Beijing, China  Intratracheal instillation, 1.8, 5.4, 16.2 mg/ Testosterone |, impairs sperm quality [14]

rats kg.bw, 10 times for 30 days

C57BI/6) male mice Baltimore, USA  Inhalation, 12.8 pg/m3, 6 h/day, 5 days/week for Testosterone |, decreases sperm count [24]
4 months

Male college students Chongging, Inhalation, 54.8 pg/m> from January 1, 2013, to  Testosterone?, decreases sperm quality, [25]

China December 31, 2015 sperm count and sperm normal
morphology

Male C57BL/6 mice Shanghai, China Inhalation, 153.05 ug/m?, 8 h/day, 7 days/week Testosterone|, decreases sperm concen- [26]
for 125 days tration and motility

Male C57BL/6 mice Shijiazhuang, Inhalation, 671.87 pg/m?, 6 h/day, 7 days/week Testosterone|, decreases sperm density [6]

China for 16 weeks and motility

Sprague-Dawley (SD) male  Zhengzhou, Intratracheal instillation, 1.5 mg/kg.bw, 5 days/ Testosterone |, decreases sperm quality 11

rats China week for 4 weeks

Offspring male C57BL/6 Beijing, China  Intratracheal instillation, 4.8, 43.2 mg/kg.bw,  Testosterone| [27, 28]

mice (sacrificed at 8 weeks every three days, 6 times in all (maternal

old) exposure)

Male adults Beijing, China  Inhalation, 63.6 mg/m>, from February 2014 to Testosterone| [20]
December 2019

Male Wistar-Kyoto (WKY) North Carolina, Intratracheal instillation, 5 mg/kg.bw, 1 time Testosterone| [29]

rats USA

with various reproductive system toxicity in male. The
mechanisms in PM,s-induced testosterone biosynthesis
disruption are various and complex. Therefore, we discuss
the potential mechanisms from the following mechanisms:
oxidative stress, inflammatory response, ferroptosis,
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pyroptosis, autophagy and mitophagy, microRNAs (miRNAs),
endoplasmic reticulum (ER) stress, and N6-methyladenosine
(m6A) modification (Figure 2). Above mechanisms are
supported by existing epidemiological and experimental
studies.
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Figure 2: Potential mechanisms and its adverse
outcomes of PM2.5-induced testosterone
biosynthesis disruption on male.
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Oxidative stress

Numerous studies have reported that oxidative stress
mediated PM,s-induced toxicity and testosterone biosyn-
thesis disruption. Oxidative stress is the crucial mediator of
PM, s-related toxicity. Oxidative stress can activate other
mechanisms, such as inflammation, autophagy, ferroptosis,
and pyroptosis [30-32], which suggested that it is the central
mediator of PM, s-induced toxicity. Thus, oxidative may play
an upstream role to trigger other mechanisms or directly
target Leydig cells and their testosterone biosynthesis
pathway. It has been reported that PM, 5 exposure promoted
oxidative stress through inhibiting the expression of sir-
tuinl1(SIRT1), a type III protein deacetylase [33]. SIRT1 is
necessary for testosterone biosynthesis via regulating mul-
tiple molecules in Leydig cells. The knockout of SIRT1
resulted in a sharp decrease in testosterone in SIRT17~ mice
compared to control mice [34]. The SIRT1-mediated deace-
tylation of molecules such as Nrf2, p53, NF-kappa B and
FOX03, which performed important roles on driving
oxidative stress [35]. All the above studies have suggested
that SIRT1 may act as a critical molecular to regulate
oxidative stress. The aromatic hydrocarbon receptor (AHR),
a ligand-activated transcription factor, mediates the exces-
sive reactive oxygen species (ROS) after exposure to PM,5
[36]. Recently, it has been evidenced that the long-term
exposure to triclosan decreases the testosterone level
through the activation of AHR in mouse neocortical neurons
[37]. AHR also plays an important role on inhibiting testos-
terone secretion induced by polychlorinated naphthalene
mixture in porcine ovaries [38].

Inflammatory response

Some studies have demonstrated that inflammatory
response may mediate the testosterone biosynthesis
disruption [6, 39, 40]. Toll-like receptor 4 (TLR4) is a type-
Itransmembrane receptor protein. The extracellular domain
recognizes pathogens while the cytoplasmic domain like IL-1
receptor family. NF-kappa B, which is the downstream target
of TLR4, involves in initiating inflammatory response
[41]. Prior evidence demonstrated that TLR4/NF-kappa B
signaling pathway mediates inflammatory response caused
by PM, 5 in vitro and in vivo [42-44]. Interestingly, related
research discovered that TLR4 could activate NF-kappa B
and lead to the reduction of testosterone concentration via
decreasing the expression of testosterone synthesis genes,
including StAR, CYP11A1, 3B-HSD, CYP17A1 and 178-HSD, in
male piglets and pig Leydig cells [45]. Notch signaling
pathway is highly conserved in animals, which includes
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Notch receptors (Notch 1-4) and their ligands (Deltal-3 and
Jagged1-2) [46]. Studies have shown that PM,s modulates
airway inflammation by Notch signaling pathway [47, 48].
The knockdown of Notch receptors has shown that the
expression of testosterone biosynthesis-related genes and
proteins such as CYP11A1, StAR and HSD3B were lower in
Leydig cells [49]. It has been demonstrated that NLRP3
inflammasome modulates the initiation of inflammation
induced by PM, 5 [50-52]. A recent publication has noted that
NLRP3 inflammasome involves in testicular damage and
decrease testosterone level [53]. COX-2/PGE2 signaling
pathway is another inflammatory mediator, which is asso-
ciated with inflammation caused by PM, 5 exposure [54]. The
increase of COX-2 and PGE21evel have been described during
reproductive damage in male rats [55]. Mitochondria are
highly dynamic organelles via fission and fusion to modulate
their function [56]. DRP1 can promote fission during mito-
chondria dynamics. After treatment with urban particulate
matter (PM), DRP1 highly expressed and mediated inflam-
matory response in EA. hy926 cells [57]. Previous studies
have found that CREB activated DRP1 and led to decrease in
StAR in Leydig cells [58], while DRP1 could increase inflam-
mation [59]. PM,5 not only targets Leydig cells, but also
targets hypothalamic-pituitary-gonadal (HPG) axis [29].
PM,; is attributed to suppress HPG axis by inducing hypo-
thalamic inflammation and result the downregulation of
testosterone level in a mouse model [24].

Ferroptosis

Ferroptosis is an iron-dependent programmed cell death,
characterized by the imbalance of the redox state in cell [60].
Iron plays a critical role in the initiation of ferroptosis.
Interestingly, as one of the major mental components of
PM, s, iron can overload and trigger ferroptosis in cells and
animals [61, 62]. Ferroptosis contributed to targeting
CYP11A1 and caused the deficiency of testosterone biosyn-
thesis after treatment with cadmium in Leydig cells [63].
Thus, we hypothesize that ferroptosis may involve in the
disruption of testosterone level by PM,s exposure. Accu-
mulating studies have unveiled that the inhibition of Nrf2 is
related with PM,5 exposure-induced ferroptosis [64]. The
mechanism of most classic ferroptosis inducers is the inhi-
bition of the antioxidant system. Nrf2 can bind to the anti-
oxidant response element of genes and mediate antioxidant
responses in tissues and cells [65]. Nrf2 has been reported to
alleviate ferroptosis [66]. Compared with wild-type mice/
Leydig cells, the concentration of testosterone was reduced
in knockout of Nrf2 mice/Leydig cells, accompanied with
reduced antioxidant capacity and the expression of CYP11A1
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and StAR [67]. The molecular mechanisms of ferroptosis are
also associated with the system Xc—/GSH/GPX4 signaling
pathway, PUFA-phospholipid peroxidation, TF/TFR signaling
pathway, and p53 signaling pathway [68]. Currently,
research on PM, s-induced ferroptosis is limited.

Pyroptosis

Pyroptosis also is a pro-inflammatory programmed cell
death associated with caspases and cytokines. The charac-
teristics of pyroptosis include DNA damage, chromatin,
swelling, bubble-like protrusions, and membrane blebbing
[69]. In canonical pathway of pyroptosis, cytosolic pattern
recognition receptors (PRRs) assemble inflammasomes,
which can cleave pro-caspase-1 to caspase-1 [70]. On the
one hand, activated caspase-1 can cleaves GSDMD to form
N-GSDMD [71, 72]. On the other hand, caspase-1 also cleaves
pro-IL-1B and pro-IL-18 to activate IL-1B and IL-18 [73, 74].
Active IL-1B and IL-18 are released from the cell membrane
pores, which are formed by N-GSDMD, and result in pyrop-
tosis [75, 76]. In the non-canonical pathway, intracellular
lipopolysaccharide (LPS) activates caspase-4/5/11, which can
also cleave GSDMD into N-GSDMD [71]. Active caspase-4/5/11
and N-GSDMD can mediate the cleavage and secretion of
IL-1B and IL-18 via NLRP3 inflammasome/caspase-1 signaling
pathway [77, 78]. The activation of NLRP3 inflammasome is
one of the mechanisms to mediate PM,s-induced toxicity
[50, 52]. Emerging data have suggested that PM,s causes
pyroptosis via NLRP3 inflammasome/caspase-1 in various
tissues and cells [79-81]. The activation of NLRP3 inflam-
masome has also been associated with testicular impairment
and the decrease of testosterone level via reducing the
expression of testosterone biosynthesis genes such as
CYP11A1, CYP17A1, HSD3B, HSD17B and StAR [82-84]. The
activation of pyroptosis not only involves in NLRP3 inflam-
masome, but also link with other inflammasomes, which
suggests that they maybe regulate pyroptosis caused by
PM, 5. At present, studies on the activation of pyroptosis are
mostly focused on the NLRP3 inflammasome [74], while
studies on the other inflammasomes are rare. In addition,
the non-canonical pathway of pyroptosis in testosterone
biosynthesis disruption caused by PM, 5 is still unclear.

Autophagy and mitophagy

Autophagy is a complex self-degradative process, which has
been considered as an important mechanism of PM,s-
induced toxicity. However, the functional role and under-
lying mechanisms of autophagy in testosterone biosynthesis
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are still unclear. There are three types of autophagy, including
macro-autophagy, micro-autophagy, and chaperone-mediated
autophagy, while macro-autophagy is the best studied [85].
Macro-autophagy process involves key steps: phagophore
formation; completion of autophagosome; fusion of auto-
phagosome with lysosome to form autolysosome, which
mediates degradation of protein aggregates, organelles,
and ribosomes [86]. Several studies have demonstrated that
PM,s-mediated oxidative stress is responsible for auto-
phagy triggered by PM;s in vivo and in vitro [87-89].
Autophagy provides a protective effect to inhibit PM,s-
induced apoptosis, necrosis, and cytotoxicity [90, 91].
mTOR, AMPK, PI3K-AKT, MAPK, and cAMP signaling path-
ways have been demonstrated to regulate autophagy [85,
86]. Interestingly, the inhibition of autophagy can improve
conversely oxidative stress and inflammation caused by
PM, 5 [92, 93]. PM, 5 cause the increase of LC3B-II/I(means
the formation of autophagosomes) and the upregulation of
P62 (means the block of autophagosomes), which suggests
that the importance of autophagic flux in PM,s-induced
toxicity [94, 95]. Recently, a study has shown that PM;s-
induced male reproductive injury is accompanied by the
downregulation of serum testosterone and the activation of
autophagy [1]. When the body is invaded by external sub-
stance, autophagy is a double-edged sword. It can resist the
damage of external obstacles to the body, but excessive
autophagy may have adverse effects and promote cell
death. An increasing body of studies has illustrated that
activation of autophagy enhances testosterone secretion
and increases StAR, HSD3B2, CYP17A1 and CYP11A1l in Ley-
dig cells and testicular tissue [96-98], which have demon-
strated that autophagy may resist and reduce the toxicants
damage on testosterone biosynthesis. Based on the above
findings, we can propose a hypothesis that autophagy may
play a protective effect to inhibit PM, s-induced testosterone
biosynthesis disruption. However, there is no research about
the association between testosterone biosynthesis and
autophagy caused by PM,s. Mitophagy is a selective auto-
phagy, given its significance for PM,s-mediated toxicity
[99, 100], which has also been observed in the exploration of
testosterone biosynthesis [101].

MicroRNAs (miRNAs)

MicroRNAs (miRNASs) are sensitive to environmentally haz-
ardous substances and involve in negatively regulating of
the expression of target genes. Importantly, numerous
studies have reported that miRNAs are altered and
participate in PM,s-induced toxicity in diverse human
diseases [102-105]. However, there are limit microRNAS to



782 —— Zheng et al.: Mechanisms of PM, 5 on male testosterone

be identified as PM, s-sensitive. Potential miRNAs, which
are verified to involve in pathological processes in
different tissues and cells caused by PM,s and may be
associated with testosterone biosynthesis, are illustrated
in Table 2. miR-21 previously found to be positively asso-
ciated with serum levels of testosterone in patients with
breast cancer or polycystic ovary syndrome (PCOS) [106].
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However, there is less study to demonstrate the relation-
ship between miR-21 and testosterone level in male. Recent
studies have verified that PM, 5 exposure induced miR-21
alteration that could trigger vascular endothelial and
bronchial epithelial dysfunction [107, 108]. Interestingly, it
has demonstrated that testicular vascular damage plays an
important role in regulating testosterone such as testicular

Table 2: Potential miRNAs involve in PM2.5-induced testosterone biosynthesis disruption in vivo and in vitro model.

Model Dose/duration Trend of miRNAs which may be associated Effects Reference
with testosterone biosynthesis
HBE cells 3ug/cm? 24 h Up: miR-375 Inflammation [114]
Elderly men 3.83 pg/ma, 7-day Down: miR-1, miR-126, miR-146a, miR-155,  Cardiovascular [115]
miR-21, miR-222, miR-9 disease
BEAS-2B cells 3,12 pg/m?, 24,48,72 h Up: miR-21 Genotoxicity in lung [116]
cells
BEAS-2B cells 10 pg/cm3, 24h Up: miR-1246, Lung injury [117]
Human Time windows (1 day, 1 week, 1 month, Up: miR-126-3p, miR-19b, miR-93, miR-223,  Cardiovascular [118]
3 months, 6 months, and 1 year) miR-142, miR-23a, miR-150, miR-15a, Let-7a  disease
SD rats 0.25, 2.5, and 25 mg per 3 days Up: Let-7b, miR-466b Neural diseases [119]
Down: Let-7e
SD rats, HUVEC cells 4 mg/kg.bw in SD rats per 3 days for 4 weeks, Up: miR-21 Vascular endothelial [107]
80 pug/mL in HUVEC cells for 24 h dysfunction
C57BL/6 mice 1 and 5 mg/kg.bw every other day for Down: miR-574 Neural diseases [120]
4 weeks
A549 cells 5, 50 yg/mL for 24 h Down: Let-7a, miR-34a Lung cancer [121]
BALB/c mice 2.5, 10 and 20 mg/kg.bw for 1, 7, 14 days Up: miR-139, miR-146 Lung inflammation [122]
College students 53.1 pg/m3 Down: miR-21, miR-146a, miR-1, miR-119a Cardiovascular [123]
disease
Students 21.31 pg/m? Up: miR-29a, miR-92a Health risks [124]
Elderly men 11.67 pg/m? Up: miR-199b, miR-223 Blood pressure [105]
HBE and 10, 20, 30 pg/mL for 24 h Down: miR-204 Carcinogenesis [125]
BEAS-2B cells
EA.hy926 cells 2.5,10 pg/cm2 for 24 h Down: miR-128, miR-28 Cardiovascular [126]
disease
(C57BL/6 mice 900.21 pg/m? for 8 weeks, 671.87 ug/m> for ~ Up: miR-96, miR-182, miR-183 Testicular damage [6]
16 weeks
HBECs, MLE-12, 300 pg/cm? for 24 h Up: miR-29b Inflammatory [127]
RAW264.7 cells responses
Wistar rats 1mL of 1,2,2 mg/mL at day 0, 3, 7 Down: miR-125b, miR-21 Inflammatory [128]
responses
SD rats, AC16 cells 1.8, 5.4 and 16.2 mg/kg.bw every 3 days for Down: miR-205 Cardiovascular [129]
1 month in rat, 25 50 100 ug/mL in cells for diseases
24h
NCI-H23 and Bet1A 5 pg/ml for 15 or 28 days Down: miR-125a Lung cancer [130]
cells
BALB/c mice, 16HBE 2.5, 10, 20 mg/kg.bw in mice, 25, 50, 100 ug/ Down: miR-139 Lung cancer [131]
cells ml for 24-48 h in cells
HBE cells 50 ug/ml for 24 h Down: miR-145 Lung injury [132]
HBE cells 50, 100 pg/ml for 24 h Down: miR-222 Lung injury [133]
Balb/c mice, A549 20 mg/kg.bw in mice, 100 pg/ml for 24hin  Down: miR-193b Lung cancer [134]
cells cells Up: miR-100, miR-125b
C57BL/6 mice 87 ug/m? for 8 weeks Up: miR-10b, miR-466b Alzheimer’s disease [135]
ApoE™~ mice 157 pg/m? for 8 weeks Up: miR-326 Atherosclerosis [136]
C57BL/6) mice 0.6 mg/mouse once a week for 2 or 3 months  Up: miR-149 Pulmonary fibrosis [137]
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blood flow, vascular permeability, and endothelial surface
[109], which has suggested that testicular vessels may be
another mechanism of the impact of PM, 5 on testosterone
level. The increased expression of miR-29a is relevant with
the decreased androgen production by downregulating the
expression of HSD3B1 in Leydig cells [110]. Microarray
analysis and real-time PCR analysis revealed that miR-29a
positively expressed in associated with PM,5 exposure
in human [111]. MiR-146a has recently been shown to be
negatively associated with serum testosterone and its
related pathways including Toll-like receptor signaling
pathway, apoptosis, cell adhesion molecules and NF-kappa
B signaling pathway [112]. MiR-146a is found to play an
important role in pathological processes caused by PM; 5
exposure [113]. Above results confirm the possible contri-
bution of aberrant alteration of miRNA expression to
PM,s-induced testosterone biosynthesis disruption in
male.

Endoplasmic reticulum stress

As the organelles with the largest surface area in cells, the
endoplasmic reticulum (ER) plays a key role in the synthesis,
folding, and modifications of secreted proteins, which are
synthesized in ER membrane-bound ribosomes and then
injected into the ER lumen for next processes [138]. Although
the protein-folding capacity of ER is exquisitely regulated,
diverse external factors can disrupt this process and lead to
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ER stress due to the accumulation of unfolded/misfolded
proteins in ER lumen [139]. The activation of ER stress
initiates the unfolded protein response (UPR) to restore
ER homeostasis through an adaptive mechanism [140]. In
mammalian cells, inositol-requiring enzyme la (IREla),
activating transcription factor 6 (ATF6) and PRKR-like ER
kinase (PERK) are three ER transmembrane proteins which
operate as ER stress sensors and initiate the adaptive
mechanism [141]. Under conditions of inactivation of ER
stress, the molecular chaperone glucose-regulated protein 78
(GRP78, alias BIP, HSPA5) binds with these sensors and
persists them in an inactivated state. Once the event of the
activation of ER stress occurs, GRP78 has a higher affinity to
bind misfolded/unfolded proteins while dissociates from the
sensors [142]. The discrete sensors enable induction of UPR.
The moderate ER stress restores ER homeostasis, and thus
causes cells to adapt to stress and survival. However,
excessive, and unresolved ER stress can accelerate cell
death. Previous studies have reported that PM,s could
induce ER stress and thus break the balance of ER homeo-
stasis to result in function disorder in various systems
[143-145]. Although numerous studies have demonstrated
that ER stress also closely involved in testosterone biosyn-
thesis disruption under adverse conditions in Leydig cells
[146, 147], it is unclear whether PM, 5 cause testosterone
disorder through the relevant mechanism of ER stress. Thus,
it is of interest to evaluate the involvement of ER stress and
explore its related UPR pathway during the period of PM, -
mediated testosterone biosynthesis disruption (Figure 3).

Figure 3: Related toxicity mechanisms involved
in the UPR pathway activated by
PM2.5-induced ER stress in mammals.
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N6-methyladenosine (m6A) RNA
modification

m6A RNA modification refers to the addition of a methyl-
ation at position N6 of adenosine in almost type of eukary-
otes RNAs [148, 149]. m6A modification is the most abundant
and common of RNA modifications and an average of 1-2
m6A modification in each 1000 nucleotides [150]. m6A
modification has been identified to involved in regulating
RNA translation, stability, splicing and translocation, folding
and export [151, 152]. m6A modification frequently occurs
around the 3" untranslated regions (UTRs) and near stop
codons in mRNAs [153]. In addition, most m6A modifications
are enriched in a conserved motif RRACH (R=A/G, H=A/C/U)
[154]. The m6A modification is catalyzed by methyltransferase
complex (also called “writers”, including METTL3/14/16,
RBM15, VIRMA, ZC3H13 and WTAP), removed by demethy-
lases (also called “erasers”, including ALKBHS5, and FTO), and
recognized by a group of binding proteins (also called
“readers”, including YTHDC1, HNRNPA2B1, HNRNPC, and
YTHDF1/2/3) [155]. Several studies have suggested that m6A
modification plays a significant role in testicular injury and
the decrease of testosterone concentration caused by exog-
enous toxicants via regulating the expression of testosterone
biosynthesis-related enzymes in vivo and in vitro models
[156, 157]. PM,5 can alter m6A modification level and the
expression of RNA modulator gene [158]. Currently, only
m6A writer METTL3 and METTL16 have been identified to
participate in PM, s-induced injury [159, 160], while it is lack
of research on m6A erasers, readers, and other writers.

Conclusions

PM, 5 can lead to many adverse effects on male reproductive
system, especially in developing countries which face to the
challenge of air pollution. Testosterone plays an important
role in maintaining male reproductive health, especially for
fertility. Although PM,s has a negative impact on male
testosterone biosynthesis, few studies have focused on the
potential mechanisms. In this review, we aim to explore the
potential mechanisms of PM, 5 toxic effects on testosterone
level carefully and accurately according to scientific studies.
We summarized relevant mechanisms, including oxidative
stress, inflammatory response, ferroptosis, pyroptosis,
autophagy and mitophagy, miRNAs, ER stress, and m6A
modification, which might provide the basis for prevention
and treatment of male testosterone level disruption caused
by PM, . In the future, researchers should pay more atten-
tion on the toxic mechanisms of PM,; to testosterone
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biosynthesis. It is wish that under the theoretical framework
of this review, researchers can find more exact mechanisms
of these effects.

Highlights

PM,; causes male testosterone biosynthesis disruption
according to existing epidemiological and experimental
studies.

Testosterone biosynthesis is closely regulated via com-
plex pathways involving multiple catalytic enzymes.

PM, s-induced testosterone biosynthesis disruption may
lead to various adverse outcome on male health.

Potential toxic mechanisms of PM, 5 are oxidative stress,
inflammatory response, ferroptosis, pyroptosis, autophagy
and mitophagy, miRNAs, ER stress, and m6A modification.
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