




Supplementary Fig. 1 Arsenic (As) cycle in the environment and potential exposure to human [20]

Supplementary Fig. 2 Arsenic (III and V) predominance diagrams [34,37]

Supplementary Fig. 3 Redox (Eh)-pH diagram for arsenic at 25 $^{\circ}$ C and 1 atm with total As =10^{-5.3} mol/L and total S = 10⁻³ mol/L. Solid species depicted in parentheses in grey (shaded) area [34,37]

Supplementary Fig. 4 Arsenic contaminated states in India [98]

Supplementary Table 1 Natural sources of Arsenic (As) heavy metal [34]

Mineral	Composition	Occurrence
Native arsenic	As	Hydrothermal veins and deposits that contain other
		arsenic minerals
Niccolite	NiAs	A minor component of Ni-Cu ores in high-
		temperature hydrothermal veins
Safflorite	(Co,Fe)As ₂	Hydrothermal veins
Realgar	AsS	Vein deposits often associated with orpiment, clays,
Ominant	A a C	and limestones, deposits from hot springs
Orpiment	As_2S_3	Hydrothermal veins, hot springs, volcanic sublimation products
Cobaltite	CoAsS	Medium-temperature hydrothermal deposits,
		metamorphic rocks
Arsenopyrite	FeAsS	Arsenopyrite FeAsS The most abundant arsenic
1.7		mineral, dominantly in veins of hydrothermal origin,
		found in pegmatites, high-temperature gold, quartz and
		tin veins, in contact metamorphic sulphide deposits,
		also in gneisses, schists and other metamorphic rocks
Arsenian pyrite	$Fe(As,S)_2$	Hydrothermal veins, accessory mineral in igneous
• •		rocks, pegmatites and contact metamorphic deposits
Lollingite	$FeAs_2$	Mesothermal deposits associated with other sulfides
•		and calcite gaunge
Tennantite	$(Cu, Fe)_{12}As_4S_{13}$	Hydrothermal veins and contact metamorphic deposits
Enargite	Cu_3AsS_4	Hydrothermal vein deposits formed at medium
		temperatures
Arsenolite	As_2O_3	Secondary mineral formed by oxidation of FeAsS,
		native arsenic and other arsenic minerals
Scorodite	FeAsO ₄ .2H ₂ O	Secondary mineral formed by oxidation of arsenic-
		bearing sulfides
Annabergite	$(Ni,Co)_3(AsO_4)_2.8H_2O$	Secondary mineral formed by the alteration of Co-Ni-
		bearing arsenides and sulfides, in the oxidized zone of
		hydrothermal mineral deposits
Hoernesite	$Mg_3(AsO_4)_2.H_2O$	Secondary mineral, in limestone blocks and volcanic
	2.	tuff
Symplesite	$Fe^{2+}_3(AsO_4)_2.8H_2O$	Secondary mineral in the oxidized zone of some
		arsenic-rich hydrothermal mineral deposits
Conichalcite	CaCu(AsO ₄)OH	Secondary mineral in the oxidized zone of Cu deposits,
		an alteration product of enargite
Pharmacosiderite	$Fe_3(AsO_4)_2(OH)_3.5H_2O$	Secondary mineral formed by oxidation of FeAsS and
		other arsenic-bearing sulfides

Supplementary Table 2 Anthropogenic sources of arsenic (As) contamination occurs all around the world [34,36]

Country	Arsenic source	Arsenic concentrations
Mindanao Island,	Geothermal power plant suspected	Matingao and Marebl Rivers
Philippines	source	contaminated, 0.1 mg/L
Nakajo, Japan	Waste water from a factory	0.025-4.00 mg/L in local well
	producing arsenic sulfide	water
Toroku and Matsuo	Arsenious acid and white arsenic	-
villages, Japan	produced from FeAsS	
Behalla area, South	Industrial effluent discharge from	0.05-58 mg/L in well water
Calcutta, India	a factory manufacturing copper	
	acetoarsenite (Paris-Green)	
Czech Republic	Burning of arsenic contaminated coal	-
Toronto, Ontario Canada	Secondary lead smelters	-
Guizhou Province, China	Burning of arsenic rich coal	-
Srednogorie,	Copper smelter processing high	Air pollution and soil
Bulgaria	arsenic sulfide ores	contamination, local river: 0.75–
		1.5 mg/L
Anaconda,	Copper smelters	As_2O_3 emitted to the air,
Montana		contamination of local
		vegetation and soils, arsenic in
		soils: 212–236 mg/Kg
Ghana	Gold mining, arsenic	0.90–8.25 mg/L arsenic in water
	rich mine tailings	samples; 942–10,200 mg/kg
		arsenic in sediments
Lavrion, Greece	Lead mining and	Soils contamination. arsenic in
	smelting	garden soils and house dusts: up
		to 14,800 and 3800 mg/kg
Maa Mah Wallan	Lianita minina and	respectively
Mae-Moh Valley,	Lignite mining and	Arsenic-rich sediments in
Northern Thailand	power generation	streams, 1.2–325 g/L arsenic in
		surface waters, groundwater
		from deep tube wells in Mae
		Moh mine area – average 364 g/L As.
Nitra Valley in	Coal burning power	8.8–139.0 mg/kg arsenic in
central Slovakia	station	garden soils and 2.1–170 mg/kg
Ciluai Diovakia	SuuOli	in house dusts
		III House dusts

Supplementary Table 2 (continued)

Country	Arsenic source	Arsenic concentrations
Australia	Manufacture of: fertilizers, paint, electronics; gas works; mining (mainly gold deposits); power stations; transport; and wood preservatives	-
Japan	Wastewater from a factory producing arsenic sulfide, production of arsenious acid, manufacture of insecticides	-
SW England	Mining and smelting activities	Over 700 km2 of agricultural and urban land estimated as contaminated with arsenic. Soil contamination with concentrations up to 10% by mass reported at some mining sites Elevated arsenic concentrations in stream waters around former mining sites (5–30 g/L total As)
Patancheru,	Production of veterinary	Arsenic in groundwater:
AndhaPradesh state, India	chemicals and pharmaceuticals, pesticide industries	0.14–7.35 mg/L; arsenic in surface water: 0.30–8.95 mg/L

Supplementary Table 3 Arsenic occurrence in various types of minerals [31,34]

Mineral	Arsenic concentration (mg/kg)	
Sulfide minerals		
Arsenopyrite	46% by mass	
Pyrite	100–77,000	
Pyrrhotite	5–100	
Marcasite	20–126,000	
Galena	5–10,000	
Sphalerite	5–17,000	
Chalcopyrite	10–5,000	
Oxide minerals		
Haematite	160	
Fe oxide (undifferentiated)	2,000	
Fe III oxyhydroxide	76,000	
Magnetite	2.7–41	
Ilmenite	<1	
Silicate minerals		
Quartz	0.4–1.3	
Feldspar	<0.1–2.1	
Pyroxene	0.08–1.17	
Carbonates		
Calcite	1–8	
Dolomite	<3	
Siderite	<3	
Other minerals		
Apatite	<1-1,000	
Fluorite	<2	

Supplementary Table 4 Arsenic contents in the soils of various countries [20,21]

Country	Concentration (mg/kg)
India	16-417
Bangladesh	3.6–26
Argentina	0.8–22
China	0.01–626
France	0.1–5
Germany	2.5–4.6
Italy	1.8–60
Japan	0.4- 38.2
Mexico	2215–2675
South Africa	3.2–3.7
Switzerland	2–2.4
United States	280
Brazil	200–860
Chile	489
Poland	18,100
Spain	23
Turkey	660
United Kingdom	2–17

Supplementary Table 5 Some major aquatic systems (rivers, lakes, estuaries, and seas) on the globe have high arsenic concentrations [21]

Aquatic systems and location	Arsenic concentrations (average/range (μg/L)
Biwa Lake, Japan	2.2 (0.6–1.7)
Moira Lake, Ontario, Canada	20.4 (22.0–47.0)
Mono Lake, California, USA	10,000–20,000
Bunnefjord, Norway	0.5–1.9
Coastal Malaysia	1.0 (0.7–1.8)
Coastal Nakaminato, Japan	3.1
Deep Pacific andAtlantic	1.0–1.8
Krka Estuary, Yugoslavia	Yugoslavia 0.1–1.8
Rhone Estuary, France	2.2 (1.1–3.8)
Saanich Inlet, B.C., Canada	1.2–2.5
Schelde Estuary, Belgium	1.8–4.9
Southern coast, Australia	1.3 (1.1–1.6) (inorganic)
Southeast coast, Spain	1.5 (0.5–3.7)
Tamar Estuary, UK	2.7-8.8
Uranouchi Inlet, Japan	22.0–32.0
Vestfjord, Norway	0.7–1.0
Ashanti, Ghana	284 (<2–7900)
Cordoba, Argentina	7–114
Dordogne, France	0.7
Madison and Missouri rivers, USA	44 (19–67), 10–370
Mole River, NSW, Australia	110–600 (upto 13900)
Owens River, CA, USA	85–153
Po River, Italy	1.3
Ron Phibun, Thailand	218 (4.8–583)
Waikato, New Zealand	32 (28–36)