SUPPLEMENTAL MATERIAL

Table 1: List of Abbreviations

Abbreviation	Full form
BBP	butyl benzyl phthalate
ВЕНР	bis (2-ethylhexyl) phthalate
ВНС	benzene hexachloride
BPA	bisphenol A
CALUX	chemical activated luciferase gene expression
Cd	Cadmium
DDT	dichlorodiphenyltrichloroethane
DEHP	di (2-ethyl hexyl) phthalate
DEN	deep endometriotic nodules
DEP	diethyl phthalate
DES	Diethylstilbestrol
DL	dioxin like
DLC	dioxin like compounds
DMP	dimethyl phthalate
DnBP	di-n-butyl phthalate
DnOP	di-n-octyl phthalate
EDC	endocrine disrupting chemical
ETAAS	electrothermal atomic absorption spectrometry
GC	Gas chromatography
НСВ	hexachlorobenzene
Hg	Mercury
HPLC	high performance liquid chromatography
HRMS	high resolution mass spectometry
ICP-MS	inductively coupled plasma mass spectrometry
MS	mass spectometry
mBP / MBP	mono-n-butyl phthalate
mBzP / MBzP	mono-benzyl phthalate
mCHP/MCHP	monocyclohexyl phthalate
mCMHP/	mono-[(2-carboxymethyl) hexyl] phthalate
MCMHP	
mCPP / MCPP	mono (3-carboxypropyl) phthalate

mECPP /	mono (2-ethyl-5-carboxyphentyl) phthalate
MECPP	
mEHHP/	mono (2-ethyl-5- hydroxyhexyl) phthalate
МЕННР	
mEHP /	mono (2-ethylhexyl) phthalate
MEHP	
mEOHP /	mono (2-ethyl-5-oxohexyl) phthalate
MEOHP	
mEP / MEP	monoethyl phthalate
miBP	mono (2-isobutyl) phthalate
mNP	monoisonoyl phthalate
mOP /MOP	monooctyl phthalate
MRI	magnetic resonance imaging
MT	metallothioneins
Ni	Nickel
OCEP	organochlorinated environmental pollutant
OCP	organochlorinated pesticides
OHAT	Office of Health Assessment and Translation
OR	Odds ratio
Pb	Lead
PBB	Polybrominated-biphenyl
PBDE	Polybrominated-diphenyl-ether
PCB	polychlorinated biphenyl
PCDD	polychlorinated dibenzo dioxins
PCDF	polychlorinated dibenzo furans
PE	phthalate ester
POP	Persistent organochlorine pollutants
p-p'-DDE	1-1-dichloro-2,2-bis 4-chlorophenyl ethene
t-nonachlor	Trans-nonachlor
TCDD	2,3,7,8 tetrachloro dibenzo-p-dioxin
TEF	toxic equivalent factor
TEQ	toxic equivalent quotient
TMS	tandem mass spectometry
WHO	World Health Organization
UNEP	United Nations Environmental Program

USG	ultrasonography
95% CI	95% confidence interval

Table 2: PRISMA-P	(Preferr	red Reporting Items for Systematic review and Meta-Analysis Protocols) 2015 checkles a systematic review protocol	ist: recommended items to address in		
Section and topic	Item No	Checklist item	Comments		
ADMINISTRATIVE	INFOR	MATION			
Title:					
Identification	1a	Identify the report as a protocol of a systematic review	The PRISMA guidelines were used to conduct the systematic review.		
Update	1b	If the protocol is for an update of a previous systematic review, identify as such	Not applicable		
Registration	2	If registered, provide the name of the registry (such as PROSPERO) and registration number	Not applicable		
Authors:					
			Dr. Diksha Sirohi, School of Public Health, Faculty of Medicine, The University of Queensland (d.sirohi@uqconnect.edu.au);		
			Dr. Ruqaiya AL Ramadhani, School of Public Health, Faculty of Medicine, The University of Queensland (<u>r.alramadhani@uq.net.au</u>);		
Contact	3a	Provide name, institutional affiliation, e-mail address of all protocol authors; provide physical mailing address of corresponding author	Dr. Luke D. Knibbs, School of Public Health, Faculty of Medicine, The University of Queensland, (<u>l.knibbs@uq.edu.au</u>)		
			Physical mailing address of corresponding author: Dr. Diksha Sirohi, School of Public Health, Faculty of Medicine, The University of Queensland, Herston QLD - 4006		
Contributions	3b	Describe contributions of protocol authors and identify the guarantor of the review	Not applicable		

Amendments	4	Not applicable	
Support:			
Sources	5a	Indicate sources of financial or other support for the review	Not applicable
Sponsor	5b	Provide name for the review funder and/or sponsor	Not applicable
Role of sponsor or funder	5c	Describe roles of funder(s), sponsor(s), and/or institution(s), if any, in developing the protocol	Not applicable
INTRODUCTION	1		
Rationale	6	Describe the rationale for the review in the context of what is already known	Rationale for the review is addressed in the main manuscript on pages 5 and 6 in the Introduction section.
Objectives	7	Provide an explicit statement of the question(s) the review will address with reference to participants, interventions, comparators, and outcomes (PICO)	The PICO statement is explicitly described in the main manuscript on pages 6 and 7 under Search Strategy and Data Sources in the Materials and Methods section.
METHODS	1		
Eligibility criteria	8	Specify the study characteristics (such as PICO, study design, setting, time frame) and report characteristics (such as years considered, language, publication status) to be used as criteria for eligibility for the review	The PICO statement is described in the main manuscript on pages 6 and 7 under Search Strategy and Data Sources in the Material and Methods section. The inclusion criteria are described on pages 7 and 8 under the Material and Methods sections.
Information sources	9	Describe all intended information sources (such as electronic databases, contact with study authors, trial registers or other grey literature sources) with planned dates of coverage	Three electronic databases (PubMed, EMBASE and Scopus) were searched up to 2 July, 2018.
Search strategy	10	Present draft of search strategy to be used for at least one electronic database, including planned limits, such that it could be repeated	Details of the search strategy are described in Table-3 of the Supplemental Materials.
		l.	

Study records:					
Data management	11a	Describe the mechanism(s) that will be used to manage records and data throughout the review	The flow-chart showing the selection of studies is mapped out on page 10 of the main manuscript. The details on data management is described on page 11 of the main manuscript under the Result and Discussion section.		
Selection process	11b	State the process that will be used for selecting studies (such as two independent reviewers) through each phase of the review (that is, screening, eligibility and inclusion in meta-analysis)	Two reviewers will conduct the search of the databases independently and will apply the eligibility criteria independently to arrive at the final number of studies to be included in the review. Findings will be discussed and discrepancies will be resolved through mutual consensus.		
Data collection process	11c	Describe planned method of extracting data from reports (such as piloting forms, done independently, in duplicate), any processes for obtaining and confirming data from investigators	The data extraction process is described on page 11 in the main manuscript under the Results and Discussion section. Table-7 in the Supplemental Materials provides the summary of studies included in the review.		
Data items	12	List and define all variables for which data will be sought (such as PICO items, funding sources), any pre-planned data assumptions and simplifications	Data is sought for population (cases, operative or population cohort), exposure to different types of EDCs (BPA, PE, metals and trace elements, dioxins and DLC, organochlorinated environmental pollutants, PCB), controls (controls) and outcome (endometriosis). This systematic review did not receive any funding.		
Outcomes and prioritization	13	List and define all outcomes for which data will be sought, including prioritization of main and additional outcomes, with rationale	Outcome is the diagnosis of endometriosis. Studies in which endometriosis was diagnosed surgically and/or by histopathology or by the means of ultrasonography or magnetic resonance imaging were included in this review. Surgical visualization and histopathology are the gold-standard for diagnosis, while		

			ultrasonography and magnetic resonance imaging have decent sensitivity in diagnosing endometriosis.		
Risk of bias in individual studies	14	Describe anticipated methods for assessing risk of bias of individual studies, including whether this will be done at the outcome or study level, or both; state how this information will be used in data synthesis	The Risk of Bias Assessment is described on page 9 in the main manuscript. Table-6 of the Supplemental Materials gives the risk of bias assessment ratings.		
Data synthesis	15a	Describe criteria under which study data will be quantitatively synthesised	Not applicable		
	15b	If data are appropriate for quantitative synthesis, describe planned summary measures, methods of handling data and methods of combining data from studies, including any planned exploration of consistency (such as I^2 , Kendall's τ)	Not applicable		
	15c	Describe any proposed additional analyses (such as sensitivity or subgroup analyses, meta-regression)	Not applicable		
	15d	If quantitative synthesis is not appropriate, describe the type of summary planned	Effect estimates, 95% confidence interval, and an assessment of confounding variables are used to review the studies.		
Meta-bias(es)	16	Specify any planned assessment of meta-bias(es) (such as publication bias across studies, selective reporting within studies)	Not applicable		
Confidence in cumulative evidence	17	Describe how the strength of the body of evidence will be assessed (such as GRADE)	The quality assessment of individual studies was carried out using the New Castle Ottawa Checklist for case-control and cohort studies. This is described on page 8 of the main manuscript and in Table-4 and Table-5 of the Supplemental Materials. The NTP / OHAT guidelines for Human and Animal Studies was used to evaluate the body of evidence. This is described on page 9 of the main manuscript under Risk of Bias Assessment and in Table-6 of Supplemental Materials.		

Table 3 - Details of search terms

Sr. No	Category	Search Terms
1	Clinical condition	Endometriosis OR Adenomyosis OR Endometrio* OR Chocolate cyst
2	EDC types	Endocrine disrupting chemical OR endocrine disruptors OR trace element OR metal OR organochlorine,
		OR polychlorinated biphenyl OR polybrominated diphenyl ether OR dioxin OR phthalate OR bisphenol A
		OR OCP OR PCB OR PBB OR EDC OR BPA
3	Study Design	cohort OR follow up OR longitudinal OR prospective OR case-control OR study OR studies OR stud*

Case- Control Study		selection	1		compar	ability		exposure		overal
·	Case definition	Case representativeness	Control selection	Control definition	Main confounder	Other factors	Ascertain ment of exposure	Same method for case and control	Non- response rate	
1. Upson et al, A population-based case-control study of urinary bisphenol A concentrations and risk of endometriosis	*	*	*	*	*	*	*	*	*	9
2. Huang et al, Association between phthalate exposure and glutathione S- transferase M1 polymorphism in adenomyosis, leiomyoma and endometriosis	*	-	-	*	*	*	*	*	*	7
3. BS Reddy, Association of phthalate esters with endometriosis in Indian women	*	-	-	*	*	-	*	*	-	5

-										
4. Heilier et al, Assessment of cadmium impregnation in women suffering from endometriosis: a preliminary study	*	*	-	*	*	*	*	*	-	7
5. Hiroaki Itoh, a case- control study of the association between urinary cadmium concentration and endometriosis in infertile Japanese women	*	-	-	-	*	*	*	*	*	6
6. Elena De Felip , Dioxin-like compounds and endometriosis: a study on Italian and Belgian women of reproductive age	*	-	-	*	*	-	*	*	*	5
7. Cai LY et al, Dioxins in ascites and serum of women with endometriosis: a pilot study	*	-	-	*	*	*	*	*	*	7
8. Porpora et al, Endometriosis and OCEP: A case control study on Italian women of reproductive age	*	1	-	*	*	*	*	*	*	7
9. Silva et al, Elevated levels of whole blood nickel in a group of Sri Lankan women	*	- hospital	hospital	*	* age matched	-	*	*	*	6

with endometriosis: a										
case										
control study										
10. JF Heilier et al,	*	-	-	-	-	-	*	*	_	3
Environmental and										
host-associated risk										
factors in										
endometriosis and										
deep endometriotic										
nodules: A matched										
case-control study										
11. Heilier et al,	*	-	-	*	-	-	*	*	*	5
Cadmium, Lead and										
Endometriosis										
12. Roya Rozati et al,	*	=	-	*	*	-	*	*	-	5
Evaluation of the										
Phthalate Esters in										
South Indian Women										
with Endometriosis										
13. Trabert et al , Non –	*	*	*	*	*	*	*	*	*	9
Dioxin-Like										
Polychlorinated										
Biphenyls and Risk of										
Endometriosis										
14. Upson et al,	*	*	*	*	*	*	*	*	*	9
Phthalates and risk of										
endometriosis										
15. Germaine Lebel et	*	-	-	*	*	*	*	*	*	7
al, Organochlorine										
exposure and risk of										Ì
endometriosis										
16. Niskar AS, Serum	*	-	-	*	*	*	*	*	*	7
Dioxin,										
Polychlorinated										
Biphenyls and										Ì
Endometriosis: A case										

control study in										
Atlanta										
17. A.Pauwels ,The risk of endometriosis and exposure to dioxins and PCB: a case control study of infertile women	*	-	-	*	*	*	*	*	*	7
18. Reddy et al, High plasma concentrations of polychlorinated biphenyls and phthalate esters in women with endometriosis: a prospective case control study	*	-	-	*	-	-	*	*	-	4
19. Porpora et al, Increased levels of polychlorobiphenyls in Italian women with endometriosis	*	-	-	*	*	*	*	*	*	7
20. Heilier JF et al, Increased dioxin-like compounds in the serum of women with peritoneal endometriosis and deep endometriotic (adenomyotic) nodules	*	-	-	-	*	*	*	*	*	6

21. MA Martinez et al,	*	=	-	*	*	*	*	*	*	7
Increased levels of										
dioxin-like substances										
in adipose tissue in										
patients										
with deep infiltrating										
endometriosis										
22. Simsa et al,	*	=	-	*	*	-	*	*	*	6
Increased exposure to										
dioxin-like										
compounds is										
associated with										
endometriosis in a										
case-control study in										
women										
23. Kim SH et al,	*	-	-	*	*	*	*	*	*	7
Increased plasma										
levels of phthalate										
ester in women										
with advanced-stage										
endometriosis: a										
prospective case-										
control study										
24. Schiattarella A et	*	=	-	*	-	-	*	*	-	4
al, Plasma and										
urinary levels of lead										
and cadmium in										
patients with										
endometriosis										
25. Rashidi B.H e al,	*	-	-	-	*	*	*	*	*	6
A case-control study										
of bisphenol A and										
endometrioma among										
subgroup of Iranian										
women										

	•	1				ı		1	1	
26. Porpora M. G et al,	*	-	-	*	*	*	*	*	*	7
Endometriosis and										
Organochlorinated										
Environmental										
Pollutants: A case-										
control Study on										
Italian Womenof										
Reproductive Age										
27. Ploteau S et al,	*	-	-	*	*	*	*	*	-	6
Associations between										
internal exposure										
levels of persistent										
organic pollutants in										
adipose tissue and										
deep infiltrating										
endometriosis with or										
without concurrent										
ovarian										
endometrioma										
28. Simonelli A et al,	*	-	-	*	-	-	*	*	*	5
Environmental and										
occupational										
exposure to bisphenol										
A and endometriosis:										
urinary and										
peritoneal fluid										
concentration levels										

		Tal	ble 5: QUALI	TY ASSESSME	ENT FOR COL	HORT STUD	IES			
Cohort Study		Selecti	on		compar	ability		outcome		overall
	Exposed cohort representative ness	non exposed cohort selection	Ascertainm ent of exposure	outcome of interest was not present at the start of study	Main confounder	Other factors	Assessment of outcome	Was follow- up long enough for outcomes to occur	Adequacy of follow up of cohorts	
1. Louis GM Buck et al, Environmental PCB exposure and risk of endometriosis	*	*	*	*	*	*	*	-	*	8
2. Louis GM Buck et al, Bisphenol A and phthalates and endometriosis: the Endometriosis: Natural History, Diagnosis and Outcomes Study	*	*	*	*	*	*	*	-	*	8
3. Louis GM Buck et al, Persistent Lipophilic Environmental Chemicals and Endometriosis: The ENDO Study	*	*	*	*	*	*	-	-	*	7
4. Pollack AZ et al, Trace elements and endometriosis: The ENDO Study	*	*	*	*	*	*	-	-	*	7

5. Cooney MA et al,	*	*	*	*	*	*	*	-	-	7
Organochlorine										
pesticides and										
endometriosis										

			1	TABLE 6:	RISK O	F BIAS A	SSESSMI	ENT RA	TINGS						
Bias Domains and Questions / Name of the study	Upson et al, 2014	Simonel li et al 2016	Rashidi et al 2017	Buck Louis et al 2013	Upson et al 2013	Rozati et al 2008	Reddy at el 2006	Kim et al 2011	Huang et al 2010	Pollack et al 2013	Silva et al 2013	Itoh et al 2008	Heilier et al 2004	Heilier et al 2006	Pauwels et al 2001
Selection Bias															
Did selection of study participants result in appropriate comparison groups?	(++)	(+)	(+)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(-)	(-)	NR	(-)
Confounding Bias															
Did the study design or analysis account for important confounding and modifying variables? (Key Domain)	(+)	NR	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(-)	(+)	(+)	(-)	(+)
Attrition / Exclusion Bias															
Were outcome data complete without attrition or exclusion from analysis?	(+)	(-)	(-)	(+)	(+)	(-)	(-)	(+)	(+)	(++)	(+)	(+)	(++)	NR	(+)
Detection Bias															
Can we be confident in the exposure characterization? (Key Domain)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)
Can we be confident in the outcome assessment? (Key Domain)	(++)	(++)	(+)	(++)	(++)	(++)	(++)	(++)	(++)	(+)	(++)	(++)	()	(+)	(+)
Selective Reporting Bias															
Were all measured outcomes reported?	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)

Other Sources of Bias															
Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(++)	(+)	(+)	(+)	(+)	(+)
Conflict of Interest	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Summary of Tiered Classification	Tier 1	Tier 2	Tier 2	Tier 1	Tier 1	Tier 2	Tier 2	Tier 1	Tier 1	Tier 1	Tier 2				

[Key: (++) Definitely low risk of bias, (+) Probably low risk of bias, (-) Probably high risk of bias, (--) Definitely high risk of bias, NR Reasons not recorded]

		Т	ABLE 6	CONTIN	UED: RI	SK OF B	IAS ASSE	SSMENT	RATINGS					
Bias Domains and Questions / Name of the study	Niskar et al 2009	Martinez et al 2015	Simsa et al 2010	Heilier et al 2005	Cai et al 2011	De Felip et al 2004	Ploteau et al 2017	Lebel et al 1998	Porpora et al 2009	Buck Louis et al 2012	Cooney et al 2010	Louis et al 2005	Trabert et al 2010	Porpora et al 2006
Selection Bias				1			1	1	1	1		I		
Did selection of study participants result in appropriate comparison groups?	NR	(++)	NR	NR	NR	()	(+)	(+)	(+)	(++)	NR	(+)	(++)	(NR)
Confounding Bias		-		•			•	•		•	•	•	-	
Did the study design or analysis account for important confounding and modifying variables? (Key Domain)	(+)	(+)	(+)	(+)	(+)	(-)	(+)	(+)	(+)	(+)	(-)	(+)	(+)	(+)
Attrition / Exclusion Bias		•			•	•	•	•	•	•	•		•	
Were outcome data complete without attrition or exclusion from analysis?	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Detection Bias														
Can we be confident in the exposure characterization? (Key Domain)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)
Can we be confident in the outcome assessment? (Key Domain)	NR	(+)	(++)	(-)	(+)	(++)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(++)

Were all measured outcomes reported?	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)	(++)
Other Sources of Bias														
Were there no other potential threats to internal validity (e.g., statistical methods were appropriate and researchers adhered to the study protocol)?	(+)	(+)	(+)	(+)	(+)	(-)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Conflict of Interest	(+)	(++)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)	(+)
Summary of Tiered Classification	Tier 2	Tier 1	Tier 1	Tier 2	Tier 2	Tier 2	Tier 1	Tier 1	Tier 1	Tier 1	Tier 2	Tier 1	Tier 1	Tier 2

[Key: (++) Definitely low risk of bias, (+) Probably low risk of bias, (-) Probably high risk of bias, (--) Definitely high risk of bias, NR Reasons not recorded]

Table 7: Summary of studies included

Study / Reference no.	Location	Study design	N	Age Mean (+ SD) Or Range	Outcome Assessment	Confounders	Exposu	re Assessment
			Ca / Co	Ca / Co	Diagnosis		Chemical	Specimen
Upson et al, 2014 / [13]	USA	Population based case control	144 / 291	17–49 years	Ca: Sur Co: MRI	Age, reference year, natural logarithm transformed urinary creatinine, education, alcohol consumption, smoking status and race	BPA	Urine
Simonelli et al 2016 / [20]	Italy	Case control	60 / 68	<30 - ≥40 years	Ca: Sur Co: Unclear	Not explicitly stated	BPA	Urine and peritoneal fluid
Rashidi et al 2017 / [19]	Iran	Case control	50 / 50	Ca: 32.22 +5.34 Co: 33.20 +5.46	Ca: Sur Co: USG	Age, BMI, parity and education	BPA	Urine
Buck Louis et al 2013 / [21]	USA	Matched cohort	Operative Cohort 190 / 283 Population Cohort 14 / 127	Operative Cohort Ca: 32.0 +6.8 Co: 33.6 +7.1 Population Cohort Ca: 33.1 +8.3 Co: 32.1 +7.8	Operative Cohort: Sur Population Cohort: MRI	Age, BMI, urinary creatinine	BPA and PE	Urine
Upson et al 2013 / [31]	USA	Population based case control	92 / 195	18–49 years	Ca: Sur Co: Unclear	Age, reference year, natural logarithm transformed urinary creatinine, education, alcohol consumption and smoking status	PE	Urine
Rozati et al 2008 / [30]	India	Case control	99 / 135	Ca: 25.6 +4.2 Co: 26.4 +4.7	Ca; Sur Co: Sur	BMI, age at menarche, duration of infertility and clinical symptoms	PE	Blood
Reddy at el 2006 / [29]	India	Case control	49 / 59	Ca: 26.2 +4.2 Co I: 27.4 +4.7 Co II: 27.1 +3.4	Ca: Sur Co: Sur	Not explicitly stated	PE	Blood

Kim et al 2011 / [32]	Korea	Prospective case control	97 / 169	Ca: 34.8 +0.7 Co: 34.9 +0.5	Ca: Sur Co: Sur	Number of deliveries, BMI and plasma MEPH levels and DEHP levels	PE	Blood
Huang et al 2016 / [28]	Taiwan	Case control	80 / 29	Ca: EN: 34.3 +7.5 LEI: 41.1 +6.8 AD: 43.2 +6.5 Co: 36.2 +9.0	Ca: Sur Co: Sur	GSTM1 polymorphism and BMI for EN GSTM1 genotype and age for AD and LEI. Adjusted for creatinine	PE	Urine and serum (peripheral lymphocytes)
Pollack et al 2013 / [38]	USA	Matched cohort	Operative Cohort 190 / 283 Population Cohort 14 / 113	Operative Cohort Ca: 32.0 +6.8 Co: 33.6 +7.1 Population Cohort Ca: 33.1 +8.3 Co: 32.1 +7.8	Operative Cohort: Sur Population Cohort: MRI	Age, BMI, smoking site, race, vitamin use and creatinine	Cd, Pb, Hg, and trace elements	Urine and blood
Silva et al 2013 / [40]	Sri-Lanka	Case control	50 / 50	Ca: 33.0 +5.4 Co: 32.7 +5.4	Ca: Sur Co: Sur	Age	Cd, Ni, Pb	Blood
Itoh et al 2008 / [47]	Japan	Case control	54 / 74	20- 45 years	Ca: Sur Co: Sur	Menstrual regularity, BMI, age at menarche, alcohol consumption and smoking status	Cd	Urine
Heilier et al 2004 / [46]	Belgium	Prospective case control	59 / 21	Ca: EN: 30.7 +6.9 DEN: 29.7 +6.3 Co: 31.4 +5.5	Ca: MRI / Rectal USG / CA 125 Co: Asymptomatic	Age, smoking	Cd	Urine and blood
Heilier et al 2006 / [45]	Belgium	Case control	81 / 25	Ca: ENDO: 31.5 +6.5 DEN: 29.3 +6.8 BD: 29.4 +4.8 Co: 30.5 +5.6	Ca: Sur Co: Vaginal echography and CA 125	Smoking	Cd, Pb	Urine and blood
Pauwels et al 2001 / [71]	Belgium	Case control	42 / 27	Ca: 25-42 years Co: 24-41 years	Ca: Sur Co: Sur	Age, BMI, smoking status, alcohol consumption, caffeine intake and ovulatory dysfunction	Dioxins, DL Co- planar PCB, Non- Co-planar PCB	Blood
Niskar et al 2009 / [70]	USA	Case control	60 / 64	20-45 years	Ca: Sur Co: 48% by Sur	Lipid	PCDD, PCDF, PCB, p,p'-DDE	Blood
Martinez et al 2015 / [66]	Spain	Case control	30 / 30	Ca: 32.5 +3.8 Co: 31.1 +4.9	Ca: Sur Co: Sur	Age, smoking and BMI.	PCDD, PCDF, PCB	Adipose tissue
Simsa et al 2010 / [68]	Belgium	Case Control	96 / 105	Ca: 24 - 42 years Co: 20 - 46 years	Ca: Sur Co: Sur	Age	DLC	Blood

[N: number of participants, Ca: cases, Co: controls, EN: endometriosis, LEI: leiomyoma, AD: adenomyosis, DIE: deep infiltrating endometriosis, DEN: deep endometriotic nodules, ENDO: peritoneal endometriosis, OvE: ovarian endometrioma, BD: Both deep endometriotic nodules and peritoneal endometriosis (ENDO), Sur: surgery, MRI: magnetic resonance imaging, USG: ultrasonography, HP: histopathology]

Heilier et al 2005 / [65]	Belgium	Case control	50 / 21	Ca: ENDO: 31.8 +6.5 DEN: 30.8 +7.0 Co: 31.1 +6.0	Ca: Sur, HP, MRI Co: Vaginal echography and CA 125	Age, BMI	PCDD, PCDF, DL-PCB	Blood
Cai et al 2011 / [64]	Japan	Pilot case control	10 / 7	Ca: 33.5 +3.6 Co: 36.4 +5.9	Ca: Sur Co: Sur	Age, parity, smoking and BMI	PCDD, PCDF, PCB	Serum and peritoneal fluid
De Felip et al 2004 / [69]	Belgium and Italy	Pilot case control	23 / 17	18- 40 years	Ca: Sur Co: Sur	Parity and diet	PCDD, PCDF, PCB	Blood
Ploteau et al 2017 / [67]	France	Case control	55 / 44	Ca: DIE only: 32.7 +6.4 DIE+OvE: 36.7 +4.7 Co: 32.7 +6.4	Ca: Sur Co: Asymptomatic	Age and BMI	PBDE, PBB, PCDD, DL-PCB, NDL-PCB, OCP	Serum and adipose tissue
Lebel et al 1998 / [82]	Canada	Case control	86 / 70	Ca: 32.2 +5.9 Co: 33.2 +7.0	Ca: Sur Co: Sur	Age, BMI, parity and indication for laparoscopy	PCB, OCP	Blood
Porpora et al 2009 / [72]	Italy	Case control	80 / 78	Ca: 31.6 +6.0 Co: 29.5 +6.1	Ca: Sur Co: Sur	Age, BMI, smoking habits and weight loss	HCB, p.p'-DDE, PCDD, PCDF, DL-PCB, NDL- PCB	Blood
Buck Louis et al 2012 / [59]	USA	Matched cohort	Operative Cohort 190 / 283 Population Cohort 14 / 113	Operative Cohort Ca: 32.0 +6.8 Co: 33.6 +7.1 Population Cohort Ca: 33.1 +8.3 Co: 32.1 +7.8	Operative Cohort: Sur Population Cohort: MRI	Age, BMI, breastfeeding, serum cotinine, lipid	PCB, PBDE, HCB, HCH, beta- HCH, gamma- HCH	Blood, urine and omental fat
Cooney et al 2010 / [88]	USA	Cohort	29 / 51	Ca: 32 +4 Co: 31 +5	Ca: Sur Co: Not explicitly stated	Lipid and smoking	OCP	Blood
Louis et al 2005 / [79]	USA	Cohort	32 / 54	Ca: 32.7 +4.44 Co: 31.6 +4.96	Ca: Sur Co: Sur	Gravidity, parity, current smoking status and serum lipids	РСВ	Blood
Trabert et al 2010 / [81]	USA	Case control	251 / 538	18-49 years	Ca: Sur Co: Asymptomatic	Alcohol intake, income, age, lipid and quartile of serum p-p'-DDE	PCB	Blood
Porpora et al 2006 / [80]	Italy	Case control	40 / 40	22 – 40 years	Ca: Sur Co: Sur	Age and smoking.	РСВ	Blood

[N: number of participants, Ca: cases, Co: controls, EN: endometriosis, LEI: leiomyoma, AD: adenomyosis, DIE: deep infiltrating endometriosis, DEN: deep endometriotic nodules, ENDO: peritoneal endometriosis, OvE: ovarian endometrioma, BD: Both deep endometriotic nodules (ENDO), Sur: surgery, MRI: magnetic resonance imaging, USG: ultrasonography, HP: histopathology]

Table 8: Results showing the effect estimates for urinary bisphenol-A (BPA) and endometriosis

Author and Reference	Effect Est	imate					
Upson et al, 2014 / [13]	Total BPA in microgram / L	OR ^a for NPE ^b / 95% CI ^c					
	= 0.364</td <td>1.0</td>	1.0					
	>0.364 - 0.863	3.3 (1.3, 8.3)					
	>0.863 – 2.01	2.9 (1.1, 7.6)					
	>2.01	1.7 (0.6, 1.1)					
Buck Louis et al, 2013 /	OR for operative cohort 0.96 95% C	I (0.79, 1.19) OR for population					
[21]	cohort 1.68 95% CI (0.96, 2.92)						
Rashidi et al, 2017 / [19]	OR = 1.74 (95% CI 1.40 -2.16) P < 0.	001					
Simonelli et, al, 2016 /	The relationship between endometrio	sis and the expected occupational					
[20]	exposure shows statistically significant dependence ($\chi 2 = 6.830$, p =						
	0.01) and an OR of 0.38 (95 % CI, 95 % CI 0.18–0.79), with a higher						
	percentage of patients in the unexpected exposed workers.						

Key: a = odds ratio, b = Non-ovarian pelvic endometriosis, c = 95% confidence interval

Table 9: Results showing the effect estimates for phthalate esters (PEs) and endometriosis

Author and Reference	Effect Estimate
Buck Louis et al, 2013 /	Limit of quantitation measured in ng/mL
[21]	mBP
	(Operative cohort)- $OR^a = 1.11 95\% CI^b (0.86, 1.43)$
	(Population cohort)- OR = 2.62 95% CI (1.14, 6.05)
	mCMHP
	(Operative cohort)- $OR = 0.9895\% CI (0.77, 1.26)$
	(Population cohort)- OR = 2.65 95% CI (1.33, 5.31)
	mOP
	(Operative cohort)- OR = 1.06 95% CI (0.87, 1.29). Sensitivity
	analysis OR = 1.38 95% CI (1.10, 1.72)
	(Population cohort)- OR = 0.84 95% CI (0.40, 1.78)
	mEHP
	(Operative cohort)- OR = 1.20 95% CI (0.97, 1.49). Sensitivity
	analysis OR = 1.35 95% CI (1.03, 1.78)
	(Population cohort)- OR = 2.59 95% CI (1.17, 5.75)
	Sum of DEHP metabolites OR = 2.81 95% CI (1.42,5.56)
Upson K et al, 2013 / [31]	Phthalate ester quartiles in ng/mL
	Sum of DEHP $P = 0.053$
	= 0.06 OR = 1.0</th
	>0.06-0.18 OR = 1.1 95% CI (0.5, 2.5)
	>0.18-0.50 OR= 0.7 95% CI (0.3, 1.8)
	>0.50 OR = 0.4 95% CI (0.1, 1.13)
	Sum of BzBP $P = 0.559$
	= 0.03 OR = 1.0</th
	>0.03 – 0.07 OR = 1.7 95% CI (0.7, 4.2)
	>0.07- 0.16 OR = 0.9 95% CI (0.3, 2.8)
	>0.16 OR = 1.2 95% CI (0.3, 4.2)
	Sum of DBP P = 0.986:
	= 0.03 OR = 1.0</th
	>0.03 – 0.06 OR = 1.3 95% CI (0.5, 3.1)
	>0.06 – 0.12 OR = 1.3 95% CI (0.5, 3.5)
	>0.12 OR = 1.3 95% CI (0.4, 4.3)
	MEHP OR = 0.3 95% CI (0.1, 0.7) P=0.012

DMP: Cases: 0.03 (0.72), Controls: 0.04 (0.10), t: 5.13; p <0.0001 DEP: Cases: 0.89 (0.84), Controls: 0.9 (0.18), t: 5.13; p <0.0001 DnBP: Cases: 0.98 (0.96), Controls: 0.55 (0.89), t: -9.52; p <0.0001 BBP: Cases: 3.32 (2.17), Controls: 0.15 (0.21), t: 5.22; p <0.0001 DEHP: Cases: 2.15 (1.99), Controls: 0.15 (0.21), t: 5.22; p <0.0001 The correlation between PEs concentration (control group) and endometriosis different severity was strong and significant: DMP: r=+0.03, p<0.0001; DnBP r=+0.39, p<0.0001; BBP: r=+0.89, p<0.0001; DnDP: r=+0.66, p<0.0001 BBP: r=+0.89, p<0.0001; DnDP: r=+0.66, p<0.0001 Mean in micrograms/ml (SD), Control vs cases t-value; p-value: DnBP: Cases: 0.44 (0.41), Control I: 0.08 (0.14), Control II: 0.15 (0.21), t. (Control I vs cases): 5.13; p<0.0001, (Control III vs cases): 3.01, p=0.004 BBP: Cases: 0.66 (0.61), Controls I: 0.12 (0.20), Control III: 0.11 (0.22), t. (Control I vs cases): 5.13; p<0.0001, (Control II vs cases): 3.94, p=0.0002 DnOP: Cases: 2.44 (2.17), Controls I: 0.50 (0.80), Control II: 0.45 (0.68), t. (Control I vs cases): 5.22, p<0.0001, t. (Control II vs cases): 4.10, p=0.0001 The correlation between PEs concentration (control group) and endometriosis different severity was strong and significant: DnBP = r = +0.73; P<0.0001, BBP = r = +0.78; P<0.0001, DnOP = r = +0.73; P<0.0001, BBP = r = +0.78; P<0.0001, DnOP = r = +0.73; P<0.0001, BBP = r = +0.44 P<0.0014 Mean concentrations in plasma in ng / mL	Rosati et al, 2008 / [30]	Mean in micrograms/ml (SD), Control vs cases t-value; p-value:
Cases: 0.03 (0.72), Controls: 0.04 (0.10), t: 5.13; p <0.0001 DEP:	100001 0001 20007 [50]	
DEP:		Cases: 0.03 (0.72), Controls: 0.04 (0.10), t: 5.13; p < 0.0001
DnBP: Cases: 0.98 (0.96), Controls: 0.55 (0.89), t: -9.52; p <0.0001		
Cases: 0.98 (0.96), Controls: 0.55 (0.89), t: -9.52; p <0.0001 BBP: Cases: 3.32 (2.17), Controls: 0.15 (0.21), t: 5.22; p <0.0001 DEHP: Cases: 2.15 (1.99), Controls: 0.11 (0.22), t: 0.33; p=0.0014 The correlation between PEs concentration (control group) and endometriosis different severity was strong and significant: DMP: r=+0.03, p<0.0001; DnBP r=+0.39, p<0.0001; BBP: r=+0.89, p<0.0001; DnDP: r=+0.66, p<0.0001 and BEHP: r=+0.33, p<0.0014) Mean in micrograms/ml (SD), Control vs cases t-value; p-value: DnBP: Cases: 0.44 (0.41), Controls I: 0.08 (0.14), Control II: 0.15 (0.21), t (Control I vs cases): 5.13; p <0.0001, t (Control I vs cases): 3.01, p=0.004 BBP: Cases: 0.66 (0.61), Controls I: 0.12 (0.20), Control II: 0.11 (0.22), t (Control I vs cases): 5.13; p <0.0001, t (Control II vs cases): 3.94, p=0.0002 DnOP: Cases: 3.32 (2.17), Controls I: 0, Control II: 0, DEHP: Cases: 2.44 (2.17), Controls I: 0.50 (0.80), Control II: 0.45 (0.68), t (Control I vs cases): 5.22, p<0.0001, t (Control I vs cases): 4.10, p=0.0001 The correlation between PEs concentration (control group) and endometriosis different severity was strong and significant: DnBP = r = +0.73; P <0.0001, BBP = r = +0.78; P <0.0001, DnOP = r = +0.73; P <0.0001, DnOP = r = +0.74 P <0.0001, DnOP = r = +0.73; P <0.0001, DnOP = r = +0.44 P <0.0014 Kim et al, 2011 / [32] Mean concentrations in plasma in ng / mL 1. DEHP: Cases: 179.7 Controls: 92.5 OR = 1.001 95% CI (1.000,		Cases: 0.89 (0.84), Controls: 0.9 (0.18), t: 5.13; p < 0.0001
BBP: Cases: 3.32 (2.17), Controls: 0.15 (0.21), t: 5.22; p <0.0001 DEHP: Cases: 2.15 (1.99), Controls: 0.11 (0.22), t: 0.33; p=0.0014 The correlation between PEs concentration (control group) and endometriosis different severity was strong and significant: DMP: r=+0.03, p<0.0001; DnBP r=+0.39, p<0.0001; BBP: r=+0.89, p<0.0001; DnOP: r=+0.66, p<0.0001 and BEHP: r=+0.33, p<0.0014) Mean in micrograms/ml (SD), Control vs cases t-value; p-value: DnBP: Cases: 0.44 (0.41), Controls I: 0.08 (0.14), Control II: 0.15 (0.21), (Control I vs cases): 5.13; p <0.0001, (Control II vs cases): 3.01, p=0.004 BBP: Cases: 0.66 (0.61), Controls I: 0.12 (0.20), Control II: 0.11 (0.22), (Control I vs cases): 5.13; p <0.0001, (Control II vs cases): 3.94, p=0.0002 DnOP: Cases: 3.32 (2.17), Controls I: 0.50 (0.80), Control II: 0.45 (0.68), (Control I vs cases): 5.22, p<0.0001, (Control II vs cases): 4.10, p=0.0001 The correlation between PEs concentration (control group) and endometriosis different severity was strong and significant: DnBP = r = +0.73; P <0.000, DEHP = r = +0.44 P <0.00014 Kim et al, 2011 / [32] Mean concentrations in plasma in ng / mL 1. DEHP: Cases: 179.7 Controls: 92.5 OR = 1.001 95% CI (1.000,		DnBP:
Cases: 3.32 (2.17), Controls: 0.15 (0.21), t: 5.22; p <0.0001 DEHP: Cases: 2.15 (1.99), Controls: 0.11 (0.22), t: 0.33; p=0.0014 The correlation between PEs concentration (control group) and endometriosis different severity was strong and significant: DMP: r=+0.03, p<0.0001; DnBP: r=+0.39, p<0.0001; DnBP: r=+0.66, p<0.0001 and BEHP: r=+0.33, p<0.0001; DnOP: r=+0.66, p<0.0001 and BEHP: r=+0.33, p<0.00014) Reddy et al, 2006 / [29] Mean in micrograms/ml (SD), Control vs cases t-value; p-value: DnBP: Cases: 0.44 (0.41), Controls I: 0.08 (0.14), Control II: 0.15 (0.21), t (Control I vs cases): 5.13; p <0.0001, t (Control I vs cases): 3.01, p=0.004 BBP: Cases: 0.66 (0.61), Controls I: 0.12 (0.20), Control II: 0.11 (0.22), t (Control I vs cases): 5.13; p <0.0001, t (Control II vs cases): 3.94, p=0.0002 DnOP: Cases: 3.32 (2.17), Controls I: 0.50 (0.80), Control II: 0.45 (0.68), t (Control I vs cases): 5.22, p<0.0001, t (Control II vs cases): 4.10, p=0.0001 The correlation between PEs concentration (control group) and endometriosis different severity was strong and significant: DnBP = r = +0.73; P <0.0001, BBP = r = +0.78; P <0.0001, DnOP = r = +0.73; P <0.0000, DEHP = r = +0.44 P <0.0014 Kim et al, 2011 / [32] Mean concentrations in plasma in ng / mL 1. DEHP: Cases: 179.7 Controls: 92.5 OR = 1.001 95% CI (1.000,		
DEHP:		BBP:
Cases: 2.15 (1.99), Controls: 0.11 (0.22), t: 0.33; p=0.0014 The correlation between PEs concentration (control group) and endometriosis different severity was strong and significant: DMP: r=+0.03, p<0.0001; DnBP r=+0.39, p<0.0001; BBP: r=+0.89, p<0.0001; DnDP: r=+0.66, p<0.0001 and BEHP: r=+0.33, p<0.0014) Reddy et al, 2006 / [29] Mean in micrograms/ml (SD), Control vs cases t-value; p-value: DnBP: Cases: 0.44 (0.41), Controls I: 0.08 (0.14), Control II: 0.15 (0.21), t (Control Ivs cases): 5.13; p <0.0001, t (Control II vs cases): 3.01, p=0.004 BBP: Cases: 0.66 (0.61), Controls I: 0.12 (0.20), Control II: 0.11 (0.22), t (Control I vs cases): 5.13; p <0.0001, t (Control II vs cases): 3.94, p=0.0002 DnOP: Cases: 3.32 (2.17), Controls I: 0, Control II: 0, DEHP: Cases: 2.44 (2.17), Controls I: 0.50 (0.80), Control II: 0.45 (0.68), t (Control I vs cases): 5.22, p<0.0001, t (Control II vs cases): 4.10, p=0.0001 The correlation between PEs concentration (control group) and endometriosis different severity was strong and significant: DnBP = r = +0.73; P <0.0001, BBP = r = +0.78; P <0.0001, DnOP = r = +0.73; P <0.0001, DnOP = r = +0.44 P <0.0014 Kim et al, 2011 / [32] Mean concentrations in plasma in ng / mL 1. DEHP: Cases: 179.7 Controls: 92.5 OR = 1.001 95% CI (1.000,		Cases: 3.32 (2.17), Controls: 0.15 (0.21), t: 5.22; p < 0.0001
The correlation between PEs concentration (control group) and endometriosis different severity was strong and significant: DMP: r=+0.03, p<0.0001; DnBP r=+0.39, p<0.0001; BBP: r=+0.89, p<0.0001; DnOP: r=+0.66, p<0.0001 and BEHP: r=+0.33, p<0.0014) Reddy et al, 2006 / [29] Mean in micrograms/ml (SD), Control vs cases t-value; p-value: DnBP: Cases: 0.44 (0.41), Controls I: 0.08 (0.14), Control II: 0.15 (0.21), t (Control I vs cases): 5.13; p<0.0001, t (Control II vs cases): 3.01, p=0.004 BBP: Cases: 0.66 (0.61), Controls I: 0.12 (0.20), Control II: 0.11 (0.22), t (Control I vs cases): 5.13; p<0.0001, t (Control II vs cases): 3.94, p=0.0002 DnOP: Cases: 3.32 (2.17), Controls I: 0, Control II: 0, DEHP: Cases: 2.44 (2.17), Controls I: 0.50 (0.80), Control II: 0.45 (0.68), t (Control I vs cases): 5.22, p<0.0001, t (Control II vs cases): 4.10, p=0.0001 The correlation between PEs concentration (control group) and endometriosis different severity was strong and significant: DnBP = r = +0.73; P<0.0001, BBP = r = +0.78; P<0.0001, DnOP = r = +0.73; P<0.0001, DnOP = r = +0.74; P<0.00014 Kim et al, 2011 / [32] Mean concentrations in plasma in ng / mL 1. DEHP: Cases: 179.7 Controls: 92.5 OR = 1.001 95% CI (1.000,		
endometriosis different severity was strong and significant: DMP: r=+0.03, p<0.0001; DnBP r=+0.39, p<0.0001; BBP: r=+0.89, p<0.0001; DnDP: r=+0.66, p<0.0001 and BEHP: r=+0.33, p<0.0014) Reddy et al, 2006 / [29] Mean in micrograms/ml (SD), Control vs cases t-value; p-value: DnBP: Cases: 0.44 (0.41), Controls I: 0.08 (0.14), Control II: 0.15 (0.21), t (Control I vs cases): 5.13; p <0.0001, t (Control I vs cases): 3.01, p=0.004 BBP: Cases: 0.66 (0.61), Controls I: 0.12 (0.20), Control II: 0.11 (0.22), t (Control I vs cases): 5.13; p <0.0001, t (Control II vs cases): 3.94, p=0.0002 DnOP: Cases: 3.32 (2.17), Controls I: 0.50 (0.80), Control II: 0.45 (0.68), t (Control I vs cases): 5.22, p<0.0001, t (Control II vs cases): 4.10, p=0.0001 The correlation between PEs concentration (control group) and endometriosis different severity was strong and significant: DnBP = r = +0.73; P <0.0001, BBP = r = +0.78; P <0.0001, DnOP = r = +0.73; P <0.000, DEHP = r = +0.44 P <0.0014 Kim et al, 2011 / [32] Mean concentrations in plasma in ng / mL 1. DEHP: Cases: 179.7 Controls: 92.5 OR = 1.001 95% CI (1.000,		
$DMP: r=+0.03, p<0.0001; DnBP r=+0.39, p<0.0001; \\BBP: r=+0.89, p<0.0001; DnOP: r=+0.66, p<0.0001 \\and BEHP: r=+0.33, p<0.0014)$ $Reddy et al, 2006 / [29] $		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$BBP: r=+0.89, p<0.0001; DnOP: r=+0.66, p<0.0001\\ and BEHP: r=+0.33, p<0.0014)$ $Reddy et al, 2006 / [29] $		
$ \begin{array}{c} \text{and BEHP: r=+0.33, p<0.0014)} \\ \text{Reddy et al, 2006 / [29]} \\ \text{DnBP:} \\ \text{Cases: } 0.44 \ (0.41), \text{Control II: } 0.08 \ (0.14), \text{Control II: } 0.15 \ (0.21), \\ \text{t_{(Control I vs cases):}} 5.13; \ p$<0.0001_{,t} \ (Control II vs cases): } 3.01, \ p=0.004 \\ \text{BBP:} \\ \text{Cases: } 0.66 \ (0.61), \text{Control I: } 0.12 \ (0.20), \text{Control II: } 0.11 \ (0.22), \\ \text{t_{(Control I vs cases):}} 5.13; \ p<0.0001_{,t} \ (Control II vs cases): } 3.94, \ p=0.0002 \\ \text{DnOP:} \\ \text{Cases: } 3.32 \ (2.17), \text{Controls I: } 0, \text{Control II: } 0, \\ \text{DEHP:} \\ \text{Cases: } 2.44 \ (2.17), \text{Controls I: } 0.50 \ (0.80), \text{Control II: } 0.45 \ (0.68), \\ \text{t_{(Control I vs cases):}} 5.22, \ p<0.0001_{,t} \ (Control II \ vs cases): } 4.10, \ p=0.0001 \\ \text{The correlation between PEs concentration (control group) and endometriosis different severity was strong and significant: } \\ \text{DnBP} = r = +0.73; \ P<0.0001, \ \text{BBP} = r = +0.78; \ P<0.0001, \ \text{DnOP} = r = +0.73; \ P<0.0001, \ \text{DEHP} = r = +0.44 \ P<0.0014 \\ \text{Mean concentrations in plasma in ng/mL} \\ \text{1. DEHP: Cases: } 179.7 \ \text{Controls: } 92.5 \ \text{OR} = 1.001 \ 95\% \ \text{CI} \ (1.000, \ \text{CI} \ (1.000, \ \text{CI}) = 1.001 \ \text{CI} \ (1.000, \ \text{CI} \ (1.000, \ \text{CI}) = 1.001 \ \text$		
Mean in micrograms/ml (SD), Control vs cases t-value; p-value:		
$\begin{array}{c} DnBP: \\ Cases: 0.44 \ (0.41), \ Controls \ I: 0.08 \ (0.14), \ Control \ II: 0.15 \ (0.21), \\ t \ (Control \ I \ vs \ cases): 5.13; \ p < 0.0001, t \ (Control \ II \ vs \ cases): 3.01, \ p=0.004 \\ \hline BBP: \\ Cases: 0.66 \ (0.61), \ Controls \ I: 0.12 \ (0.20), \ Control \ II: 0.11 \ (0.22), \\ t \ (Control \ I \ vs \ cases): 5.13; \ p < 0.0001, t \ (Control \ II \ vs \ cases): 3.94, \ p=0.0002 \\ \hline DnOP: \\ Cases: 3.32 \ (2.17), \ Controls \ I: 0, \ Control \ II: 0, \\ \hline DEHP: \\ Cases: 2.44 \ (2.17), \ Controls \ I: 0.50 \ (0.80), \ Control \ II: 0.45 \ (0.68), \\ t \ (Control \ I \ vs \ cases): 5.22, \ p < 0.0001, t \ (Control \ II \ vs \ cases): 4.10, \ p=0.0001 \\ \hline The \ correlation \ between \ PEs \ concentration \ (control \ group) \ and \\ endometriosis \ different \ severity \ was \ strong \ and \ significant: \\ DnBP = \ r = +0.73; \ P < 0.0001, \ BBP = \ r = +0.78; \ P < 0.0001, \ DnOP = \\ r = +0.73; \ P < 0.000, \ DEHP = \ r = +0.44 \ P < 0.0014 \\ \hline Kim \ et \ al, \ 2011 \ / \ [32] \\ \hline Mean \ concentrations \ in \ plasma \ in \ ng \ / \ ML \\ 1. \ DEHP: \ Cases: \ 179.7 \ Controls: \ 92.5 \ OR \ = 1.001 \ 95\% \ CI \ (1.000, \ next \ p) \ A \ (1.000) \ A$	Dadda at al 2006 / [20]	
Cases: 0.44 (0.41), Controls I: 0.08 (0.14), Control II: 0.15 (0.21), $ \frac{t_{(Control I vs cases):} 5.13; p < 0.0001_{, t_{(Control II vs cases)}:} 3.01, p = 0.004}{BBP:} $ Cases: 0.66 (0.61), Controls I: 0.12 (0.20), Control II: 0.11 (0.22), $ \frac{t_{(Control I vs cases):} 5.13; p < 0.0001_{, t_{(Control II vs cases)}:} 3.94, p = 0.0002}{DnOP:} $ Cases: 3.32 (2.17), Controls I: 0, Control II: 0, $ \frac{DEHP:}{Cases:} \frac{2.44}{2.17}, \frac{2.17}{2.17}, 2.$	Reddy et al, 2006 / [29]	
$\frac{t_{(Control\ I\ vs\ cases):}5.13;\ p<0.0001,\ t_{(Control\ II\ vs\ cases):}3.01,\ p=0.004}{BBP:}$ $Cases:\ 0.66\ (0.61),\ Control\ I:\ 0.12\ (0.20),\ Control\ II:\ 0.11\ (0.22),\ t_{(Control\ I\ vs\ cases):}5.13;\ p<0.0001,\ t_{(Control\ II\ vs\ cases):}3.94,\ p=0.0002}$ $DnOP:$ $Cases:\ 3.32\ (2.17),\ Control\ I:\ 0,\ Control\ II:\ 0,\ DEHP:$ $Cases:\ 2.44\ (2.17),\ Control\ I:\ 0.50\ (0.80),\ Control\ II:\ 0.45\ (0.68),\ t_{(Control\ I\ vs\ cases):}5.22,\ p<0.0001,\ t_{(Control\ II\ vs\ cases):}4.10,\ p=0.0001}$ $The\ correlation\ between\ PEs\ concentration\ (control\ group)\ and\ endometriosis\ different\ severity\ was\ strong\ and\ significant:\ DnBP=r=+0.73;\ P<0.0001,\ BBP=r=+0.78;\ P<0.0001,\ DnOP=r=+0.73;\ P<0.000,\ DEHP=r=+0.44\ P<0.0014}$ $Kim\ et\ al,\ 2011\ /\ [32]$ $Mean\ concentrations\ in\ plasma\ in\ ng\ /\ mL\ 1,\ DEHP:\ Cases:\ 179.7\ Controls:\ 92.5\ OR=1.001\ 95\%\ CI\ (1.000,$		
$BBP: \\ Cases: 0.66 \ (0.61), Controls \ I: 0.12 \ (0.20), Control \ II: 0.11 \ (0.22), \\ t_{(Control\ I\ vs\ cases):} 5.13; \ p < 0.0001, t_{(Control\ II\ vs\ cases)}: 3.94, p=0.0002 \\ DnOP: \\ Cases: 3.32 \ (2.17), Controls \ I: 0, Control \ II: 0, \\ DEHP: \\ Cases: 2.44 \ (2.17), Controls \ I: 0.50 \ (0.80), Control \ II: 0.45 \ (0.68), \\ t_{(Control\ I\ vs\ cases):} 5.22, \ p < 0.0001, t_{(Control\ II\ vs\ cases):} 4.10, \ p=0.0001 \\ The \ correlation \ between \ PEs \ concentration \ (control\ group) \ and \\ endometriosis \ different \ severity \ was \ strong \ and \ significant: \\ DnBP = r = +0.73; \ P < 0.0001, \ BBP = r = +0.78; \ P < 0.0001, \ DnOP = \\ r = +0.73; \ P < 0.000, \ DEHP = r = +0.44 \ P < 0.0014 \\ Kim \ et \ al, \ 2011 \ / \ [32] \\ Mean \ concentrations \ in \ plasma \ in \ ng \ / \ mL \\ 1. \ DEHP: \ Cases: \ 179.7 \ Controls: \ 92.5 \ OR = 1.001 \ 95\% \ CI \ (1.000, \ number \ al) \ All \ A$		
$\begin{array}{c} Cases: 0.66 \ (0.61), Controls \ I: 0.12 \ (0.20), Control \ II: 0.11 \ (0.22), \\ t \ (Control \ I \ vs \ cases): 5.13; \ p < 0.0001, t \ (Control \ II \ vs \ cases): 3.94, p = 0.0002 \\ \hline DnOP: \\ Cases: 3.32 \ (2.17), Controls \ I: 0, Control \ II: 0, \\ \hline DEHP: \\ Cases: 2.44 \ (2.17), Controls \ I: 0.50 \ (0.80), Control \ II: 0.45 \ (0.68), \\ t \ (Control \ I \ vs \ cases): 5.22, p < 0.0001, t \ (Control \ II \ vs \ cases): 4.10, p = 0.0001 \\ \hline The \ correlation \ between \ PEs \ concentration \ (control \ group) \ and \\ endometriosis \ different \ severity \ was \ strong \ and \ significant: \\ DnBP = r = +0.73; \ P < 0.0001, \ BBP = r = +0.78; \ P < 0.0001, \ DnOP = r = +0.73; \ P < 0.000, \ DEHP = r = +0.44 \ P < 0.0014 \\ \hline Kim \ et \ al, \ 2011 \ / \ [32] \\ \hline Mean \ concentrations \ in \ plasma \ in \ ng \ / \ mL \\ 1. \ DEHP: \ Cases: \ 179.7 \ Controls: \ 92.5 \ OR = 1.001 \ 95\% \ CI \ (1.000, \ number \ p) \ denomination \ d$		
$\begin{array}{c} t_{(ControlIvscases):}5.13;p<0.0001_{,t_{}(ControlIIvscases):}3.94,p=0.0002\\ \hline DnOP:\\ \hline Cases:3.32(2.17),ControlsI:0,ControlII:0,\\ \hline DEHP:\\ \hline Cases:2.44(2.17),ControlsI:0.50(0.80),ControlII:0.45(0.68),\\ \hline t_{(ControlIvscases):}5.22,p<0.0001_{,t_{}(ControlIIvscases):}4.10,p=0.0001\\ \hline The correlationbetweenPEsconcentration(controlgroup)and\\ \hline endometriosisdifferentseveritywasstrongandsignificant:\\ \hline DnBP=r=+0.73;P<0.0001,BBP=r=+0.78;P<0.0001,DnOP=r=+0.73;P<0.0001,BBP=r=+0.44P<0.0014\\ \hline Kimetal,2011/[32] \\ \hline Meanconcentrationsinplasmainng/mL\\ \hline 1.DEHP:Cases:179.7Controls:92.5OR=1.00195\%CI(1.000,1) \end{array}$		
$\begin{array}{c} DnOP: \\ Cases: 3.32 \ (2.17), Controls \ I: 0, Control \ II: 0, \\ DEHP: \\ Cases: 2.44 \ (2.17), Controls \ I: 0.50 \ (0.80), Control \ II: 0.45 \ (0.68), \\ t_{\ (Control \ I \ vs \ cases):} 5.22, p<0.0001_{,t \ (Control \ II \ vs \ cases):} 4.10, p=0.0001 \\ The correlation between PEs concentration (control group) and \\ endometriosis different severity was strong and significant: \\ DnBP = r = +0.73; P<0.0001, BBP = r = +0.78; P<0.0001, DnOP = \\ r = +0.73; P<0.000, DEHP = r = +0.44 P<0.0014 \\ Kim et al, 2011 / [32] \\ Mean concentrations in plasma in ng / mL \\ 1. \ DEHP: Cases: 179.7 \ Controls: 92.5 \ OR = 1.001 95\% \ CI \ (1.000, Control in the contro$		
$\begin{array}{c} DEHP: \\ Cases: 2.44 \ (2.17), \ Controls \ I: 0.50 \ (0.80), \ Control \ II: 0.45 \ (0.68), \\ t \ _{(Control \ I \ vs \ cases):} 5.22, \ p < 0.0001_{, \ t \ (Control \ II \ vs \ cases):} 4.10, \ p = 0.0001 \\ \hline The \ correlation \ between \ PEs \ concentration \ (control \ group) \ and \\ endometriosis \ different \ severity \ was \ strong \ and \ significant: \\ DnBP = \ r = +0.73; \ P < 0.0001, \ BBP = \ r = +0.78; \ P < 0.0001, \ DnOP = \\ r = +0.73; \ P < 0.000, \ DEHP = \ r = +0.44 \ P < 0.0014 \\ \hline Kim \ et \ al, \ 2011 \ / \ [32] \\ \hline Mean \ concentrations \ in \ plasma \ in \ ng \ / \ mL \\ 1. \ DEHP: \ Cases: \ 179.7 \ Controls: \ 92.5 \ OR \ = \ 1.001 \ 95\% \ CI \ (1.000, \ no.1001) \\ \hline \end{array}$		
$ \begin{array}{c} Cases: 2.44 \ (2.17), \ Controls \ I: 0.50 \ (0.80), \ Control \ II: 0.45 \ (0.68), \\ t \ _{(Control \ I \ vs \ cases):} 5.22, \ p < 0.0001_{, \ t \ (Control \ II \ vs \ cases):} 4.10, \ p = 0.0001 \\ \hline The \ correlation \ between \ PEs \ concentration \ (control \ group) \ and \\ endometriosis \ different \ severity \ was \ strong \ and \ significant: \\ DnBP = r = +0.73; \ P < 0.0001, \ BBP = r = +0.78; \ P < 0.0001, \ DnOP = \\ r = +0.73; \ P < 0.000, \ DEHP = r = +0.44 \ P < 0.0014 \\ \hline Kim \ et \ al, \ 2011 \ / \ [32] \\ \hline Mean \ concentrations \ in \ plasma \ in \ ng \ / \ mL \\ 1. \ DEHP: \ Cases: \ 179.7 \ Controls: \ 92.5 \ OR \ = 1.001 \ 95\% \ CI \ (1.000, \ no.100) \\ \hline \end{array} $		Cases: 3.32 (2.17), Controls I: 0, Control II: 0,
$ \begin{array}{c} t_{(ControlIvscases):}5.22,p{<}0.0001_{,t(ControlIIvscases):}4.10,p{=}0.0001 \\ \hline ThecorrelationbetweenPEsconcentration(controlgroup)and\\ endometriosisdifferentseveritywasstrongandsignificant:\\ DnBP=r=+0.73;P<0.0001,BBP=r=+0.78;P<0.0001,DnOP=r=+0.73;P<0.000,DEHP=r=+0.44P<0.0014 \\ \hline Kimetal,2011/[32] \\ \hline Meanconcentrationsinplasmainng/mL \\ 1.DEHP:Cases:179.7Controls:92.5OR=1.00195\%CI(1.000,1.000) \\ \hline \end{array} $		DEHP:
$\label{eq:concentration} The correlation between PEs concentration (control group) and endometriosis different severity was strong and significant: DnBP = r = +0.73; \ P < 0.0001, \ BBP = r = +0.78; \ P < 0.0001, \ DnOP = r = +0.73; \ P < 0.000, \ DEHP = r = +0.44 \ P < 0.0014 Kim et al, 2011 / [32] Mean \ concentrations \ in \ plasma \ in \ ng \ / \ mL \\ 1. \ DEHP: \ Cases: \ 179.7 \ Controls: \ 92.5 \ OR = 1.001 \ 95\% \ CI \ (1.000, \ number \ plasma \ plasma$		Cases: 2.44 (2.17), Controls I: 0.50 (0.80), Control II: 0.45 (0.68),
$\begin{array}{c} \text{endometriosis different severity was strong and significant:} \\ \text{DnBP} = r = +0.73; \ P < 0.0001, \ BBP = r = +0.78; \ P < 0.0001, \ DnOP = \\ r = +0.73; \ P < 0.000, \ DEHP = r = +0.44 \ P < 0.0014 \\ \text{Kim et al, 2011 / [32]} \\ \text{Mean concentrations in plasma in ng / mL} \\ 1. \ DEHP: \ Cases: \ 179.7 \ \ Controls: \ 92.5 \ \ OR = 1.001 \ 95\% \ \ CI \ (1.000, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
$\begin{array}{c} DnBP = r = +0.73; \ P < 0.0001, \ BBP = r = +0.78; \ P < 0.0001, \ DnOP = \\ r = +0.73; \ P < 0.000, \ DEHP = r = +0.44 \ P < 0.0014 \\ \hline Kim \ et \ al, \ 2011 \ / \ [32] \\ \hline Mean \ concentrations \ in \ plasma \ in \ ng \ / \ mL \\ 1. \ DEHP: \ Cases: \ 179.7 \ Controls: \ 92.5 \ OR = 1.001 \ 95\% \ CI \ (1.000, \ number \ 1.001) \\ \hline \end{array}$, 0 1,
$ r = +0.73; P < 0.000, DEHP = r = +0.44 P < 0.0014 \\ Kim et al, 2011 / [32] $		
Kim et al, 2011 / [32] Mean concentrations in plasma in ng / mL 1. DEHP: Cases: 179.7 Controls: 92.5 OR = 1.001 95% CI (1.000,		
1. DEHP: Cases: 179.7 Controls: 92.5 OR = 1.001 95% CI (1.000,	Y 1 2011 / 5221	
	Kim et al, 2011 / [32]	
[1.002) F = 0.101		
2.MEPH: Cases: 17.4 Controls: 12.4 OR =1.020 95% CI (1.003,		
2.MEFH. Cases. 17.4 Controls. 12.4 OK =1.020 95% CI (1.005, 1.038) P=0.020		
Huang et al, 2010 / [28] Patients with GSTM1 null genotype increased risk for AD ^c (OR ¹ / ₄	Huang et al. 2010 / [28]	
10.4;95% CI, 1.26–85.0) and LEI ^d (OR ¹ / ₄ 5.93; 95% CI, 1.10–31.9)	1144115 01 41, 2010 / [20]	
after adjustment for age, compared with those with GSTM1 ^e wild-		
typeand low urinary level of SMEHP.		

Key: a = odds ratio, b= 95% CI = 95% confidence interval, c = Adenomyosis, d = Leiomyoma, e = Glutathione S-transferase M1

Table 10: Results showing the effect estimates for metals and endometriosis

Author and Reference	Effect Estimate
Pollack et al, 2013 /	Blood Cd:
[38]	(Operative cohort)- $OR^{a}_{(3rd \text{ vs 1st tertile})} = 0.55 95\% CI^{b}$ (0.31, 0.98) and
	$OR_{(2nd \text{ vs 1st tertile})} = 0.74 95\% \text{ CI } (0.46, 1.21)$
	(Population cohort)- $OR_{(3rd \text{ vs } 1st \text{ tertile})} = 0.14 95\% \text{ CI } (0.01, 1.58)$ and
	$OR_{(2nd \text{ vs 1st tertile})} = 1.73 95\% \text{ CI } (0.45, 6.67)$
	Urinary Cd ^c :
	(Operative cohort)- $OR_{(3rd \text{ vs 1st tertile})} = 0.7495\% \text{ CI } (0.38, 1.43) \text{ and } OR_{(2nd \text{ vs 1st tertile})} = 1.1995\% \text{ CI } (0.70, 2.02)$
	(Population cohort)- $OR_{(3rd \ vs \ 1st \ tertile)} = 0.22 \ 95\% \ CI \ (0.01, \ 4.13)$ and
	OR _(2nd vs 1st tertile) = 1.18 95% CI (0.20, 7.17)
	Blood Cr: NA ^d

	TV 1
	Urinary Cre:
	(Operative cohort)- $OR_{(3rd \text{ vs 1st tertile})} = 0.91 95\% \text{ CI } (0.55, 1.51) \text{ and } OR_{(2rd)}$
	$v_{s \text{ lst tertile}} = 1.9795\% \text{ CI } (1.21, 3.19)$
	(Population cohort)- $OR_{(3rd \ vs \ 1st \ tertile)} = 1.29 \ 95\% \ CI \ (0.27, \ 6.23)$ and
	OR _(2nd vs 1st tertile) = 0.94 95% CI (0.20, 4.44)
	Blood Cu: NA Urinary Cu ^f :
	Operative cohort)- $OR_{(3rd \text{ vs 1st tertile})} = 2.6695\% \text{ CI } (1.26, 5.64) \text{ and } OR_{(2nd)}$
	$v_{s \text{ lst tertile}} = 1.30 95\% \text{ CI } (0.76, 2.25)$
	(Population cohort)- $OR_{(3rd \ vs \ 1st \ tertile)} = 1.59 \ 95\% \ CI \ (0.13, \ 19.1)$ and
	OR _(2nd vs 1st tertile) = 1.59 95% CI (0.31, 8.14)
	Blood Pbg:
	(Operative cohort)- $OR_{(3rd \text{ vs 1st tertile})} = 0.8495\% \text{ CI } (0.50, 1.41) \text{ and } OR_{(2nd)}$
	vs 1st tertile) = 0.73 95% CI (0.45, 1.17)
	(Population cohort)- $OR_{(3rd \ vs \ 1st \ tertile)} = 1.70 \ 95\% \ CI \ (0.39, 7.38)$ and
	$OR_{(2nd \text{ vs 1st tertile})} = 0.9295\% \text{ CI } (0.20, 4.16)$
	21-(21d vs 1st tertile)
	Urinary Pb:
	(Operative cohort)- $OR_{(3rd \text{ vs 1st tertile})} = 1.3695\% \text{ CI } (0.80, 2.31) \text{ and } OR_{(2nd)}$
	vs 1st tertile) = 1.33 95% CI (0.80, 2.21)
	(Population cohort)- $OR_{(3rd \text{ vs 1st tertile})} = 1.94 95\% \text{ CI } (0.35, 10.7) \text{ and}$
	$OR_{(2\text{nd vs 1st tertile})}^{1} = 1.3295\% \text{ CI } (0.29, 6.09)$
	Blood Hgh:
	(Operative cohort)- $OR_{(3rd \text{ vs 1st tertile})} = 1.0095\% \text{ CI } (0.60, 1.67) \text{ and } OR_{(2nd)}$
	vs 1st tertile) = 1.08 95% CI (0.67, 1.74)
	(Population cohort)- $OR_{(3rd \ vs \ 1st \ tertile)} = 0.81 \ 95\% \ CI \ (0.19, \ 3.39)$ and
	$OR_{(2nd \text{ vs 1st tertile})} = 0.6995\% \text{ CI } (0.16, 2.90)$
	Urinary Hg:
	(Operative cohort)- $OR_{(3rd \text{ vs 1st tertile})} = 0.7895\% \text{ CI } (0.45, 1.36) \text{ and } OR_{(2nd)}$
	vs 1st tertile) = 1.00 95% CI (0.60, 1.65)
	(Population cohort)- $OR_{(3rd \ vs \ 1st \ tertile)} = 0.14 \ 95\% \ CI \ (0.01, \ 1.52)$ and
	$OR_{(2nd \text{ vs } 1st \text{ tertile})} = 0.1995\% \text{ CI } (0.02, 1.87)$
Silva et al, 2013 /	Whole blood concentrations in Geometric Means and 95% CI; unit of
[40]	measurement: micrograms/L (Cases)
	Ni ⁱ : 26 95% CI (1.9, 3.3) P = 0.016
	Pb: 11.0 95% CI (8.6, 13.1) P = 0.389
	Cd: 0.7 95% CI (0.7, 0.9) P = 0.423
	Whole blood concentrations in Geometric Means and 95% CI; unit of
	measurement: micrograms/L (Controls):
	Ni: 0.8 95% CI (0.7, 0.9) P = 0.016
	Pb: 6.9 95% CI (5.7, 8.0) P = 0.389
	Cd: 0.8 95% CI(0.6, 1.0) P = 0.423
Itoh et al, 2008 / [47]	Urinary Cd concentration tertile cut-off points: P for trend – 0.79
	0.184 - 0.389 OR = 1.00 (Referent)
	0.393 – 0.699 OR = 1.69 95% CI (0.64, 4.44)
	0.707 – 7.92 OR = 0.86 95% CI (0.30, 2.49)
Heilier et al, 2004 /	Geometric Means of Cd concentration in urine in micrograms / gram of
[46]	creatinine (geometric SD), p-value:
	PE ^j : 0.25 (1.50), DEN ^k : 0.29 (1.76), Controls: 0.26 (1.46), p-value not
	given, however the author stated that no significant difference in means
	Geometric Means of Cd concentration in blood in micrograms / litre of
	blood (geometric SD):
	PE: 0.1 (1.5), DEN: 0.1 (1.4), Controls 0.1 (1.6), P = 0.80
Heilier et al, 2006 /	Blood concentrations in micrograms / litre, and urine concentration in
[45]	micrograms / gram creatinine are presented below as geometric means
	(geometric SD):
	Blood Pb: controls= 22 (1.5); cases= 17 (1.7)
	Blood Cd: controls= 0.4 (2.1); cases= 0.4 (1.9);

Urinary Cd: controls= 0.3 (1.9); cases= 0.3 (2.3);
Analysis of variance: Pb (Blood) – 0.10; Cd (Blood)-0.51; Cd (Urine) –
0.78

Key: a = odds ratio, b = 95% confidence interval, c = Cadmium, d = Not available, e = Chromium, f = Copper, g = Lead, h = Mercury, i = Nickel, j = peritoneal endometriosis <math>k = deep endometriotic nodule

Table 11: Results showing the effect estimates dioxins, dioxin-like compounds (DLCs), non-dioxin like polychlorinated biphenyls (NDL-PCBs), polychlorinated biphenyls (PCBs), other persistent organochlorine pollutants (POPs) and endometriosis

Author and Reference	Effect Estimate
Pauwels et al, 2001 /	CALUX based TEQ ^a values for dioxins and dioxin co-planar PCBs
[71]	(median values)
	Cases: 29 pg TEQ / g lipid; Controls: 27 pg TEQ / g lipid. OR ^b = 4.5
	95% CI° (0.48, 43.62)
Niskar et al, 2009 / [70]	Lipid adjusted PCB OR = 1.04 95%CI (0.44, 2.44)
	Non-Lipid adjusted PCB OR = 1.02 95%CI (0.43, 2.41)
	Unadjusted TEQ OR = 1.02 95%CI (0.95, 1.08)
Martinez et al, 2015	Median concentration in adipose tissue in pg / gram lipid:
[66]	Dioxins + Furans:
	Cases: 6.90 Controls: 6.10 OR = 1.72 95%CI 1.16-3.15 P<0.05
	PCBs:
	Cases: 4.64 Controls: 6.10 OR = 1.97 95%CI 1.36 - 2.77 P =0.01
	TEQ values of 2,3,7,8-TCDD and 1,2,3,7,8-PeCDD and 2,3,4,7,8-
	PeCDF were also statistically significantly higher in cases than in
G: 1.0010./F603	controls (P<0.001 for each)
Simsa et al, 2010 / [68]	Endometriosis in women with higher exposure (>75 centile - > 25 pg
	CALUX TEQ/ g / lipd) versus women with lower exposure (<25 pg
	CALUX TEQ / g/ lipid): OP = 2.44 (05% CL 1.05, 5.70 P=0.04) in woman with higher compared.
	OR = 2.44 (95% CI 1.05-5.70 P=0.04) in women with higher compared with lower DLC versus controls.
	OR = 3.01 (95%CI 1.06 -9.04 P=0.03) in women with moderate to
	severe endometriosis with higher concentration of DLC as compared
	to women with lower concentration of DLC.
Heilier et al, 2005 / [65]	Log Regression was significant for $DEN^d - OR = 3.3 95\%$ CI (1.4,
	7.6) for an increment of 10 pg in total TEQ levels / g lipid.
	An increased risk was also found for PE ^e – OR = 1.9 95% CI (0.9, 3.8)
	for total TEQ levels and also for dioxins alone at OR 3.2 95% CI (1.0,
	9.9)
Cai et al, 2011 / [64]	OR =2.5 95%CI (1.17, 5.34)
De Felip et al, 2004 /	Analyte concentrations in pgTE/g lb (picogram Toxic
[69]	Equivalent/gram of lipid base, based on WHO-Toxic Equivalent) in
	Italian Cases:
	PCDD+PCDF: 10 - 11
	Non-ortho PCB: 3.9 - 4.0
	Mono-ortho PCB: 3.8 - 4.3
	Belgian Cases:
	PCDD+PCDF: 18- 27
	Non-ortho PCB: 8.6 - 11
	Mono-ortho PCB: 7.7 – 11
	Analyte concentrations in pgTE/g lb (picogram Toxic
	Equivalent/gram of lipid base, based on WHO-Toxic Equivalent) in
	Italian Controls:
	PCDD+PCDF: 8.9 +/- 1.3
	Non-ortho PCB: 3.92 +/- 0.58
	Mono-ortho PCB: 4.83 +/- 0.71

	Belgian Controls:
	PCDD+PCDF: 24.7 +/- 3.7
	Non-ortho PCB: 9.4 +/- 1.4
	Mono-ortho PCB: 10.4 +/- 1.5
Ploteau et al, 2017 / [67]	1. Association between the cases with DIEf+ OvEg for PBB 153
	showed aOR ^h (95%CI) of 8.26 (2.27–44.41)1-SD increase
	2. OCDF = adjusted ORs (95% CI) of 5.42 (2.73–12.85) per 1-SD
	increase
Louis et al, 2005 / [79]	Risk for anti-estrogenic PCB congeners and risk of endometriosis
	OR = 3.30 95%CI (0.87, 12.46)
Trabert et al, 2010 / [81]	Sum of all PCB congeners: OR = 1.3 95% CI (0.8, 2.2)
	Sum of Estrogenic congeners: OR = 1.1 95%CI (0.8, 1.4)
Porpora et al, 2006 /	Median concentration in ng / g lipid
[80]	All PCBs:
	Cases: 410 Controls: 250 P = 0.0003
	Categories: 250-360 OR = 6.5 95%CI (1.5, 28)
	Categories: > 360 OR = 5.3 95% CI (1.3, 23)
	PCB-153
	Cases: 150 Controls: 95 P = 0.0004
	Categories: 93-130 OR = 10.0 95% CI (2.1, 48)
	Categories: > 130 OR = 9.1 95% CI (1.9, 43)
	PCB-180
	Cases: 65 Controls: 45 P = 0.0002
	Categories: 37-64 OR = 5.8 95%CI (1.4, 24)
	Categories: > 64 OR = 4.0 95% CI (1.0, 16)
Lebel et al, 1998 / [82]	Geometric means in micrograms / kg lipid:
2000 ot al, 1990 / [02]	Sum of all PCB congeners:
	Cases: 123.5 95%CI (113.3, 134.7) Controls: 119.3 95%CI (108.9,
	130.5)
Porpora et al, 2009 /	Total PCBs:
[72]	209-305: Cases: 41.25; Controls: 25.68 OR = 4.64 95%CI (1.93,
[72]	11.16)
	>/=306: Cases: 42.50; Controls: 22.90 OR = 5.63 95% CI(2.25, 14.70)
Buck Louis et al, 2012 /	PCB-74 in fat
*	(Operative cohort) - OR = 0.72 95%CI (0.55, 0.93)
[59]	(Operative conort) – OR = 0.72 93 %Cr (0.33, 0.33) (Population cohort)- NA as no fat available
	PCB 156 in fat
	(Operative cohort) – $OR = 0.7495\%CI(0.57, 0.96)$
	(Operative conort) – OK = 0.74 93%CI (0.37, 0.30) (Population cohort)- NA as no fat available
	PBDE - 47 in fat
	(Operative cohort) $-$ OR = 0.70 95%CI (0.55, 0.90)
	(Operative conort) – OR = 0.70 93%CI (0.33, 0.90) (Population cohort)- NA as no fat available
	(Population conort)- NA as no rat available

Key: a = Toxic equivalency factor, b = odds ratio, c = 95% confidence interval, d = Deep endometriotic nodules, e = Peritoneal endometriosis, f = Deep Infiltrating Endometriosis, g = Ovarian Endometriosis, h = adjusted odds ratio

Table 12: Results showing the effect estimates of organochlorinated pesticides (OCPs) and endometriosis

Author and Reference	Effect Estimate
Lebel et al, 1998 / [82]	Sum of all Chlordanes (pesticides) in Geometric Means
	Cases: 22.4 95%CI ^a (20.9, 23.9) Controls: 22.3 95%CI (20.7, 24.1)
	Sum of DDT in Geometric Means
	Cases: 238.2 95%CI (209.8, 270.6) Controls: 229.0 95%CI (195.6,
	268.1)
Porpora et al, 2009 /	HCB:
[72]	32-54 (concentration in ng/g fat): Cases: 35.0 Controls: 30.77; OR ^b =
	0.91 95%CI (0.40, 2.08)

	32-54 (concentration in ng/g fat): Cases: 35.0 Controls: 30.77; OR ^b =
	0.91 95%CI (0.40, 2.08)
	p-p'DDE:
	32-54 (concentration in ng/g fat): Cases: 35.0 Controls: 30.77; OR ^b =
	0.91 95%CI (0.40, 2.08)
	32-54 (concentration in ng/g fat): Cases: 35.0 Controls: 30.77; OR ^b =
	0.91 95%CI (0.40, 2.08)
	pgC-TEQs/g fat:
	32-54 (concentration in ng/g fat): Cases: 35.0 Controls: 30.77; OR ^b =
	0.91 95%CI (0.40, 2.08)
	32-54 (concentration in ng/g fat): Cases: 35.0 Controls: 30.77; OR ^b =
	0.91 95%CI (0.40, 2.08)
Niskar et al, 2009 / [70]	P,P'-DDE Median concentrations (pgg-1), p-value for median test:
	cases=18900, controls=14600, p=0.15
Buck Louis et al, 2012 /	Gamma HCH in fat
[59]	(Operative cohort) - $OR = 1.27 95\% CI (1.01, 1.59)$
	(Population cohort)- NA as no fat available
	Beta HCH in serum
	(Operative cohort) - $OR = 0.77 95\% CI (0.54, 1.14)$
	(Population cohort) - $OR = 1.7295\%CI(1.09, 2.72)$
Cooney et al, 2010 / [88]	HCB OR = 6.495% CI (1.0, 42.8)
-	t-nonachlor OR = 4.6 95%CI (0.5, 41.6)
	Aldrin OR = 1.2 95% CI (0.2, 8.1)
	Beta-BHC OR = 2.0 95%CI (0.3, 15.8)
	After grouping for structure – aromatic fungicides OR= 5.3 95%CI
	(1.2, 23.6) for highest tertile
	After grouping for structure – cyclodiene insecticide $OR = 2.795\%$
	CI (0.8, 9.5)
	After grouping for structure –chlorinated insecticide OR = 1.6 95%
	CI (0.5, 5.3) for mid-range tertile
Ploteau et al, 2017 /[67]	1. Association between the cases with DIE ^c + OvE ^d for oxychlordane
	showed aOR (95% CI) of 5.82(1.84-27.69) for 1-SD increase
	2. cis-heptachlor epoxide 5.36 (2.44–14.84) per 1-SD increase

Key: a = 95% confidence interval, b = odds ratio, c = Deep Infiltrating Endometriosis, d = Ovarian Endometrioma