Home Chemical strategies towards controlled release in agriculture
Article
Licensed
Unlicensed Requires Authentication

Chemical strategies towards controlled release in agriculture

  • Evelien Vermoesen ORCID logo EMAIL logo , Samuel Bodé , Geert Brosens , Pascal Boeckx and Sandra Van Vlierberghe
Published/Copyright: May 8, 2023
Become an author with De Gruyter Brill

Abstract

With an increasing world population of nearly eight billion which is expected to expand towards nine billion by 2050, future food demands will rise unavoidably. Primary productivity of crop is at the center of the food and feed value chain. Excessive and low efficiency fertilization cause severe environmental and ecological problems, along with economic wastage. Next to fertilizers, also pesticides, plant growth regulators and other agrochemicals (e.g., stored animal manure and hormones) pose environmental issues and require specific technologies to ensure security of human health and the global ecosystem while increasing food productions. There is an agronomic, legal and environmental ‘demand’ to develop controlled release solutions to optimize agricultural practices. In this regard, (polymer) chemistry can offer a wide range of strategies to cope with the current issues related to biodegradation, overfertilization, pesticide use, efficient precision agriculture etc. through tailored material design allowing controlled active components release. Therefore, this review focusses on (polymer) chemical strategies to design controlled release systems in the agricultural industry, covering specifically the state-of-the-art from the past four years.


Evelien Vermoesen, Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Ghent 9000, Belgium; Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; and Fertikal n.v, Kallo, Belgium, E-mail:

Award Identifier / Grant number: HBC.2018.0211

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: VLAIO is hereby acknowledged for the research grant given to accomplish this study (grant number HBC.2018.0211).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Abeywardana, L., de Silva, M., Sandaruwan, C., Dahanayake, D., Priyadarshana, G., Chathurika, S., Karunaratne, V., and Kottegoda, N. (2021). Zinc-doped hydroxyapatite-urea nanoseed coating as an efficient macro-micro plant nutrient delivery agent. ACS Agric. Sci. Technol. 1: 230–239. https://doi.org/10.1021/acsagscitech.1c00033.Search in Google Scholar

Aina, N., Hiola, S.F., Hala, Y., Djawad, Y.A., Iriany, N., Makkulawu, A.T., Inubushi, K., and Jumadi, O. (2020). Response of corn plants (Zea mays L.) to application of zeolite coated urea as nitrogen slow release fertilizer. In: International Conference on sustainable Cereals and crops production Systems in the Tropics, 23-25 September 2019. Makassar City, Indonesia.10.1088/1755-1315/484/1/012091Search in Google Scholar

Alves, M.I., Macagnan, K.L., Rodrigues, A.A., de Assis, D.A., Torres, M.M., de Oliveira, P.D., Furlan, L., Vendruscolo, C.T., and Moreira, A.D.S. (2017). Poly(3-hydroxybutyrate)-P(3HB): review of production process technology. Indust. Biotechnol. 13: 192–208. https://doi.org/10.1089/ind.2017.0013.Search in Google Scholar

An, X., Wu, Z., Yu, J., Cravotto, G., Liu, X., Li, Q., and Yu, B. (2020a). Copyrolysis of biomass, bentonite, and nutrients as a new strategy for the synthesis of improved biochar-based slow-release fertilizers. ACS Sustain. Chem. Eng. 8: 3181–3190. https://doi.org/10.1021/acssuschemeng.9b06483.Search in Google Scholar

An, X., Wu, Z., Yu, J., Ge, L., Li, T., Liu, X., and Yu, B. (2020b). High-efficiency reclaiming phosphate from an aqueous solution by bentonite modified biochars: a slow release fertilizer with a precise rate regulation. ACS Sustain. Chem. Eng. 8: 6090–6099. https://doi.org/10.1021/acssuschemeng.0c01112.Search in Google Scholar

Arjona, J., Silva-Valenzuela, M.D.G., Wang, S.H., and Valenzuela-Diaz, F.R. (2021). Biodegradable nanocomposite microcapsules for controlled release of urea. Polymers 13: 1–12.10.3390/polym13050722Search in Google Scholar PubMed PubMed Central

Aro, T. and Fatehi, P. (2017). Production and application of lignosulfonates and sulfonated lignin. ChemSusChem. 10: 1861–1877. https://doi.org/10.1002/cssc.201700082.Search in Google Scholar PubMed

Artusio, F., Casà, D., Granetto, M., Tosco, T., and Pisano, R. (2021). Alginate nanohydrogels as a biocompatible platform for the controlled release of a hydrophilic herbicide. Processes 9: 1641. https://doi.org/10.3390/pr9091641.Search in Google Scholar

Babadi, F.E., Yunus, R., Masoudi Soltani, S., and Shotipruk, A. (2021). Release mechanisms and kinetic models of gypsum-sulfur-zeolite-coated urea sealed with microcrystalline wax for regulated dissolution. ACS Omega. 6: 11144–11154. https://doi.org/10.1021/acsomega.0c04353.Search in Google Scholar PubMed PubMed Central

Barrère, F., Mahmood, T.A., de Groot, K., and van Blitterswijk, C.A. (2008). Advanced biomaterials for skeletal tissue regeneration: Instructive and smart functions. Mater. Sci. Eng. R: Rep. 59: 38–71.10.1016/j.mser.2007.12.001Search in Google Scholar

Bruchet, M. and Melman, A. (2015). Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange. Carbohydr. Polym. 131: 57–64. https://doi.org/10.1016/j.carbpol.2015.05.021.Search in Google Scholar PubMed

Byrne, D., Boeije, G., Croft, I., Hüttmann, G., Luijkx, G., Meier, F., Parulekar, Y., and Stijntjes, G. (2021). Biodegradability of polyvinyl alcohol based film used for liquid detergent capsules. Tenside Surfactants Deterg. 58: 88–96. https://doi.org/10.1515/tsd-2020-2326.Search in Google Scholar

Cao, L., Liu, Y., Xu, C., Zhou, Z., Zhao, P., Niu, S., and Huang, Q. (2019). Biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate) microcapsules for controlled release of trifluralin with improved photostability and herbicidal activity. Mater. Sci. Eng. C. 102: 134–141. https://doi.org/10.1016/j.msec.2019.04.050.Search in Google Scholar PubMed

Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X., and Auras, R. (2016). Poly(lactic acid)—mass production, processing, industrial applications, and end of life. Adv. Drug Deliv. Rev. 107: 333–366. https://doi.org/10.1016/j.addr.2016.03.010.Search in Google Scholar PubMed

Cen, Z., Wei, L., Muthukumarappan, K., Sobhan, A., and Mcdaniel, R. (2021). Assessment of a biochar-based controlled release nitrogen fertilizer coated with polylactic acid. J. Soil Sci. Plant Nutrition 21: 2007–2019.10.1007/s42729-021-00497-xSearch in Google Scholar

Cesari, A., Loureiro, M.V., Vale, M., Yslas, E.I., Dardanelli, M., and Marques, A.C. (2019). Polycaprolactone microcapsules containing citric acid and naringin for plant growth and sustainable agriculture: physico-chemical properties and release behavior. Sci. Total Environ. 703: 135548.10.1016/j.scitotenv.2019.135548Search in Google Scholar PubMed

Chaisena, A., Narakaew, S., and Promanan, T. (2020). Rice straw-g-poly(acrylic acid)/nano-zeolite NaX superabsorbent nanocomposites with controlled release of fertilizer nutrients. J. Mater. Environ. Sci. 11: 1767–1780.Search in Google Scholar

Claessens, M., De Meester, S., Van Landuyt, L., De Clerck, K., and Janssen, C.R. (2011). Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar. Pollut. Bull. 62: 2199–2204. https://doi.org/10.1016/j.marpolbul.2011.06.030.Search in Google Scholar PubMed

Daitx, T.S., Giovanela, M., Carli, L.N., and Mauler, R.S. (2018). Biodegradable polymer/clay systems for highly controlled release of NPK fertilizer. Polym. Adv. Technol. 30: 631–639.10.1002/pat.4499Search in Google Scholar

Datta, R., Holatko, J., Latal, O., Hammerschmiedt, T., Elbl, J., Pecina, V., Kintl, A., Balakova, L., Radziemska, M., Baltazar, T., et al.. (2020). Bentonite-based organic amendment enriches microbial activity in agricultural soils, Land. 9: 258. https://doi.org/10.3390/land9080258.Search in Google Scholar

Diyanat, M., Saeidian, H., Baziar, S., and Mirjafary, Z. (2019). Preparation and characterization of polycaprolactone nanocapsules containing pretilachlor as a herbicide nanocarrier. Environ. Sci. Pollut. Res. 26: 21579–21588. https://doi.org/10.1007/s11356-019-05257-0.Search in Google Scholar PubMed

Diyanat, M. and Saeidian, H. (2019). The metribuzin herbicide in polycaprolactone nanocapsules shows less plant chromosome aberration than non-encapsulated metribuzin. Environ. Chem. Lett. 17: 1881–1888.10.1007/s10311-019-00912-xSearch in Google Scholar

Dong, J., He, Y., Zhang, J., and Wu, Z. (2021). Tuning alginate-bentonite microcapsule size and structure for the regulated release of P. putida Rs-198. Chin. J. Chem. Eng. 48: 12–20.10.1016/j.cjche.2021.03.056Search in Google Scholar

Dubey, A. and Mailapalli, D.R. (2019). Zeolite coated urea fertilizer using different binders: fabrication, material properties and nitrogen release studies. Environ. Technol. Innov. 16: 100452. https://doi.org/10.1016/j.eti.2019.100452.Search in Google Scholar

EU Nitrogen Expert Panel (2015). Nitrogen use efficiency (NUE) – an indicator for the utilization of nitrogen, Available at: www.eunep.com.Search in Google Scholar

Elabasy, A., Shoaib, A., Waqas, M., Shi, Z., and Jiang, M. (2020). Cellulose nanocrystals loaded with thiamethoxam: fabrication, characterization, and evaluation of insecticidal activity against Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Nanomaterials 10: 788. https://doi.org/10.3390/nano10040788.Search in Google Scholar PubMed PubMed Central

Elsayed, A.A.A., EL-Gohary, A., Taha, Z.K., Farag, H.M., Hussein, M.S., and AbouAitah, K. (2022). Hydroxyapatite nanoparticles as novel nano-fertilizer for production of rosemary plants. Sci. Hortic. 295: 110851. https://doi.org/10.1016/j.scienta.2021.110851.Search in Google Scholar

Eritsyan, M.L., Gyurdzhyan, L.A., Melkonyan, L.T., and Akopyan, G.V. (2006). Copolymers of acrylic acid with urea. Russian J. Appl. Chem. 79: 1666–1668. https://doi.org/10.1134/s1070427206100223.Search in Google Scholar

European Commission (2008). New rules on pesticide residues in food, Available at: https://food.ec.europa.eu/index_en.Search in Google Scholar

Feng, J., Dou, J., Wu, Z., Yin, D., and Wu, W. (2019). Controlled release of biological control agents for preventing aflatoxin contamination from starch-alginate beads. Molecules 24: 1858. https://doi.org/10.3390/molecules24101858.Search in Google Scholar PubMed PubMed Central

Fernandes, B.S., Carlos Pinto, J., Cabral-Albuquerque, E.C.M., and Fialho, R.L. (2015). Free-radical polymerization of urea, acrylic acid, and glycerol in aqueous solutions. Polym. Eng. Sci. 55: 1219–1229. https://doi.org/10.1002/pen.24081.Search in Google Scholar

Fishel, F.M. (2015). Plant growth regulators. American Society for Horticultural Science, Available at: www.ashs.org.Search in Google Scholar

Giroto, A.S., Guimarães, G.G., Colnago, L.A., Klamczynski, A., Glenn, G., and Ribeiro, C. (2019). Controlled release of nitrogen using urea-melamine-starch composites. J. Clean. Prod. 217: 448–455.10.1016/j.jclepro.2019.01.275Search in Google Scholar

Gonzales, J. (2022). Chemical defoliants sprayed on Amazon rainforest to facilitate deforestation in Brazil, Available at: https://news.mongabay.com/2022/01/pesticides-released-into-brazils-amazon-to-degrade-rainforest-and-facilitate-deforestation/ (Accessed 28 January 2023).Search in Google Scholar

Graham, P.H. and Vance, C.P. (2000). Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Res. 65: 93–106. https://doi.org/10.1016/s0378-4290(99)00080-5.Search in Google Scholar

Green, B.W. (2015). Fertilizers in aquaculture. In: Feed and feeding practices in aquaculture. Woodhead Publishing, Oxford, pp. 27–52.10.1016/B978-0-08-100506-4.00002-7Search in Google Scholar

Gritsch, L. and Motta, F.L. (2015). iMedPub Journals. J. Biomed. Sci. Hist. Appl. Hydro. 4: 2–13.Search in Google Scholar

Gupta, R.C. (2011). Reproductive and developmental toxicology. Academic Press. eBook.Search in Google Scholar

Hartmann, M.H. (1998). High molecular weight polylactic acid polymers. Berlin/Heidelberg, Springer, pp. 367–411.10.1007/978-3-662-03680-8_15Search in Google Scholar

Hassan, W.Z. (2018). Preparation and properties of urea slow release coated with potassium humate, bentonite and polyacrylamide as compositely fertilizer which reflected on the productivity of wheat crop. J. Soil Sci. Agric. Eng., Mansoura Univ. 9: 627–635. https://doi.org/10.21608/jssae.2018.36477.Search in Google Scholar

Hermida, L. and Agustian, J. (2019). Slow release urea fertilizer synthesized through recrystallization of urea incorporating natural bentonite using various binders. Environ. Technol. Innov. 13: 113–121. https://doi.org/10.1016/j.eti.2018.11.005.Search in Google Scholar

Herzberger, J., Niederer, K., Pohlit, H., Seiwert, J., Worm, M., Wurm, F.R., and Frey, H. (2016). Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: synthesis, novel polymer architectures, and bioconjugation. Chem. Rev. 116: 2170–2243. https://doi.org/10.1021/acs.chemrev.5b00441.Search in Google Scholar PubMed

Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., and Thiel, M. (2012). Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ. Sci. Technol. 46: 3060–3075. https://doi.org/10.1021/es2031505.Search in Google Scholar PubMed

Hou, X., Pan, Y., Xiao, H., and Liu, J. (2019). Controlled release of agrochemicals using pH and redox dual-responsive cellulose nanogels. J. Agric. Food Chem. 67: 6700–6707. https://doi.org/10.1021/acs.jafc.9b00536.Search in Google Scholar PubMed

Huang, A., Li, X., Liang, X., Zhang, Y., Hu, H., Yin, Y., and Huang, Z. (2018). Solid phase synthesis of cellulose acetate butyrate as microsphere wall materials for sustained release of emamectin benzoate. Polymers 10: 1381. https://doi.org/10.3390/polym10121381.Search in Google Scholar PubMed PubMed Central

Hyon, S.-H., Jamshidi, K., and Ikada, Y. (1997). Synthesis of polylactides with different molecular weights. Biomaterials. 18: 1503–1508. https://doi.org/10.1016/s0142-9612(97)00076-8.Search in Google Scholar PubMed

Ikeda, Y. (2014). Understanding network control by vulcanization for sulfur cross-linked natural rubber. Chemistry, manufacture and applications of natural rubber (NR). Woodhead Publishing Ltd., Cambridge.10.1533/9780857096913.1.119Search in Google Scholar

Israni, N. and Shivakumar, S. (2019). Chapter 13. Polyhydroxybutyrate: development and applications as a biodegradable biotextile. In: Materials for biomedical engineering. Elsevier Inc., Amsterdam, pp. 405–444.10.1016/B978-0-12-816872-1.00014-5Search in Google Scholar

Joshi, P.P., van Cleave, A., Held, D.W., Howe, J.A., and Auad, M.L. (2020). Preparation of slow release encapsulated insecticide and fertilizer based on superabsorbent polysaccharide microbeads. J. Appl. Polym. Sci. 137: 49177.10.1002/app.49177Search in Google Scholar

Kabir, S.M.F., Sikdar, P.P., Rahman, B.H.M.A., and Ali, B.A. (2018). Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Prog. Biomater. 7: 153–174. https://doi.org/10.1007/s40204-018-0095-0.Search in Google Scholar PubMed PubMed Central

Kartika, D., Dwiningsih, K., Savana, R.T., Manggala, P., and Andika, V. (2018). Usage of zeolite and chitosan composites as slow release fertilizer, Available at: https://www.atlantis-press.com/proceedings/icst-18/55910823 (Accessed 28 January 2023).Search in Google Scholar

Kenawy, E.R., Seggiani, M., Cinelli, P., Elnaby, H.M.H., and Azaam, M.M. (2020). Swelling capacity of sugarcane bagasse-g-poly(acrylamide)/attapulgite superabsorbent composites and their application as slow release fertilizer. Eur. Polym. J. 133: 109769. https://doi.org/10.1016/j.eurpolymj.2020.109769.Search in Google Scholar

Khandelwal, A., Singh, M., Singh, R., and Shrivastava, M. (2021). Dendritic polyurea microcapsule: a slow release nitrogenous fertilizer. Iran. Polym. J. 30: 1309–1316. https://doi.org/10.1007/s13726-021-00968-z.Search in Google Scholar

King, N.S., Luster-Teasley, S., and Clark, C.J. (2021). Preliminary analyses of controlled release of potassium permanganate encapsulated in polycaprolactone. J. Water Resour. Prot. 13: 32–43. https://doi.org/10.4236/jwarp.2021.131003.Search in Google Scholar

Kumar, R., Sharma, R.K., and Singh, A.P. (2018). Grafted cellulose: a bio-based polymer for durable applications. Polym. Bull. 75: 2213–2242. https://doi.org/10.1007/s00289-017-2136-6.Search in Google Scholar

Labet, M. and Thielemans, W. (2009). Synthesis of polycaprolactone: a review. Chem. Soc. Rev. 38: 3484–3504. https://doi.org/10.1039/b820162p.Search in Google Scholar PubMed

Liu, J., Yang, Y., Gao, B., Li, Y.C., and Xie, J. (2019a). Bio-based elastic polyurethane for controlled-release urea fertilizer: fabrication, properties, swelling and nitrogen release characteristics. J. Clean. Prod. 209: 528–537. https://doi.org/10.1016/j.jclepro.2018.10.263.Search in Google Scholar

Liu, J., Zhao, Y., Diao, M., Wang, W., Hua, W., Wu, S., Chen, P., Ruan, R., and Cheng, Y. (2019b). Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) production by Rhodospirillum rubrum using a two-step culture strategy. J. Chem. 2019: 8369179.10.1155/2019/8369179Search in Google Scholar

Liu, S., Wu, Q., Sun, X., Yue, Y., Tubana, B., Yang, R., and Cheng, H.N. (2021). Novel alginate-cellulose nanofiber-poly(vinyl alcohol) hydrogels for carrying and delivering nitrogen, phosphorus and potassium chemicals. Int. J. Biol. Macromol. 172: 330–340.10.1016/j.ijbiomac.2021.01.063Search in Google Scholar PubMed

Liu, X., Liao, J., Song, H., Yang, Y., Guan, C., and Zhang, Z. (2019c). A biochar-based route for environmentally friendly controlled release of nitrogen: urea-loaded biochar and bentonite composite. Sci. Rep. 9: 9548. https://doi.org/10.1038/s41598-019-46065-3.Search in Google Scholar PubMed PubMed Central

Lobo, A.O., Ding, J., Casalini, T., Rossi, F., Castrovinci, A., and Perale, G. (2019). A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front. Bioeng. Biotechnol. 7: 259. https://doi.org/10.3389/fbioe.2019.00259.Search in Google Scholar PubMed PubMed Central

Maharani, D.K., Dwiningsih, K., Savana, R.T., and Andika, P.M.V. (2018). Proceedings of the international conference on science and technology: usage of zeolite and chitosan composites as slow release fertilizer. Atlantis Press, The Netherlands, France, China.10.2991/icst-18.2018.38Search in Google Scholar

Maghsoodi, M.R., Ghodszad, L., and Asgari Lajayer, B. (2020a). Dilemma of hydroxyapatite nanoparticles as phosphorus fertilizer: potentials, challenges and effects on plants. Environ. Technol. Innov. 19: 100869. https://doi.org/10.1016/j.eti.2020.100869.Search in Google Scholar

Maghsoodi, M.R., Najafi, N., Reyhanitabar, A., and Oustan, S. (2020b). Hydroxyapatite nanorods, hydrochar, biochar, and zeolite for controlled-release urea fertilizers. Geoderma 379: 114664. https://doi.org/10.1016/j.geoderma.2020.114644.Search in Google Scholar

Masutani, K. and Kimura, Y. (2014). Chapter 1. PLA synthesis. From the monomer to the polymer. In: Material science, pp. 1–36.10.1039/9781782624806-00001Search in Google Scholar

Menendez, E. and Garcia-Fraile, P. (2017). Plant probiotic bacteria: solutions to feed the world. AIMS Microbiol. 3: 502–524. https://doi.org/10.3934/microbiol.2017.3.502.Search in Google Scholar PubMed PubMed Central

Mihok, F., Macko, J., Oriňak, A., Oriňaková, R., Kovaľ, K., Sisáková, K., Petruš, O., and Kostecká, Z. (2020). Controlled nitrogen release fertilizer based on zeolite clinoptilolite: study of preparation process and release properties using molecular dynamics. Curr. Res. Green Sust. Chem. 3: 100030. https://doi.org/10.1016/j.crgsc.2020.100030.Search in Google Scholar

Nasatto, P.L., Pignon, F., Silveira, J.L.M., Duarte, M.E.R., Noseda, M.D., and Rinaudo, M. (2015). Methylcellulose, a cellulose derivative with original physical properties and extended applications. Polymers 7: 777–803. https://doi.org/10.3390/polym7050777.Search in Google Scholar

Neri-Badang, M.C. and Chakraborty, S. (2019). Carbohydrate polymers as controlled release devices for pesticides. J. Carbohydr. Chem. 38: 67–85. https://doi.org/10.1080/07328303.2019.1568449.Search in Google Scholar

Nooeaid, P., Chuysinuan, P., Pitakdantham, W., Aryuwananon, D., Techasakul, S., and Dechtrirat, D. (2021). Eco-friendly polyvinyl alcohol/polylactic acid core/shell structured fibers as controlled-release fertilizers for sustainable agriculture. J. Polym. Environ. 29: 552–564.10.1007/s10924-020-01902-9Search in Google Scholar

Nörnberg, A.B., Gehrke, V.R., Mota, H.P., Camargo, E.R., and Fajardo, A.R. (2019). Alginate-cellulose biopolymeric beads as efficient vehicles for encapsulation and slow-release of herbicide. Colloids Surf. A Physicochem. Eng. Asp. 583: 123970.10.1016/j.colsurfa.2019.123970Search in Google Scholar

Official Journal of the European Union (2019). Regulation (EU) 2019/1009, Available at: https://eur-lex.europa.eu/eli/reg/2019/1009/oj.Search in Google Scholar

Omran, A.A.B., Mohammed, A.A.B.A., Sapuan, S.M., Ilyas, R.A., Asyraf, M.R.M., Saeid, S., Koloor, R., Petrů, M., and Petrů, P. (2021). Micro-and nanocellulose in polymer composite materials: a review. Polymers 13: 231. https://doi.org/10.3390/polym13020231.Search in Google Scholar PubMed PubMed Central

Ortiz-Ospina, E. (2017). World population growth [WWW Document]. First published in 2013; updated April, 2017, Available at: https://ourworldindata.org/world-population-growth (Accessed 28 January 2023).Search in Google Scholar

Pang, L., Gao, Z., Feng, H., Wang, S., Cong, H., Yu, B., and Shen, Y. (2019a). Industrial crops & products preparation of pH-responsive cellulose derivative with surfactant-property for methyl 1-naphthylacetate controlled release. Ind. Crops Prod. 135: 57–63. https://doi.org/10.1016/j.indcrop.2019.04.027.Search in Google Scholar

Pang, L., Gao, Z., Feng, H., Wang, S., and Wang, Q. (2019b). Cellulose based materials for controlled release formulations of agrochemicals: a review of modifications and applications. J. Controlled Release 316: 105–115. https://doi.org/10.1016/j.jconrel.2019.11.004.Search in Google Scholar PubMed

Patel, S., Bajpai, J., Saini, R., Bajpai, A.K., and Acharya, S. (2018). Sustained release of pesticide (Cypermethrin) from nanocarriers: an effective technique for environmental and crop protection. Process Saf. Environ. Prot. 117: 315–325. https://doi.org/10.1016/j.psep.2018.05.012.Search in Google Scholar

Patil, M.D., Patil, V.D., Sapre, A.A., Ambone, T.S., Torris, A., Shukla, P.G., and Shanmuganathan, K. (2018). Tuning controlled release behavior of starch granules using nanofibrillated cellulose derived from waste sugarcane bagasse. Sustain. Chem. Eng. 6: 9208–9217. https://doi.org/10.1021/acssuschemeng.8b01545.Search in Google Scholar

Pereira, A.E.S., Oliveira, H.C., Romero, J., and Fraceto, L.F. (2016). γ-polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: characterization and evaluation of biological activity. Carbohydr. Polym. 157: 1862–1873. https://doi.org/10.1016/j.carbpol.2016.11.073.Search in Google Scholar PubMed

Pereira, A.E.S., Sousa, B.T., Iglesias, M.J., Alvarez, V.A., Casalongué, C.A., Oliveira, H.C., and Fraceto, L.F. (2019). Potential use of polymeric particles for the regulation of plant growth. In: Gutiérrez, T.J. (Ed.), Polymers for agri-food applications. Springer, Available at: http://hdl.handle.net/11449/183306.10.1007/978-3-030-19416-1_4Search in Google Scholar

Pereira, T.S., Dias Neves Binotto, V.D., and Faez, R. (2020). Multilayer films of carboxymethylcellulose/zeolite as smart materials for macro and micronutrients delivery. Microporous Mesoporous Mater. 302: 110195. https://doi.org/10.1016/j.micromeso.2020.110195.Search in Google Scholar

Piash, M.I., Iwabuchi, K., and Itoh, T. (2022). Synthesizing biochar-based fertilizer with sustained phosphorus and potassium release: co-pyrolysis of nutrient-rich chicken manure and Ca-bentonite. Sci. Total Environ. 822: 153509. https://doi.org/10.1016/j.scitotenv.2022.153509.Search in Google Scholar PubMed

Pimentel, D. (1995). Amounts of pesticides reaching target pests: environmental impacts and ethics. J. Agric. Environ. Ethics. 8: 17–29. https://doi.org/10.1007/bf02286399.Search in Google Scholar

Pohshna, C. and Mailapalli, D.R. (2022). Engineered urea-doped hydroxyapatite nanomaterials as nitrogen and phosphorus fertilizers for rice. ACS Agric. Sci. Technol. 2: 100–112. https://doi.org/10.1021/acsagscitech.1c00191.Search in Google Scholar

Pouladchang, A., Tavanai, H., Morshed, M., Khajehali, J., and Shamsabadi, A.S. (2022). Controlled release of thiram pesticide from polycaprolactone micro and nanofibrous mat matrix. J. Appl. Polym. Sci. 139: 51641. https://doi.org/10.1002/app.51641.Search in Google Scholar

Pradhan, S., Durgam, M., and Mailapalli, D.R. (2021). Urea loaded hydroxyapatite nanocarrier for efficient delivery of plant nutrients in rice. Arch. Agron Soil Sci. 67: 371–382. https://doi.org/10.1080/03650340.2020.1732940.Search in Google Scholar

Qin, Y. (2008). Alginate fibers: an overview of the production processes and applications in wound management. Polym. Int. 57: 171–180. https://doi.org/10.1002/pi.2296.Search in Google Scholar

Quinones, J.P., Brueggemann, O., Shahavi, M., Kjems, J., and Covas, C.P. (2018). Novel brassinosteroid-modified PEG micelles for controlled release of agrochemicals. J. Agric. Food Chem. 66: 1612–1619.10.1021/acs.jafc.7b05019Search in Google Scholar PubMed

Rini, L., Prakash, C., Srivastava, Satya, P., Pachauri, Arvind, K., Shukla, Manoj, S., and Prashant, S. (2022). Valorisation of phyto-biochars as slow release micronutrients and sulphur carrier for agriculture. Environ. Technol.: 1–10.10.1080/09593330.2022.2029953Search in Google Scholar PubMed

Rohily, K., El-Hamshary, H., Ghoneim, A., and Modaihsh, A. (2021). Controlled release of phosphorus from superabsorbent phosphate-bound alginate-graft-polyacrylamide: resistance to soil cations and release mechanism. ACS Omega 5: 32919–32929.10.1021/acsomega.0c03740Search in Google Scholar PubMed PubMed Central

Rop, K., Karuku, G.N., Mbui, D., Michira, I., and Njomo, N. (2018). Formulation of slow release NPK fertilizer (cellulose-graft-poly(acrylamide)/nano-hydroxyapatite/soluble fertilizer) composite and evaluating its N mineralization potential. Annals Agric. Sci. 63: 163–172. https://doi.org/10.1016/j.aoas.2018.11.001.Search in Google Scholar

Sabatier, P., Poulenard, J., Fangeta, B., Reyss, J.L., Develle, A.L., Wilhelm, B., Ployon, E., Pignol, C., Naffrechoux, E., Dorioz, J.M., et al.. (2014). Long-term relationships among pesticide applications, mobility, and soil erosion in a vineyard watershed. Proc. Natl. Acad. Sci. U. S. A. 111: 15647–15652. https://doi.org/10.1073/pnas.1411512111.Search in Google Scholar PubMed PubMed Central

Sajadinia, H., Ghazanfari, D., Naghavii, K., Naghavi, H., and Tahamipur, B. (2021). A comparison of microwave and ultrasound routes to prepare nano-hydroxyapatite fertilizer improving morphological and physiological properties of maize (Zea mays L.). Heliyon 7: e06094.https://doi.org/10.1016/j.heliyon.2021.e06094.Search in Google Scholar PubMed PubMed Central

Salimi, M., Motamedi, E., Motesharezedeh, B., Hosseini, H.M., and Alikhani, H.A. (2020). Starch-g-poly(acrylic acid-co-acrylamide) composites reinforced with natural char nanoparticles toward environmentally benign slow-release urea fertilizers. J. Environ. Chem. Eng. 8: 103765.10.1016/j.jece.2020.103765Search in Google Scholar

Samavini, R., Sandaruwan, C., de Silva, M., Priyadarshana, G., Kottegoda, N., and Karunaratne, V. (2018). Effect of citric acid surface modification on solubility of hydroxyapatite nanoparticles. J. Agric. Food Chem. 66: 3330–3337. https://doi.org/10.1021/acs.jafc.7b05544.Search in Google Scholar PubMed

Sarkar, A., Biswas, D.R., Datta, S.C., Dwivedi, B.S., Bhattacharyya, R., Kumar, R., Bandyopadhyay, K.K., Saha, M., Chawla, G., Saha, J.K., et al.. (2021). Preparation of novel biodegradable starch/poly(vinyl alcohol)/bentonite grafted polymeric films for fertilizer encapsulation. Carbohydr. Polym. 259: 117679. https://doi.org/10.1016/j.carbpol.2021.117679.Search in Google Scholar PubMed

Sarkar, K. and Sen, K. (2018). Polyvinyl alcohol based hydrogels for urea release and Fe(III) uptake from soil medium. J. Environ. Chem. Eng. 6: 736–744.10.1016/j.jece.2018.01.004Search in Google Scholar

Schmücker, C., Stevens, G.W., and Mumford, K.A. (2018). Liquid marble formation and solvent vapor treatment of the biodegradable polymers polylactic acid and polycaprolactone. J. Colloid Interface Sci. 514: 349–356.10.1016/j.jcis.2017.12.033Search in Google Scholar PubMed

Shaji, H., Chandran, V., and Mathew, L. (2021). Chapter 13: organic fertilizers as a route to controlled release of nutrients. In: Controlled release fertilizers for sustainable agriculture. Elsevier Inc., pp. 231–245.10.1016/B978-0-12-819555-0.00013-3Search in Google Scholar

Shang, Y., Guo, K., Jiang, P., Xu, X., and Gao, B. (2018). Adsorption of phosphate by the cellulose-based biomaterial and its sustained release of laden phosphate in aqueous solution and soil. Int. J. Biol. Macromol. 109: 524–534. https://doi.org/10.1016/j.ijbiomac.2017.12.118.Search in Google Scholar PubMed

Sharma, B., Shrivastava, M., Afonso, L.O.B., Soni, U., and Cahill, D.M. (2022a). Zinc- and magnesium-doped hydroxyapatite nanoparticles modified with urea as smart nitrogen fertilizers. ACS Appl. Nano Mater. 5: 7288–7299. https://doi.org/10.1021/acsanm.2c01192.Search in Google Scholar

Sharma, B., Shrivastava, M., Afonso, L.O.B., Soni, U., and Cahill, D.M. (2022b). Metal doped nitrogenous hydroxyapatite nanohybrids slowly release nitrogen to crops and mitigate ammonia volatilization: an impact assessment. NanoImpact 28: 100424. https://doi.org/10.1016/j.impact.2022.100424.Search in Google Scholar PubMed

Sharma, P., Rohilla, D., Chaudhary, S., Kumar, R., and Singh, A.N. (2019). Nanosorbent of hydroxyapatite for atrazine: a new approach for combating agricultural runoffs. Sci. Total Environ. 653: 264–273. https://doi.org/10.1016/j.scitotenv.2018.10.352.Search in Google Scholar PubMed

Singhvi, M. and Gokhale, D. (2013). Biomass to biodegradable polymer (PLA). RSC Adv. 3: 13558–13568. https://doi.org/10.1039/c3ra41592a.Search in Google Scholar

Singhvi, M.S., Zinjarde, S.S., Gokhale, D.V., and Singhvi, S. (2019). Polylactic acid: synthesis and biomedical applications. J. Appl. Microbiol. 127: 1612–1626. https://doi.org/10.1111/jam.14290.Search in Google Scholar PubMed

Sofyane, A., Ablouh, E., Lahcini, M., Elmeziane, A., Khouloud, M., Kaddami, H., and Raihane, M. (2021). Slow-release fertilizers based on starch acetate/glycerol/polyvinyl alcohol biocomposites for sustained nutrient release. Mater. Today Proc. 36: 74–81. https://doi.org/10.1016/j.matpr.2020.05.319.Search in Google Scholar

Song, B., Liang, H., Sun, R., Peng, P., Jiang, Y., and She, D. (2020). Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. Int. J. Biol. Macromol. 144: 219–230.10.1016/j.ijbiomac.2019.12.082Search in Google Scholar PubMed

Song, Q., Zhao, J., Zhang, G., and Peruch, F. (2019). Ring-opening (co)polymerization of Î3-butyrolactone: a review. Polym. J. 52: 3–11. https://doi.org/10.1038/s41428-019-0265-5.Search in Google Scholar

Sousa, S., Maia, M.L., Correira-s, L., Fernandes, V.C., Calhau, C., and Domingues, V.F. (2020). Chemistry and toxicology behind insecticides and herbicides. In: Controlled release of pesticides for sustainable agriculture. Springer.10.1007/978-3-030-23396-9_3Search in Google Scholar

Stevens, C.J. (2019). Nitrogen in the environment. Science 363: 578–580. https://doi.org/10.1126/science.aav8215.Search in Google Scholar PubMed

Szliszka, E., Czuba, Z.P., Domino, M., Mazur, B., Zydowicz, G., and Krol, W. (2009). Ethanolic extract of propolis (EEP) enhances the apoptosis-inducing potential of TRAIL in cancer cells. Molecules 14: 738–754. https://doi.org/10.3390/molecules14020738.Search in Google Scholar

Tan, H., Zhang, Y., Sun, L., Sun, Y., Dang, H., Yang, Y., and Jiang, D. (2021). Preparation of nano sustained-release fertilizer using natural degradable polymer polylactic acid by coaxial electrospinning. Int. J. Biol. Macromol. 193: 903–914.10.1016/j.ijbiomac.2021.10.181Search in Google Scholar PubMed

TheoColborn, P.S. (1999). Pesticide use in the U.S. and policy implications: a focus on herbicides. Toxicol. Ind. Health 15: 241–276. https://doi.org/10.1177/074823379901500121.Search in Google Scholar

Tosun, U.G., Sakhno, Y., and Jaisi, D.P. (2021). Synthesis of hydroxyapatite nanoparticles from phosphorus recovered from animal wastes. ACS Sustain. Chem. Eng. 9: 15117–15126.10.1021/acssuschemeng.1c01006Search in Google Scholar

Umar, W., Czinkota, I., Gulyás, M., Aziz, T., and Hameed, M.K. (2022). Development and characterization of slow release N and Zn fertilizer by coating urea with Zn fortified nano-bentonite and ZnO NPs using various binders. Environ. Technol. Innov. 26: 102250. https://doi.org/10.1016/j.eti.2021.102250.Search in Google Scholar

Utsunomia, C., Ren, Q., and Zinn, M. (2020). Poly(4-hydroxybutyrate): current state and perspectives. Front. Bioeng. Biotechnol. 8: 257. https://doi.org/10.3389/fbioe.2020.00257.Search in Google Scholar PubMed PubMed Central

Vermoesen, E., Cordeels, E., Schaubroeck, D., Brosens, G., Bodé, S., Boeckx, P., and van Vlierberghe, S. (2023). Photo-crosslinkable biodegradable polymer coating to control fertilizer release. Eur. Polym. J. 186: 111835. https://doi.org/10.1016/j.eurpolymj.2023.111835.Search in Google Scholar

Versino, F., Urriza, M., and García, M.A. (2019). Eco-compatible cassava starch films for fertilizer controlled-release. Int. J. Biol. Macromol. 134: 302–307.10.1016/j.ijbiomac.2019.05.037Search in Google Scholar PubMed

Wang, X., Hou, X., Zou, P., Zhang, M., and Ma, L. (2022). Development of cationic cellulose-modified bentonite–alginate nanocomposite gels for sustained release of alachlor. ACS Omega. 7: 20032–20043. https://doi.org/10.1021/acsomega.2c01805.Search in Google Scholar PubMed PubMed Central

Wei, X., Chen, J., Gao, B., and Wang, Z. (2019). Chapter 39: role of controlled and slow release fertilizers in fruit crop nutrition. In: Fruit crops: diagnosis and management of nutrient constraints. Elsevier Inc., pp. 555–566.10.1016/B978-0-12-818732-6.00039-3Search in Google Scholar

Woodruff, M.A. and Hutmacher, D.W. (2010). The return of a forgotten polymer – polycaprolactone in the 21st century. Progr. Polym. Sci. 35: 1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002.Search in Google Scholar

Wu, Q., Wang, Y.-H., Ding, Y.-F., Tao, W.-K., Gao, S., Li, Q.-X., Li, W.-W., Liu, Z.-H., and Li, G.-H. (2021). Effects of different types of slow- and controlled-release fertilizers on rice yield. J. Integr. Agric. 20: 1503–1514. https://doi.org/10.1016/s2095-3119(20)63406-2.Search in Google Scholar

Xiang, Y., Zhang, G., Chen, C., Liu, B., Cai, D., and Wu, Z. (2018). Fabrication of a pH-responsively controlled-release pesticide using an attapulgite-based hydrogel. ACS Sustain. Chem. Eng. 6: 1192–1201. https://doi.org/10.1021/acssuschemeng.7b03469.Search in Google Scholar

Xia, X., Zhang, F., Yang, L., Li, X., Wang, J., Linghu, C., and Luo, Z. (2020). Low-temperature flowable poly(lactic acid)/polycaprolactone blends for the solvent-free preparation of slow-released urea fertilizer in a thermal shear field. Ind. Eng. Chem. Res. 59: 20601–20611.10.1021/acs.iecr.0c04419Search in Google Scholar

Xie, Y.-L., Jiang, W., Li, F., Zhang, Y., Liang, X.-Y., Wang, M., Zhou, X., Wu, S.-Y., and Zhang, C.-H. (2020). Controlled release of spirotetramat using starch-chitosan-alginate-encapsulation. Bull. Environ. Contam. Toxicol. 104: 149–155. https://doi.org/10.1007/s00128-019-02752-5.Search in Google Scholar PubMed

Xiong, L., Wang, P., and Kopittke, P.M. (2018). Tailoring hydroxyapatite nanoparticles to increase their efficiency as phosphorus fertilisers in soils. Geoderma 323: 116–125. https://doi.org/10.1016/j.geoderma.2018.03.002.Search in Google Scholar

Yadav, M.R., Kumar, R., Parihar, C.M., and Yadav, R.K. (2017). Strategies for improving nitrogen use efficiency: a review. Agric. Rev. 38: 29–40. https://doi.org/10.18805/ag.v0iof.7306.Search in Google Scholar

Yoon, H.Y., Lee, J.G., Esposti, L.D., Iafisco, M., Kim, P.J., Shin, S.G., Jeon, J.R., and Adamiano, A. (2020). Synergistic release of crop nutrients and stimulants from hydroxyapatite nanoparticles functionalized with humic substances: toward a multifunctional nanofertilizer. ACS Omega. 5: 6598–6610. https://doi.org/10.1021/acsomega.9b04354.Search in Google Scholar PubMed PubMed Central

Yuvaraj, M. and Subramanian, K.S. (2018). Development of slow release Zn fertilizer using nano-zeolite as carrier. J. Plant Nutr. 41: 311–320. https://doi.org/10.1080/01904167.2017.1381729.Search in Google Scholar

Zafar, M.S., Ullah, R., Qamar, Z., Fareed, M.A., Amin, F., Khurshid, Z., and Sefat, F. (2019). Chapter 2: properties of dental biomaterials. In: Advanced dental biomaterials. Woodhead Publishing, pp. 7–35.10.1016/B978-0-08-102476-8.00002-5Search in Google Scholar

Zeng, X., Zhong, B., Jia, Z., Zhang, Q., Chen, Y., and Jia, D. (2019). Halloysite nanotubes as nanocarriers for plant herbicide and its controlled release in biodegradable polymers composite film. Appl. Clay Sci. 171: 20–28. https://doi.org/10.1016/j.clay.2019.01.021.Search in Google Scholar

Zhao, M., Wang, Y., Liu, L., Liu, L., Chen, M., Zhang, C., and Lu, Q. (2018). Green coatings from renewable modified bentonite and vegetable oil based polyurethane for slow release fertilizers. Polym. Compos. 39: 4355–4363. https://doi.org/10.1002/pc.24519.Search in Google Scholar

Zhao, X., Qi, X., Chen, Q., Ao, X., and Guo, Y. (2020). Sulfur-odified coated slow-release fertilizer based on castor oil: synthesis and a controlled-release model. ACS Sustain. Chem. Eng. 8: 18044–18053. https://doi.org/10.1021/acssuschemeng.0c06056.Search in Google Scholar

Zhao, Y., Wang, Z., Wang, J., Mai, H., Yan, B., and Yang, F. (2003). Direct synthesis of poly(d,l-lactic acid) by melt polycondensation and its application in drug delivery. Appl. Polym. Sci. 91: 2143–2150. https://doi.org/10.1002/app.13354.Search in Google Scholar

Zhu, H., Shen, Y., Cui, J., Wang, A., Li, N., Wang, C., Cui, B., Sun, C., Zhao, X., Wang, C., et al.. (2020). Avermectin loaded carboxymethyl cellulose nanoparticles with stimuli-responsive and controlled release properties. Ind. Crops Prod. 152: 112497.10.1016/j.indcrop.2020.112497Search in Google Scholar

Received: 2022-10-05
Accepted: 2023-03-15
Published Online: 2023-05-08
Published in Print: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revce-2022-0057/html?lang=en
Scroll to top button