Home Recent developments in the field of barrier and permeability properties of segmented polyurethane elastomers
Article
Licensed
Unlicensed Requires Authentication

Recent developments in the field of barrier and permeability properties of segmented polyurethane elastomers

  • Aracelys Marcano , Kateryna Fatyeyeva EMAIL logo , Malys Koun , Pascal Dubuis , Marc Grimme and Stéphane Marais
Published/Copyright: September 6, 2018
Become an author with De Gruyter Brill

Abstract

Polyurethane (PU) elastomers represent an important class of segmented copolymers. Thanks to many available chemical compositions, a rather broad range of chemical, physical, and biocompatible properties of PU can be obtained. These polymers are often characterized by high tensile and tear strength, elongation, fatigue life, and wear resistance. However, their relatively high permeability towards gases and water as well as their biocompatibility still limits the PU’s practical application, especially for biomedical use, for example, in implants and medical devices. In this review, the barrier and permeability properties of segmented PUs related to their chemical structure and physical and chemical properties have been discussed, including the latest developments and different approaches to improve the PU barrier properties.

Acknowledgments

The authors gratefully acknowledge funding from ANRT (French Ministry-CIFRE no 2014/0632).

References

Adhikari R, Gunatillake PA, McCarthy SJ, Mejis CF. Mixed macrodiol-based siloxane polyurethanes: effect of the comacrodiol structure on properties and morphology. J Appl Polym Sci 2000; 78: 1071–1082.10.1002/1097-4628(20001031)78:5<1071::AID-APP160>3.0.CO;2-DSearch in Google Scholar

Aithal US, Aminabhavi TM. Sorption and diffusion of monocyclic aromatics through polyurethane membranes. Polym Prepr 1989; 30: 17–19.10.1021/bk-1990-0423.ch019Search in Google Scholar

Alves P, Pinto S, Kaiser J-P, Buinink A, de Sousa HC, Gil MH. Surface grafting of a thermoplastic polyurethane with methacrylic acid by previous plasma surface activation and by ultraviolet irradiation to reduce cell adhesion. Colloid Surf B 2011; 82: 371–377.10.1016/j.colsurfb.2010.09.021Search in Google Scholar

Alves P, Cardoso R, Correia TR, Antunes BP, Correia IJ, Ferreira PP. Surface modification of polyurethane films by plasma and ultraviolet light to improve haemocompatibility for artificial heart valves. Colloids Surf B Biointerfaces 2013; 113: 25–32.10.1016/j.colsurfb.2013.08.039Search in Google Scholar

Anderson J, Hiltner A, Wiggins M, Schubert M, Collier T, Kao W, Mathur A. Recent advances in biomedical polyurethane biostability and biodegradation. Polym Int 1998; 46: 163–171.10.1002/(SICI)1097-0126(199807)46:3<163::AID-PI972>3.0.CO;2-9Search in Google Scholar

Andrade JD, editor. Polymer surface dynamics. New York: Plenum Press, 1988.10.1007/978-1-4684-1291-8Search in Google Scholar

Bajsic EG, Rek V. DSC study of morphological changes in segmented polyurethane elastomers. J Elastom Plast 2000; 32: 162–182.10.1177/009524430003200205Search in Google Scholar

Bharadwaj RK. Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 2011; 34: 9189–9192.10.1021/ma010780bSearch in Google Scholar

Bilgin S, Isik M, Yilgor E, Yilgor I. Hydrophilization of silicone-urea copolymer surfaces by UV/ozone: influence of PDMS molecular weight on surface oxidation and hydrophobic recovery. Polymer 2013; 54: 6665–6675.10.1016/j.polymer.2013.10.019Search in Google Scholar

Bonart R. X-ray investigations concerning the physical structure of cross-linking in segmented urethane elastomers. J Macromol Sci B 1968; 2: 115–138.10.1080/00222346808212867Search in Google Scholar

Boretos JW, Pierce WS. Segmented polyurethanes: a polyester polymer. An initial evaluation for biomedical applications. J Biomed Mater Res 1968; 2: 121–130.10.1002/jbm.820020109Search in Google Scholar

Briganti E, Al Kayal T, Kull S, Losi P, Spiller D, Tonlorenzi S, Berti D, Soldani G. The effect of gamma irradiation on physical-mechanical properties and cytotoxicity of polyurethane-polydimethylsiloxane microfibrillar vascular grafts. J Mater Sci Mater Med 2010; 21: 1311–1319.10.1007/s10856-009-3943-6Search in Google Scholar

Capone CD. Biostability of a non-ether polyurethane. J Biomater Appl 1992; 7: 108–129.10.1177/088532829200700202Search in Google Scholar

Cauich-Rodriguez JV, Chan-Chan LH, Hernandez-Sanchez F, Cervantes-Uc JM. Degradation of polyurethanes for cardiovascular applications. In: Pignatello R, editor. Advances in biomaterials science and biomedical applications. Rijeka, Croatia: InTech, 2013.Search in Google Scholar

Chan-Chan L, Tkaczyk C, Vargas-Coronado R, Cervantes-Us J, Caurich-Rodriguez J. Characterization and biocompatibility studied of new degradable poly(urea)urethanes prepared with arginine, glycine or aspartic acid as chain extenders. J Mater Sci Mater Med 2013; 24: 1733–1744.10.1007/s10856-013-4931-4Search in Google Scholar

Chandy T, Van Hee J, Nettekoven W, Johnson J. Long-term in vitro stability assessment of polycarbonate urethane micro catheters: resistance to oxidation and stress cracking. J Biomed Mater Res B Appl Biomater 2009; 89: 314–324.10.1002/jbm.b.31218Search in Google Scholar

Chang YJ, Wilkes GL. Superstructure in segmented polyether urethanes. J Polym Sci B 1975; 13b: 455–476.10.1002/pol.1975.180130302Search in Google Scholar

Chattopadhyay D, Raju K. Structural engineering of polyurethane coating for high performance applications. Prog Polym Sci 2007; 32: 352–418.10.1016/j.progpolymsci.2006.05.003Search in Google Scholar

Chen C, Han B, Li J, Shang T, Zou J, Jiang W. A new model on the diffusion of small molecules penetrants in dense polymer membranes. J Membr Sci 2001; 187: 109–118.10.1016/S0376-7388(00)00689-XSearch in Google Scholar

Chen K-S, Liao S-C, Lin S-W, Hung T-S, Tsao S-H, Wu H-M, Inagaki N, Chen W-Y. Improvement of thermoplastic polyurethane nonwoven hydrophilicity by atmospheric pressure plasma treatment with He and N2 mixed gases. Jpn J Appl Phys 2012; 51: 01AJ06.10.7567/JJAP.51.01AJ06Search in Google Scholar

Chen Q, Liang S, Thouas GA. Elastomeric biomaterials for tissue engineering. Prog Polym Sci 2013; 38: 584–671.10.1016/j.progpolymsci.2012.05.003Search in Google Scholar

Cherng JY, Hou TY, Shih MF, Talsma H, Hennink WE. Polyurethane-based drug delivery systems. Int J Pharm 2013; 450: 145–162.10.1016/j.ijpharm.2013.04.063Search in Google Scholar

Cho JW, Jung YC, Chun BC, Chung Y-C. Water vapor permeability and mechanical properties of fabrics coated with shape-memory polyurethane. J Appl Polym Sci 2004; 92: 2812–2816.10.1002/app.20322Search in Google Scholar

Christenson E, Dadsetan M, Wiggins M, Anderson J, Hiltner A. Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies. J Biomed Mater Res A 2004a; 69: 407–416.10.1002/jbm.a.30002Search in Google Scholar

Christenson E, Anderson J, Hiltner A. Oxidative mechanisms of poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo and in vitro correlations. J Biomed Mater Res 2004b; 70A: 245–255.10.1002/jbm.a.30067Search in Google Scholar

Christenson E, Patel S, Anderson J, Hiltner A. Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase. Biomaterials 2006; 27: 3920–3926.10.1016/j.biomaterials.2006.03.012Search in Google Scholar

Christenson E, Anderson J, Hiltner A. Biodegradation mechanisms of polyurethane elastomers. Corrosion Eng Sci Technol 2007; 42: 312–323.10.1179/174327807X238909Search in Google Scholar

Comyn J, editor. Polymer permeability. London: Elsevier, 1985.10.1007/978-94-009-4858-7Search in Google Scholar

Cooper SL, Tobolsky AV. Properties of linear elastomeric polyurethanes. J Appl Polym Sci 1966; 10: 1837–1844.10.1002/app.1966.070101204Search in Google Scholar

Coury AJ, Hobot CM, Slaikeu PC, Stokes KB, Cahalan PT. A new family of implantable biostable polyurethanes. Trans 16th Ann Mtg SFB 1990; 158.Search in Google Scholar

Coutinho FMB, Delpech MC. Some properties of films cast from polyurethane aqueous dispersions of polyether-based anionomer extended with hydrazine. Polym Test 1996; 15: 103–113.10.1016/0142-9418(95)00016-XSearch in Google Scholar

Crippa A, Sydenstricker THD, Amico SC. Evaluation of multilayer thermoformed films for food packaging. Polym Plast Technol Eng 2008; 47: 991–995.10.1080/03602550802353110Search in Google Scholar

Crisante F, Francolini I, Bellusci M, Martinelli A, Lucio D, Piozzi A. Antibiotic delivery polyurethanes containing albumin and polyallylamine nanoparticles. Eur J Pharm Sci 2009; 36: 555–564.10.1016/j.ejps.2008.12.006Search in Google Scholar

Cui S, Luo X, Li Y. Synthesis and properties of polyurethane wood adhesives derived from crude glycerol-based. Int J Adhes 2017; 79: 67–72.10.1016/j.ijadhadh.2017.04.008Search in Google Scholar

Das S, Yilgor I, Yilgor E, Inci B, Tezgel O, Beyer FL, Wilkes GL. Structure – property relationships and melt rheology of segmented, non-chain extended polyureas: effect of soft segment molecular weight. Polymer 2007; 48: 290–301.10.1016/j.polymer.2006.10.029Search in Google Scholar

De S, Sharma R, Triqwell S, Laska B, Ali N, Mazumder MK, Mehta JL. Plasma treatment of polyurethane coating for improving endothelial cell growth and adhesion. J Biomed Sci Polym Ed 2005; 16: 973–989.10.1163/1568562054414612Search in Google Scholar

Dee KC, Puleo DA, Bizios R. An introduction to tissue-biomaterial interactions. Hoboken, NJ: John Wiley and Sons, 2003.10.1002/0471270598Search in Google Scholar

Delebecq E, Pascault JP, Boutevin B, Ganachaud F. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and nonisocyanate polyurethane. Chem Rev 2013; 113: 80–118.10.1021/cr300195nSearch in Google Scholar

Delpech MC, Coutinho FMB. Waterborne anionic polyurethanes and poly(urethane-urea)s: influence of the chain extender on mechanical and adhesive properties. Polym Test 2000; 19: 939–952.10.1016/S0142-9418(99)00066-5Search in Google Scholar

Desai S, Thakore M, Devi S. Effect of crosslink density on transport of industrial solvents through polyether based polyurethanes. Polym Int 1998; 47: 172–178.10.1002/(SICI)1097-0126(1998100)47:2<172::AID-PI43>3.0.CO;2-2Search in Google Scholar

Desai S, Thakore I, Sarawade B, Devi S. Effect of polyol and diisocyanates on thermomechanical and morphological properties of polyurethanes. Eur Polym J 2000; 36: 711–725.10.1016/S0014-3057(99)00114-7Search in Google Scholar

Desai SD, Patel JV, Sinha VK. Polyurethane adhesive system from biomaterial-based polyol for bonding wood. Int J Adhes Adhes 2003; 23: 393–399.10.1016/S0143-7496(03)00070-8Search in Google Scholar

Dieterich D, Grigart E, Hahn W, Hespe H, Schmellzer H. Polyurethane handbook, principles of polyurethane chemistry and special applications. Munich: Hanser Publishers, 1993.Search in Google Scholar

Dolmaire N, Espuche E, Méchin F, Pascault JP. Water transport properties of thermoplastic polyurethane films. J Polym Sci Part B Polym Phys 2004; 42: 473–492.10.1002/polb.10716Search in Google Scholar

Dostal M, Vasků J, Vasků J, Sotolová O, Vasků A, Dolezel S, Hartmannová B. Mineralization of polyurethane membranes in the total artificial heart (TAH): a retrospective study from long-term animal experiments. Int J Artif Organs 1990; 13: 498–502.10.1177/039139889001300809Search in Google Scholar

Dzunuzovic JV, Pergal M, Poreba R, Ostojic S, Lazic N, Spirkova M, Jovanovic S. Studies of the thermal and mechanical properties of poly(urethane-siloxane)s cross-linked by hyperbranched polyesters. Ind Eng Chem Res 2012; 51: 10824–10832.10.1021/ie300927zSearch in Google Scholar

Eceiza A, Martin M, de la Caba K, Kortaberria G, Gabilondo N, Corcuera M, Mondragon I. Thermoplastic polyurethane elastomers based on polycarbonate diols with different soft segment molecular weight and chemical structure: mechanical and thermal properties. Polym Eng Sci 2008; 48: 297–306.10.1002/pen.20905Search in Google Scholar

Engels H, Pirkl H, Albers R, Albach R, Krause J, Hoffmann A, Casselmann H, Dormish J. Polyurethanes: versatile materials and sustainable problem solvers for today’s challenges. Angew Chem Int Ed Engl 2013; 52: 9422–9441.10.1002/anie.201302766Search in Google Scholar

Erdodi G, Kang J, Kennedy JP, Yilgor E, Yilgor I. Polyisobutylene-based polyurethanes. III. Polyurethanes containing PIB/PTMO soft co-segments. J Polym Sci A 2009; 47: 5278–5290.10.1002/pola.23577Search in Google Scholar

Ertem SP, Yilgor E, Kosak C, Wilkes GL, Zhang M, Yilgor I. Effect of soft segment molecular weight on tensile properties of poly(propylene oxide) based polyurethaneureas. Polymer 2012; 53: 4614–4622.10.1016/j.polymer.2012.08.020Search in Google Scholar

Fernandez d’Arlar B, Rueda L, de la Caba K, Mondragon I, Eceiza A. Microdomain composition and properties differences of biodegradable polyurethanes based on MDI and HDI. Polym Eng Sci 2008; 48: 519–529.10.1002/pen.20983Search in Google Scholar

Frautschi JR, Chinn JA, Phillips Jr RE, Zhao QH, Anderson JM, Joshi R, Levy RJ. Degradation of polyurethanes in vitro and in vivo: comparison of different models. Colloids Surf B Interfaces 1993; 1: 305–313.10.1016/0927-7765(93)80005-JSearch in Google Scholar

Furukawa M, Shiiba T, Murata S. Mechanical properties and hydrolytic stability of polyesterurethane elastomers with alkyl side groups. Polymer 1999; 40: 1791–1798.10.1016/S0032-3861(98)00262-6Search in Google Scholar

Galland G, Lam TM. Permeability and diffusion of gases in segmented polyurethanes: structure properties relations. J Appl Polym Sci 1993; 50: 1041–1058.10.1002/app.1993.070500613Search in Google Scholar

Gibas I, Janik H. Medical polyurethane with different hard segment content obtained from polycaprolactonediol, aliphatic diisocyanates and butanediol. Pol J Appl Chem 2009; 53: 9–14.Search in Google Scholar

Gogoi R, Alam MS, Niyogi UK. Effect of soft segment chain length on tailoring the properties of isocyanate terminated polyurethane prepolymer, a base material for polyurethane bandage. Int J Res Eng Technol 2013; 2: 395–398.10.15623/ijret.2013.0210060Search in Google Scholar

Gogolewski S. In vitro and in vivo molecular stability of medical polyurethanes: a review. Trends Polym Sci 1991; 1: 47–61.Search in Google Scholar

Griesser HJ. Degradation of polyurethanes in biomedical applications – a review. Polym Degrad Stabil 1991; 33: 329–354.10.1016/0141-3910(91)90080-BSearch in Google Scholar

Guelcher S, Srinivasan A, Dumas J, Didier J, McBride S, Hollinger J. Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates. Biomaterials 2008; 29: 1762–1775.10.1016/j.biomaterials.2007.12.046Search in Google Scholar

Gunatillake A, Meijs GF, McCarthy SJ, Adhikari R. Poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol based polyurethane elastomers. I. Synthesis and properties. J Appl Polym Sci 2000; 76: 2026–2040.10.1002/(SICI)1097-4628(20000628)76:14<2026::AID-APP5>3.0.CO;2-XSearch in Google Scholar

Guo Q, Knight PT, Mather PT. Tailored drug release from biodegradable sent coating based on hybrid polyurethanes. J Control Release 2009; 137: 224–233.10.1016/j.jconrel.2009.04.016Search in Google Scholar

Harogoppad SB, Aminabhavi TM. Sorption and transport of aqueous salt solutions of acetates, acetic and monochloroacetic acids in polyurethane. Polymer 1990; 31: 2346–2352.10.1016/0032-3861(90)90323-QSearch in Google Scholar

Harris RF, Joseph MD, Davidson C. Polyurethane elastomers based on molecular weight advanced poly(ethylene ether carbonate) polyols. IV. Effects of poly(propylene glycol) modified diols. J Appl Polym Sci 1992; 46: 1843–1857.10.1002/app.1992.070461016Search in Google Scholar

He Y, Xie D, Zhang X. The structure, microphase-separated morphology, and property of polyurethanes and polyureas. J Mater Sci 2014; 49: 7339–7352.10.1007/s10853-014-8458-ySearch in Google Scholar

Hentschel T, Münstedt H. Kinetics of the molar mass decrease in a polyurethane melt: a rheological study. Polymer 2001; 42: 3195–3203.10.1016/S0032-3861(00)00489-4Search in Google Scholar

Hernandez R, Weksler J, Padsalgikar A, Runt J. In vitro oxidation of high polydimethylsiloxane content biomedical polyurethanes: correlation with the microstructure. J Biomed Mater Res A 2008; 87: 546–556.10.1002/jbm.a.31823Search in Google Scholar

Ho CC, Halford KJ. Multilayer polyurethane protective films. US Patent 2015 8927107 B2.Search in Google Scholar

Ho BP, Choon KK, Young ML. Gas separation properties of polysiloxane/polyether mixed soft segment urethane urea membranes. J Membr Sci 2002; 204: 257–269.10.1016/S0376-7388(02)00048-0Search in Google Scholar

Hourston DJ, Williams G, Satguru R, Padget JD, Pears D. Structure-property study of polyurethane anionomers based on various polyols and diisocyanates. J Appl Polym Sci 1997; 66: 3025–2044.10.1002/(SICI)1097-4628(19971205)66:10<2035::AID-APP21>3.0.CO;2-1Search in Google Scholar

Huang S-L, Chao M-S, Ruaan R-C, Lai J-Y. Microphase separated structure and protein adsorption of polyurethanes with butadiene soft segment. Eur Polym J 2000; 36: 285–294.10.1016/S0014-3057(99)00063-4Search in Google Scholar

Illinger JL, Schneider NS, Karasz FE. Water vapor transport in hydrophilic polyurethanes. Polym Sci Technol 1974; 6: 183–196.10.1007/978-1-4684-2877-3_13Search in Google Scholar

Inoue H, Fujimoto K, Uyama Y, Ykada Y. Ex vivo and in vivo evaluation of the blood compatibility of surface-modified polyurethane catheters. J Biomed Mater Res 1997; 35: 255–264.10.1002/(SICI)1097-4636(199705)35:2<255::AID-JBM13>3.0.CO;2-GSearch in Google Scholar

Isfahani AP, Ghalei B, Wakimoto K, Bagheri R, Sivaniah E, Sadeghi M. Plasticization resistant crosslinked polyurethane gas separation membranes. J Mater Chem A 2016a; 4: 17431–17439.10.1039/C6TA07820FSearch in Google Scholar

Isfahani AP, Sadeghi M, Saeedi Dehaghani AH, Aravand MA. Enhancement of the gas separation properties of polyurethane membrane by epoxy nanoparticles. J Ind Eng Chem 2016b; 44: 67–72.10.1016/j.jiec.2016.08.012Search in Google Scholar

Islander RL, Devinny JS, Mansfeld F, Postyn A, Shih H. Microbial ecology of crown corrosion in sewers. J Environ Eng 1991; 117: 751–770.10.1061/(ASCE)0733-9372(1991)117:6(751)Search in Google Scholar

Jewrajka SK, Kang J, Erdodi G, Kennedy JP, Yilgor E, Yilgor I. Polyisobutylene-based polyurethanes. II. Polyureas containing mixed PIB/PTMO soft segments. J Polym Sci A 2009a; 47: 2787–2797.10.1002/pola.23361Search in Google Scholar

Jewrajka SK, Yilgor E, Yilgor I, Kennedy JP. Polyisobutylene-based segmented polyureas. I. Synthesis of hydrolytically and oxidatively stable polyureas. J Polym Sci A 2009b; 47: 38–48.10.1002/pola.23118Search in Google Scholar

Kan CW, Kwong CH, Ng SP. Effect of plasma treatment on the hydrophobicity of imitation leather with 100% polyurethane surface. Fibers Polym 2015; 16: 702–704.10.1007/s12221-015-0702-9Search in Google Scholar

Kang J, Erdodi G, Kennedy JP, Yilgor E, Yilgor I. PIB-based polyurethanes. IV. The morphology of polyurethanes containing soft co-segments. J Polym Sci A 2009; 47: 6180–6190.10.1002/pola.23661Search in Google Scholar

Kayyaoglu BK, Ozturk E, Guner FS, Uyar T. Improving hydrophobicity on polyurethane-based synthetic leather through plasma polymerization for easy care effect. J Coat Technol Res 2013; 10: 549–558.10.1007/s11998-013-9470-xSearch in Google Scholar

Keyur PS, Sujata SK, Natvar KP, Animesh KR. Castor oil based polyurethane adhesives for wood-to-wood bonding. Int J Adhes 2003; 23: 269–275.10.1016/S0143-7496(03)00044-7Search in Google Scholar

Kim MJ, Sea B, Youm KJ, Lee KJ. Morphology and carbon dioxide transport properties of polyurethane blend membranes. Desalination 2006; 193: 43–50.10.1016/j.desal.2005.07.047Search in Google Scholar

Kim E-H, Lee W-R, Myoung S-W, Kim J-P, Jung Y-G, Nam Y-S, Kyoung W-S, Cho H. Characterization of waterborne polyurethane for ecofriendly functional floor plate. Prog Org Coat 2010; 67: 102–106.10.1016/j.porgcoat.2009.10.019Search in Google Scholar

Klinedinst DB, Yilgor E, Yilgor I, Beyer FL, Sheth JP, Wilkes GL. Structure-property behavior of new segmented polyurethanes and polyureas without use of chain extenders. Rubber Chem Technol 2005; 78: 737–753.10.5254/1.3547910Search in Google Scholar

Knight PM, Lyman DJ. Gas permeability of various block copolyetherurethane. J Membr Sci 1984; 17: 245–254.10.1016/S0376-7388(00)83216-0Search in Google Scholar

Kocaefe D, Saha S. Comparison of the protection effectiveness of acrylic polyurethane coatings containing bark extracts on three heat-treated North American wood species: surface degradation. Appl Surf Sci 2012; 258: 5283–5290.10.1016/j.apsusc.2012.02.017Search in Google Scholar

Kong XH, Liu GG, Curtis JM. Characterization of canola oil based polyurethane wood adhesives. Int J Adhes 2011; 31: 559–564.10.1016/j.ijadhadh.2011.05.004Search in Google Scholar

Krol P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog Mater Sci 2007; 52: 915–1015.10.1016/j.pmatsci.2006.11.001Search in Google Scholar

Kuran W, Sobczak M, Listos T, Debek C, Florjanczyk Z. New route to oligocarbonate diols suitable for the synthesis of polyurethane elastomers. Polymer 2000; 41: 8531–8541.10.1016/S0032-3861(00)00197-XSearch in Google Scholar

Kwak Y, Park S, Lee Y, Kim H. Preparation and properties of waterborne polyurethanes for water-vapor-permeable coating materials. J Appl Polym Sci 2003; 89: 123–129. http://onlinelibrary.wiley.com/doi/10.1002/app.v89:1/issuetoc.10.1002/app.12128Search in Google Scholar

Lambda N, Woodhouse K, Cooper S. Polyurethanes in biomedical applications, Boca Raton, Finland: CRC Press, 1998.Search in Google Scholar

Lee DK, Tsai HB, Tsai RS, Chen PH. Preparation and properties of transparent thermoplastic segmented polyurethanes derived from different polyols. Polym Eng Sci 2007; 47: 695–701.10.1002/pen.20742Search in Google Scholar

Li H, Freeman BD, Ekinerb OM. Gas permeation properties of poly(urethaneurea)s containing different polyethers. J Membr Sci 2011; 369: 49–58.10.1016/j.memsci.2010.11.024Search in Google Scholar

Liao DC, Chen YC, Han JL, Hsiesh KH. Swelling equilibrium and sorption kinetics of urethane-modified bismaleimides elastomer. J Polym Sci Part B Polym Phys 1997; 35: 1747–1755.10.1002/(SICI)1099-0488(199708)35:11<1747::AID-POLB8>3.0.CO;2-PSearch in Google Scholar

Liu SG, Zhu GQ. Effects of altered reaction conditions on the synthesis of polyurethane-poly(2,2,2-trifluoroethyl methacrylate) triblock copolymer aqueous dispersion. Eur Polym J 2007; 43: 3904–3911.10.1016/j.eurpolymj.2007.06.042Search in Google Scholar

Lyman DJ, Kwan-Gett C, Zwart H, Bland A, Eastwood N, Kawai J, Kolff WJ. The development and implantation of a polyurethane hemispherical artificial heart. Trans Am Soc Artif Intern Organs 1971; 17: 456–463.Search in Google Scholar

Marchant RE, Miller KM, Anderson JM. In vivo biocompatibility studies. V. In vivo leukocyte interactions with Biomer. J Biomed Mater Res 1984; 18: 469–490.10.1002/jbm.820180917Search in Google Scholar

Marchant RE, Zhao Q, Anderson JM, Hiltner A. Degradation of a poly(ether urethane urea) elastomer: infra-red and XPS studies. Polymer 1987; 28: 2032–2039.10.1016/0032-3861(87)90037-1Search in Google Scholar

Martin DJ, Meijs GF, Renwick GM, Gunatillake PA, McCarthy SJ. Effect of soft segment CH2/O ratio on morphology and properties of a series of polyurethane elastomers. J Appl Polym Sci 1996; 60: 557–571.10.1002/(SICI)1097-4628(19960425)60:4<557::AID-APP9>3.0.CO;2-NSearch in Google Scholar

Martin DJ, Warren LAP, Gunatillake PA, McCarthy SJ, Mejis GF, Schindhelm K. Polydimethylsiloxane/polyether-mixed macrodiol-based polyurethane elastomers: biostability. Biomaterials 2000; 21: 1021–1029.10.1016/S0142-9612(99)00271-9Search in Google Scholar

Mathur A, Collier T, Kao W, Wiggins M, Schubert M, Hiltner A, Anderson J. In vivo biocompatibility and biostability of modified polyurethanes. J Biomed Mater Res 1997; 36: 246–257.10.1002/(SICI)1097-4636(199708)36:2<246::AID-JBM14>3.0.CO;2-ESearch in Google Scholar

McGee MG, Szycher M, Turner SA, Clay W, Trono R, Fuqua F, Norman JC. Use of a composite Biomer-butyl rubber/Biomer material to prevent transdiaphragmatic water permeation during long-term, electrically-actuated left ventricular assist device (LVAD) pumping. Trans Am Soc Artif Intern Organs 1980; 26: 299–303.Search in Google Scholar

McMillin CR. Physical testing of polymers for use in circulatory assist devices. Artif Organs 1983; 7: 78–91.10.1111/j.1525-1594.1983.tb04162.xSearch in Google Scholar

Mills DJ, Jamali SS, Paprocka K. Investigation into the effect of nano-silica on the protective properties of polyurethane coatings. Surf Coat Technol 2012; 209: 137–142.10.1016/j.surfcoat.2012.08.056Search in Google Scholar

Mondal S, Hu J. Segmenated shape meory polyurethane and its water vapor transport properties. Desi Monomers Polym 2006; 9: 527–550.10.1163/156855506778944028Search in Google Scholar

Mozaffari V, Sadeghi M, Fakhar A, Khanbabaei G, Ismail AF. Gas separation properties of polyurethane/poly(ether-block-amide) (PU/PEBA) blend membranes. Sep Purif Technol 2017; 185: 202–214.10.1016/j.seppur.2017.05.028Search in Google Scholar

Nagle DJ, Celina M, Rintoul L, Fredericks PM. Infrared microspectroscopic study of the thermo-oxidative degradation of hydroxyl-terminated polybutadiene/isophorone diisocyanate polyurethane rubber. Polym Degrad Stab 2007; 92: 1446–1454.10.1016/j.polymdegradstab.2007.05.010Search in Google Scholar

Nielsen LE. Models for the permeability of filled polymer systems. J Macromol Sci 1967; 1: 929–942.10.1080/10601326708053745Search in Google Scholar

Nyilas E, Ward RS Jr. Development of blood-compatible elastomers. V. Surface structure and blood compatibility of avcothane elastomers. J Biomed Mater Res 1977; 11: 69–84.10.1002/jbm.820110108Search in Google Scholar

O’Sickey MJ, Lawrey BD, Wilkes GL. Structure – property relationships of poly(urethane urea)s with ultra-low monol content poly(propylene glycol) soft segments. I. Influence of soft segment molecular weight and hard segment content. J Appl Polym Sci 2002; 84: 229–243.10.1002/app.10168Search in Google Scholar

Park HB, Kim CK, Lee YM. Gas separation properties of polysiloxane/polyether mixed soft segment urethane urea membranes. J Membr Sci 2002; 204: 257–269.10.1016/S0376-7388(02)00048-0Search in Google Scholar

Parniani S, Toutanji H. Monotonic and fatigue performance of RC beams strengthened with a polyurea coating system. Constr Build Mater 2015; 101: 22–29.10.1016/j.conbuildmat.2015.10.020Search in Google Scholar

Pergal MV, Dzunuzovic JV, Ostojic S, Pergal M, Radulovic A, Jovanovic S. Poly(urethane-siloxane)s based on hyperbranched polyester as crosslinking agent: synthesis and characterization. J Serb Chem Soc 2012; 77: 919–935.10.2298/JSC111013006PSearch in Google Scholar

Pergal MV, Dzunuzovic JV, Poreba R, Micic D, Stefanov P, Pezo L, Spirkova M. Surface and thermomechanical characterization of polyurethane networks based on poly(dimethylsiloxane) and hyperbranched polyester. Express Polym Let 2013; 7: 806–820.10.3144/expresspolymlett.2013.78Search in Google Scholar

Peterlin A. Dependence of diffusive transport on the morphology of crystalline polymers. J Macromol Sci B 1975; 11: 57–87.10.1080/00222347508217855Search in Google Scholar

Phaneuf MD, Dempsey DJ, Bide MJ, Quist WC, Lo Gerfo FW. Coating of Dacron vascular grafts with an ionic polyurethane: a novel sealant with protein binding properties. Biomaterials 2001; 22: 463–469.10.1016/S0142-9612(00)00202-7Search in Google Scholar

Pinchuk L. Crack-resistant polycarbonate urethane polymer prostheses. US Patent 1992 5133742.Search in Google Scholar

Pinchuk L. A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of “biostable” polyurethanes. J Biomater Sci Polym Ed 1995; 6: 225–267.10.1163/156856294X00347Search in Google Scholar

Pinchuk L, Kato YP, Eckstein ML, Wilson GJ, MacGregor DC. Polycarbonate urethanes as elastomeric materials for long-term implant applications. Trans 19th Ann Mtg SFB 1994; 22.Search in Google Scholar

Pizzi A. Synthetic adhesives for wood panels: chemistry and technology. In: Mittal KL, editor. Progress in adhesion and adhesives. Beverly: Scrivener Publishing, 2015.Search in Google Scholar

Podsiadlo P, Qin M, Cuddihy M, Zhy J, Critchley K, Kheng E, Kaushik AK, Qi Y, Kim H-S, Noh S-T, Arruda EM, Waas AM, Kotov NA. Highly ductile multilayered films by layer-by-layer assembly of oppositely charges polyurethanes for biomedical applications. Langmuir 2009; 25: 14093–14099.10.1021/la9021323Search in Google Scholar PubMed

Prisacariu C. Polyurethane elastomers, from morphology to mechanical aspects. Wien, New York: Springer-Verlag, 2011.10.1007/978-3-7091-0514-6Search in Google Scholar

Rafał Poręba R, Špírková M, Brožová L, Lazić N, Pavličević J, Strachota A. Aliphatic polycarbonate-based polyurethane elastomers and nanocomposites. II. Mechanical, thermal, and gas transport properties. J Appl Polym Sci 2013; 127: 329–341.10.1002/app.37895Search in Google Scholar

Ratner BD, Yoon SC. Surface structure of polymers for biomedical applications. In: Mateo NB, Feast WJ, Munro HS, editors. Polymer surfaces and interfaces. New York: Wiley, 1987.Search in Google Scholar

Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: an introduction to materials in medicine. New York: Academic Press, 1986.Search in Google Scholar

Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science: an introduction to materials in medicine. USA: Academic Press, 2004.Search in Google Scholar

Reed A, Potter J, Szycher M. A solution grade biostable polyurethane elastomer: ChronoFlex AR. J Biomater Appl 1994; 8: 210–236.10.1177/088532829400800303Search in Google Scholar

Reid JS, Rosenberg G, Pierce WS. Transmission of water through a biocompatible polyurethane: application to circulatory assist devices. J Biomed Mater Res 1985; 19: 1181–1202.10.1002/jbm.820190924Search in Google Scholar

Robeson LM. The upper bound revisited. J Membr Sci 2008; 320: 390–400.10.1016/j.memsci.2008.04.030Search in Google Scholar

Runt J, Pangon A, Castagna A, He Y, Grujicic M. 2. Phase separated microstructure and structure-property relationships of high strain rate elastomeric polyureas. In: Barsoum RG, editor. Elastomeric polymers with high rate sensitivity. William Andrew, 2015.10.1016/B978-0-323-35400-4.00002-7Search in Google Scholar

Rzeszutek K, Chow A. Extraction of phenols using polyurethane membrane. Talanta 1998; 46: 507–519.10.1016/S0039-9140(97)00273-7Search in Google Scholar

Rzeszutek K, Chow A. Transport of organic dyes through ether-type polyurethane membrane. Talanta 1999; 49: 757–771.10.1016/S0039-9140(99)00071-5Search in Google Scholar

Sadeghi M, Semsarzadeh MA, Barikani M, Ghalei B. Study on the morphology and gas permeation property of polyurethane membranes. J Membr Sci 2011; 385–386: 76–85.10.1016/j.memsci.2011.09.024Search in Google Scholar

Saha S, Kocaefe D, Boluk Y, Pichette A. Enhancing exterior durability of jack pine by photo-stabilization of acrylic polyurethane coating using bark extract. Part 1: effect of UV on color change and ATR-FT-IR analysis. Prog Org Coat 2011; 70: 376–382.10.1016/j.porgcoat.2010.09.034Search in Google Scholar

Sami S, Yildirim E, Yurtsever M, Yurtsever E, Yilgor E, Yilgor I, Wilkes GL. Understanding the influence of hydrogen bonding and diisocyanate symmetry on the morphology and properties of segmented polyurethanes and polyureas: computational and experimental study. Polymer 2014; 55: 4563–4576.10.1016/j.polymer.2014.07.028Search in Google Scholar

Santerre JP, Woodhouse K, Laroche G, Labow RS. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials. Biomaterials 2005; 26: 7457–7470.10.1016/j.biomaterials.2005.05.079Search in Google Scholar

Sarkar S, Adhikari B. Thermal stability of lignin-hydroxy-terminated polybutadiene copolyurethanes. Polym Degrad Stab 2001; 73: 169–175.10.1016/S0141-3910(01)00084-2Search in Google Scholar

Schneider NS, Illinger JL, Cleaves MS. Liquid sorption in a segmented polyurethane elastomer. Polym Mater Sci Eng 1983; 49: 244–248.10.1002/pen.760262204Search in Google Scholar

Schollenberger CS. Simulated vulcanizates of polyurethane elastomers. US Patent 1955 2 871 218A.Search in Google Scholar

Schubert M, Wiggins M, Hiltner A, Anderson J. Role of oxygen in biodegradation of poly(ether urethane urea) elastomers. J Biomed Mater Res 1997; 34: 519–530.10.1002/(SICI)1097-4636(19970315)34:4<519::AID-JBM12>3.0.CO;2-7Search in Google Scholar

Seefried CG, Koleske JV, Critchfield FE. Thermoplastic urethane elastomers. III. Effects of variations in isocyanate structure. J Appl Polym Sci 1975; 19: 3185–3191.10.1002/app.1975.070191204Search in Google Scholar

Semsarzadeh MA, Ghalei B. Characterization and gas permeability of polyurethane and polyvinyl acetate blend membranes with polyethylene oxide–polypropylene oxide block copolymer. J Membr Sci 2012; 401–402: 97–108.10.1016/j.memsci.2012.01.035Search in Google Scholar

Sheth JP, Aneja A, Wilkes GL, Yilgor E, Atilla GE, Yilgor I, Beyer FL. Influence of system variables on the morphological and dynamic mechanical behavior of polydimethylsiloxane based segmented polyurethane and polyurea copolymers: a comparative perspective. Polymer 2004; 45: 6919–6932.10.1016/j.polymer.2004.06.057Search in Google Scholar

Sheth JP, Klinedinst DB, Pechar TW, Wilkes GL, Yilgor E, Yilgor I. Time-dependent morphology development in a segmented polyurethane with monodisperse hard segments based on 1,4-phenylene diisocyanate. Macromolecules 2005a; 38: 10074–10079.10.1021/ma051063aSearch in Google Scholar

Sheth JP, Klinedinst DB, Wilkes GL, Yilgor I, Yilgor E. Role of chain symmetry and hydrogen bonding in segmented copolymers with monodisperse hard segments. Polymer 2005b; 46: 7317–7322.10.1016/j.polymer.2005.04.041Search in Google Scholar

Sheth JP, Yilgor E, Erenturk B, Ozhalici H, Yilgor I, Wilkes GL. Structure–property behavior of poly(dimethylsiloxane) based segmented polyurea copolymers modified with poly(propylene oxide). Polymer 2005c; 46: 8185–8193.10.1016/j.polymer.2005.06.050Search in Google Scholar

Shin JW, Lee YJ, Heo SJ, Park SA, Kim S-H, Kim YJ, Kim D-H, Shin J-W. Manufacturing of multi-layered nanofibrous structures composed of polyurethane and poly(ethylene oxide) as potential blood vessel scaffolds. J Biomater Sci 2009; 20: 757–771.10.1163/156856209X426808Search in Google Scholar

Simmons A, Hyvarinen J, Odell RA, Martin DJ, Gunatillake PA, Noble KR, Poole-Warren LA. Long-term in vivo biostability of poly(dimethylsiloxane)/ poly(hexamehtylene oxide) mixed macrodiol-based polyurethane elastomers. Biomaterials 2004; 25: 4887–4900.10.1016/j.biomaterials.2004.01.004Search in Google Scholar

Skarja GA, Woodhouse KA. Structure-property relationships of degradable polyurethane elastomers containing an amino acid-based chain extender. J Appl Polym Sci 2000; 75: 1522–1534.10.1002/(SICI)1097-4628(20000321)75:12<1522::AID-APP11>3.0.CO;2-ASearch in Google Scholar

Spilezewski KL, Anderson JM, Schaap RN, Solomon DD. In vivo biocompatibility of catheter materials. Biomaterials 1988; 9: 253–256.10.1016/0142-9612(88)90093-2Search in Google Scholar

Stokes K, McVenes R. Polyurethane elastomer biostability. J Biomater Appl 1995; 9: 321–354.10.1177/088532829500900402Search in Google Scholar

Takahara A, Coury A, Hergenrother R, Cooper S. Effect of soft segment chemistry on the biostability of segmented polyurethanes. I. In vitro oxidation. J Biomed Mater Res 1991; 25: 341–356.10.1002/jbm.820250306Search in Google Scholar

Talakesh MM, Sadeghi M, Chenar MP, Khosravi A. Gas separation properties of poly(ethylene glycol)/poly(tetramethylene glycol) based polyurethane membranes. J Membr Sci 2012; 415–416: 469–477.10.1016/j.memsci.2012.05.033Search in Google Scholar

Tanaka H, Kunimura M. Mechanical properties of thermoplastic polyurethanes containing aliphatic polycarbonate soft segments with different chemical structures. Polym Eng Sci 2002; 45: 1333–1349.10.1002/pen.11035Search in Google Scholar

Tang Y, Labow R, Santerre J. Ensyme induced biodegradation of polycarbonate-polyurethanes: dose dependence effect of cholesterol esterase. Biomaterials 2003; 24: 2003–2011.10.1016/S0142-9612(02)00563-XSearch in Google Scholar

Tant MR, Mauritz KA, Wilkes GL, editors. Ionomers: synthesis, structure, properties and applications. Netherlands: Springer, 1997.10.1007/978-94-009-1461-2Search in Google Scholar

Tao HJ, Meuse CW, Yang X, MacKnight WJ, Hsu SL. A spectroscopic analysis of phase separation behavior of polyurethane in restricted geometry: chain rigidity effects. Macromolecules 1994; 27: 7146–7151.10.1021/ma00102a023Search in Google Scholar

Tawa T, Ito S. The role of hard segments of aqueous polyurethaneurea dispersion in determining the colloidal characteristics and physical properties. Polym J 2006; 38: 686–693.10.1295/polymj.PJ2005193Search in Google Scholar

Tetteh G, Khan AS, Delaine-Smith RM, Reilly GC, Rehman IU. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles. J Mech Behav Biomed Mater 2014; 39: 95–110.10.1016/j.jmbbm.2014.06.019Search in Google Scholar

Tirouni I, Sadeghi M, Pakizeh M. Separation of C3H8 and C2H6 from CH4 in polyurethane–zeolite 4Å and ZSM-5 mixed matrix membranes. Sep Purif Technol 2015; 141: 394–402.10.1016/j.seppur.2014.12.012Search in Google Scholar

Toutanji HA, Choi H, Wong D, Gilbert JA, Alldredge DJ. Applying a polyurea coating to high-performance organic cementitious materials. Constr Build Mater 2013; 38: 1170–1179.10.1016/j.conbuildmat.2012.09.041Search in Google Scholar

Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR, Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 2000; 288: 113–116.10.1126/science.288.5463.113Search in Google Scholar

Velankar S, Cooper SL. Microphase separation and rheological properties of polyurethane melts. 2. Effect of block incompatibility on the microstructure. Macromolecules 2000; 33: 382–394.10.1021/ma990817gSearch in Google Scholar

Vermette P, Griesser H, Laroche G, Guidoin R. Biomedical applications of polyurethanes. Gerorgetown, TX: Landes Biosciences, 2001.Search in Google Scholar

Vipulanandan C, Liu J. Performance of polyurethane-coated concrete in sewer environment. Cem Concr Res 2005; 35: 1754–1763.10.1016/j.cemconres.2004.10.033Search in Google Scholar

Wagner M, Reul G, Teresi J, Kayser KL. Experimental observations on a new and inherently elastic material for sutures and vascular prostheses: Lycra. Am J Surg 1966; 111: 838–841.10.1016/0002-9610(66)90184-XSearch in Google Scholar

Wang N, Raza A, Si Y, Yu J, Sun G, Ding B. Tortuously structured polyvinyl chloride/polyurethane fibrous membranes for high-efficiency fine particulate filtration. J Colloid Interface Sci 2013; 398: 240–246.10.1016/j.jcis.2013.02.019Search in Google Scholar PubMed

Ward RS. Polymer systems suitable for blood-contacting surfaces of a biomedical device and methods for forming. US 4,675,361, June 23, 1987.Search in Google Scholar

Ward R, Anderson J, McVenes R, Stokes K. In vivo biostability of shore 55D polyether polyurethanes with and without fluoropolymer surface modifying endgroups. J Biomed Mater Res A 2006a; 79A: 836–845.10.1002/jbm.a.30800Search in Google Scholar

Ward R, Anderson J, McVenes R, Stokes K. In vivo biostability of polysiloxane polyether polyurethanes: Resistance to biologic oxidation and stress cracking. J Biomed Mater Res A 2006b; 77: 580–589.10.1002/jbm.a.30555Search in Google Scholar

Wazarkar K, Kathalewar M, Sabnis A. High performance polyuria coatings based on cardanol. Prog Org Coat 2017; 106: 96–110.10.1016/j.porgcoat.2017.02.005Search in Google Scholar

Wiggins M, Wilkoff B, Anderson J, Hiltner A. Biodegradation of polyether polyurethane inner insulation in bipolar pacemaker leads. J Biomed Mater Res 2001; 58: 302–307.10.1002/1097-4636(2001)58:3<302::AID-JBM1021>3.0.CO;2-YSearch in Google Scholar

Williams D. Tissue-biomaterial interactions. J Mater Sci 1987; 22: 3421–3445.10.1007/BF01161439Search in Google Scholar

Williams DF, editor. The Williams dictionary of biomaterials. Liverpool, UK: Liverpool University Press, 1999.10.5949/UPO9781846314438Search in Google Scholar

Williams SK, Carter T, Park PK, Rose DG, Schneider T, Jarrell BE. Formation of multilayer cellular lining on a polyurethane vascular graft following endothelial cell sodding. J Biomed Mat Res 1992; 26: 103–117.10.1002/jbm.820260110Search in Google Scholar

Wolinska-Grabczyk A. Effect of the hard segment domains on the permeation and separation ability of the polyurethane-based membranes in benzene/cyclohexane separation by pervaporation. J Membr Sci 2006; 282: 225–236.10.1016/j.memsci.2006.05.026Search in Google Scholar

Wolinska-Grabczyk A. Transport of liquid hydrocarbons in the polyurethane-based membranes. J Membr Sci 2007; 302: 59–69.10.1016/j.memsci.2007.06.023Search in Google Scholar

Wolinska-Grabczyk A, Jankowski A. Gas transport properties of segmented polyurethanes varying in the kind of soft segments. Sep Purif Technol 2007; 57: 413–417.10.1016/j.seppur.2006.03.025Search in Google Scholar

Woods G. The ICI Polyurethanes Book, 2a ed., New York: John Wiley and Sons, 1990.Search in Google Scholar

Wu W-M, Zhang W, Chen M-B, Qiang H-F, Shi L-W. Theoretical investigation of the bond dissociation of hydroxyl terminated polybutadiene binder and effect on mechanical properties. Acta Chim Sinica 2012; 70: 1145–1152.10.6023/A1202061Search in Google Scholar

Xu R, Manias E, Snyder AJ, Runt J. New biomedical poly(urethane-urea)-layered silicate nanocomposites. Macromolecules 2001; 34: 337–339.10.1021/ma0013657Search in Google Scholar

Xu R, Manias E, Snyder AJ, Runt J. Low permeability biomedical polyurethane nanocomposites. J Biomed Mater Res A 2003; 64: 114–119.10.1002/jbm.a.10377Search in Google Scholar

Yang M, Deng X, Laroche G, Hahn C, King MW, Guidoin RG. A capillary method to measure water transmission through polyurethane membranes. ASAIO J 1997; 43: 890–896.10.1097/00002480-199711000-00008Search in Google Scholar

Yang M, Zhang Z, Hahn C, Laroche G, King MW, Guidoin R. Totally implantable artificial hearts and left ventricular assist devices: selecting impermeable polycarbonate urethane to manufacture ventricles. J Biomed Mater Res 1999; 48: 13–23.10.1002/(SICI)1097-4636(1999)48:1<13::AID-JBM4>3.0.CO;2-4Search in Google Scholar

Yeh J, Gordon III B, Rosenberg G. Moisture diffusivity of Biomer® versus Biomer®-coated polyisobutylene polyurethane urea (PIB-PUU): a potential blood sac material for the artificial heart. J Mater Sci Lett 1994; 13: 1390–1391.10.1007/BF00405040Search in Google Scholar

Yi H, Jianjun G, Kazuro LF, Ryotaro H, Anca LP, William RW. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials 2010; 31: 4249–4258.10.1016/j.biomaterials.2010.02.005Search in Google Scholar

Yilgor I, Yilgor E. Textiles coated with waterproof, moisture vapor permeable polymers. US Patent 1995a 5389430 A.Search in Google Scholar

Yilgor I, Yilgor E. Waterproof, moisture vapor permeable polyurethane urea polymer comprising polycaprolactone and polydimethyl siloxane soft segments. US Patent 1995b 5461122 A.Search in Google Scholar

Yilgor I, Yilgor E. Waterproof, moisture vapor permeable polymers, films and coated textiles and other materials. US Patent 1996 5521273 A.Search in Google Scholar

Yilgör I, Yilgör E. Hydrophilic polyurethane urea membranes: influence of soft block composition on the water vapor permeation rates. Polymer 1999; 40: 5575–5581.10.1016/S0032-3861(98)00766-6Search in Google Scholar

Yılgör E, Yılgör I. Hydrogen bonding: a critical parameter in designing silicone copolymers. Polymer 2001; 42: 7953–7959.10.1016/S0032-3861(01)00293-2Search in Google Scholar

Yilgor I, Yilgor E. Structure-morphology-property behavior of segmented thermoplastic polyurethanes and polyureas prepared without chain extenders. Polym Rev 2007; 47: 487–510.10.1080/15583720701638260Search in Google Scholar

Yılgör E, Yılgör I, Yurtsever E. Hydrogen bonding and polyurethane morphology. I. Quantum mechanical calculations of hydrogen bond energies and vibrational spectroscopy of model compounds. Polymer 2002; 43: 6551–6559.10.1016/S0032-3861(02)00567-0Search in Google Scholar

Yilgor E, Atilla GE, Ekin A, Kurt P, Yilgor I. Isopropyl alcohol: an unusual, powerful, “green” solvent for the preparation of silicone–urea copolymers with high urea contents. Polymer 2003; 44: 7787–7793.10.1016/j.polymer.2003.10.048Search in Google Scholar

Yilgor I, Yilgor E, Yilgor I, Guler G, Ward T, Wilkes GL. FTIR investigation of the influence of diisocyanate symmetry on the morphology development in model segmented polyurethanes. Polymer 2006; 47: 4105–4114.10.1016/j.polymer.2006.02.027Search in Google Scholar

Yilgor I, Eynur T, Bilgin S, Yilgor E, Wilkes GL. Influence of soft segment molecular weight on the mechanical hysteresis and set behavior of silicone-urea copolymers with low hard segment contents. Polymer 2011a; 52: 266–274.10.1016/j.polymer.2010.11.040Search in Google Scholar

Yilgor E, Eynur T, Kosak C, Bilgin S, Yilgor E, Malay O, Menceloglu Y, Wilkes GL. Fumed silica filled poly(dimethosiloxane-urea) segmented copolymers: preparation and properties. Polymer 2011b; 52: 4189–4198.10.1016/j.polymer.2011.07.041Search in Google Scholar

Yilgor I, Yilgor E, Wilkes GL. Critical parameters in designing segmented polyurethanes and d their effect on morphology and properties: a comprehensive review. Polymer 2015; 58: A1–A36.10.1016/j.polymer.2014.12.014Search in Google Scholar

Yilgor E, Isik M, Soz CK, Yilgor I. Synthesis and structure-property behavior of polycaprolactone-polydimethylsiloxane-polycaprolactone triblock copolymers. Polymer 2016; 83; 138–153.10.1016/j.polymer.2015.12.024Search in Google Scholar

Zandén C, Voinova M, Gold J, Mörsdorf D, Bernhardt I, Liu J. Surface characterization of oxygen plasma treated electrospun polyurethane fibres and their interaction with red blood cells. Eur Polym J 2012; 48: 472–482.10.1016/j.eurpolymj.2012.01.004Search in Google Scholar

Zdrahala RJ, Gerkin RM, Hager SL, Critchfield FE. Polyether-based thermoplastic polyurethanes. I. Effect of the hard-segment content. J Appl Polym Sci 1979; 25: 2041–2050.10.1002/app.1979.070240912Search in Google Scholar

Zha L, Wu M, Yang J. Hydrogen bonding and morphological structure of segmented polyurethanes based on hydroquinone-bis(p-hydroxyethyl)ether as a chain extender. J Appl Polym Sci 1999; 73: 2895–2902.10.1002/(SICI)1097-4628(19990929)73:14<2895::AID-APP13>3.0.CO;2-ESearch in Google Scholar

Zhang D, Ward R, Shen Y, Somorjai GA. Environment-induced surface structural changes of a polymer: an in situ IR plus visible sum-frequency spectroscopic study. J Phys Chem B 1997; 101: 9060–9064.10.1021/jp9718358Search in Google Scholar

Zhang C, Zhao K, Hu T, Cui X, Brown N, Boland T. Loading dependent swelling and release properties of novel biodegradable, elastic and environmental stimuli-sensitive polyurethanes. J Control Release 2008; 131: 128–136.10.1016/j.jconrel.2008.07.026Search in Google Scholar PubMed

Zhang M, Pang J, Bao W, Zhang W, Gao H, Wang C, Shi J, Li J. Antimicrobial cotton textiles with robust superhydrophobility via plasma for oily water separation. Appl Surf Sci 2017; 419: 16–23.10.1016/j.apsusc.2017.05.008Search in Google Scholar

Zhao Q, McNally A, Rubin K, Renier M, Wu Y, Rose-Caprara V, Anderson J, Hiltner A, Urbanski P, Stokes K. Human plasma alpha 2-macroglobuline promotes in vitro oxidative stress cracking of Pellethane 2363-80A: in vivo and in vitro correlations. J Biomed Mater Res 1993; 27: 379–388.10.1002/jbm.820270311Search in Google Scholar PubMed

Zhou H, Zhou J, Fan H, Chen Y, Yang F, Yuan J, Liu R. Separation of NaCl, glycin from collagen solution by the thermal sensitive polyurethane membrane. Desalination 2009; 249: 843–849.10.1016/j.desal.2009.03.017Search in Google Scholar

Zhou X, Li Y, Fang C, Li S, Cheng Y, Lei W, Meng X. Recent advances in synthesis of waterborne polyurethane and their application in water-based ink: a review. J Mater Sci Technol 2015; 31: 708–722.10.1016/j.jmst.2015.03.002Search in Google Scholar

Received: 2017-05-17
Accepted: 2018-03-01
Published Online: 2018-09-06
Published in Print: 2019-04-24

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revce-2017-0033/html
Scroll to top button