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Abstract: This study aims to develop and experimentally
implement a novel portable electrochemical sensor based
on screen-printed carbon electrodes (SPCEs) and an original
bath-injection electrochemical cell for real-time environ-
mental monitoring of pollutants. The scientific novelty of
this work lies in the design of a simplified yet highly
effective electrochemical cell that eliminates the need for a
liquid carrier through an innovative self-washing mecha-
nism using excess sample volume. This feature significantly
reduces system complexity and enhances sensor reliability
in field applications. The advantages of microfluidic tech-
nologies in the development of SPCE-based sensors are
highlighted, and detailed protocols for modifying SPCEs with
mercury, bismuth, and gold films are presented. Surface
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characterization is supported by micrographs, ensuring
reproducibility of the electrode surface and analytical re-
sults. Voltammograms for various individual ions and their
mixtures are provided, along with the corresponding elec-
trode modifications and analytical conditions. The devel-
oped system demonstrates a broad linear concentration
range and a detection limit as low as 5-10 pg/L. Field trials of
the sensor were conducted using water samples from the
Zeravshan river, a major source of drinking water in the
region. Elevated concentrations of several toxic ions
were detected, with the results confirmed by atomic
absorption and inductively coupled plasma atomic emission
spectroscopy. The proposed sensor system proves to be a
promising solution for on-site pollutant detection under
limited infrastructure conditions, supporting rapid response
to both anthropogenic and natural environmental
emergencies.

Keywords: screen-printed electrodes; stripping voltamme-
try; electrochemical micro-cell; bath-injection systems;
on-site and real-time pollution analysis

1 Introduction

One of the key priorities in modern analytical chemistry is
the creation of reliable, real-time methods for on-site
chemical analysis [1-3]. The demand for such approaches
has grown significantly due to their critical role in rapid
decision-making during man-made and natural emergen-
cies, where analytical delays can lead to severe conse-
quences [4-7]. In addition to emergency response, on-site
analysis ensures the integrity of samples by minimizing
alterations caused by environmental influences such as
temperature shifts, UV exposure, redox activity, and
time-dependent degradation processes like hydrolysis
and aging.

The emergence of portable, compact, and automated
analytical systems — especially those based on microfluidic
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technologies — has opened new avenues for decentralizing
laboratory diagnostics [8-10]. Among these, “lab-on-a-chip”
platforms incorporating screen-printed electrodes (SPEs)
stand out for their high potential in miniaturized voltam-
metric analysis [11, 12]. These systems not only require
minimal reagent and sample volumes but also offer high
analytical performance, reproducibility, and ease of auto-
mation at low cost, making them especially attractive for
field use and routine analysis in resource-limited settings
[13-16].

Screen-printing technology enables the mass produc-
tion of disposable electrochemical sensors with custom-
izable design and functionality [17-19]. By tailoring the
composition and rheology of carbon-based inks, it is possible
to fabricate SPEs with diverse structural and electro-
chemical characteristics [20-23]. This includes the ability to
modify electrode surfaces with various nanocomposite ma-
terials — such as metal or organic films - thus significantly
expanding their selectivity and sensitivity [24, 25]. For
example, carbon microparticles incorporated into the ink
can enhance the sensor’s performance, enabling it to detect a
broad range of analytes [26-29].

The use of SPCEs has been further advanced by the
development of three-electrode sensor designs with stan-
dard dimensions of 10 x 28 x 0.35 mm, where carbon-based
inks form the working and auxiliary electrodes, and silver
chloride paste serves as the reference electrode [30, 31].
Additionally, dielectric substrates such as polyethylene
terephthalate (PETF) or thick Whatman-type paper are
commonly employed to support these sensors [32, 33]. These
innovations have paved the way for more efficient and
scalable production of high-performance electrochemical
SEnsors.

Despite significant advances in planar voltammetric
systems, most analytical measurements employing screen-
printed carbon electrodes (SPCEs) are still conducted under
static conditions [34-36]. For practical on-site applications
and integration into continuous monitoring systems,
however, the transition to a flow-through configuration is
essential.

Flow injection analysis (FIA) offers several advantages:
it eliminates the need for sample mixing or pretreatment,
reduces reagent consumption, and enables automation [6,
37]. Nevertheless, the implementation of FIA requires the
incorporation of additional mechanical components into the
analytical platform — such as a peristaltic or plunger pump, a
carrier flow-rate controller, and a sample injection device
[38]. Furthermore, commercially available FIA systems are
not always compatible with standardized SPCE sensors,
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which limits their widespread adoption, particularly for
field applications.

In recent years, batch-injection analysis (BIA) has
emerged as a practical alternative to FIA [39, 40]. BIA systems
retain the main advantages of FIA — high sampling frequency,
low sample and reagent consumption, good accuracy, sensi-
tivity, and reproducibility — while avoiding the need for
auxiliary components typically required in FIA setups
(pumps, injectors, and carrier flow control systems) [41, 42].

Traditionally, all reported BIA cells have utilized three
separate electrodes (working, auxiliary, and reference)
[43-46], which can be cumbersome, especially when a con-
ventional reference electrode is employed, as it requires
special maintenance. The introduction of SPCE
technology has largely resolved this issue since SPCEs
inherently integrate all three electrodes on a single planar
substrate.

Nevertheless, researchers continue to propose
improved electrochemical cell configurations and simplified
sample introduction systems [47-49], aiming to enhance
portability, reduce manufacturing costs, and maintain
analytical performance.

In this work, we propose a simple and cost-effective
batch-injection analysis system based on both native
and modified SPCEs. The primary objective is to assess its
analytical characteristics and evaluate the feasibility of
using such a system for real-time, on-site voltammetric
determination of target analytes. The study underscores
both the scientific and practical significance of integrating
SPCEs into compact, portable BIA configurations, thereby
advancing the development of rapid environmental and
industrial electrochemical diagnostics.

2 Materials and methods

In this study, unmodified screen-printed electrodes (SPCEs)
from RUSENS Ltd (Russia) were used as the base electrodes
[31]. The modification of the working surface of these elec-
trodes was performed using mercury, bismuth, and gold,
employing both in situ and ex situ methods. These modifi-
cations were adapted from techniques traditionally applied
to macroelectrodes, but with optimizations tailored to the
SPCEs, making them more suitable for sensitive and selective
measurements.

All reagents used in the work were qualified as “suitable
for analysis” and “chemically pure” and were purchased
from the main suppliers of reagents from Russia (CJSC
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Reagent) Kazakhstan (Sigma-Aldrich), China (ALFA GROUP).
Control solutions were prepared in bidistilled water with a
specific electrical conductivity of no more than 0.5 ps/cm.
The appropriate certified reference solution was used to
prepare buffer solutions. The pH was monitored using a
portable pH meter DPH1 (Fortek, Uzbekistan).

2.1 Surface modification methods
2.1.1 Mercury film modification

The modification of the SPCE surface with a mercury film
was carried out using an in situ deposition process. A solu-
tion containing 5 x 10~ mol-L ™! Hg(NO,), in 1M sodium ac-
etate buffer (pH 5.6) was employed. To ensure the removal of
dissolved oxygen, the solution was purged with nitrogen for
10-15 min prior to the deposition. After deaeration, a po-
tential of 1.0 V vs. Ag/AgCl was applied for 600 s to facilitate
mercury film formation. Following this step, the electrode
was thoroughly rinsed with distilled water to remove any
residual solution.

2.1.2 Bismuth film modification

For the bismuth film deposition, the electrode was exposed
to a solution containing 1mg-L™! Bi(Ill) in 0.1M acetate
buffer (pH 4.5) at -14V (vs. Ag/AgCl) for 300s. Prior to
deposition, a conditioning step at +0.3 V for 5 min was per-
formed to re-oxidize any heavy metals that might have been
adsorbed on the electrode surface. During the deposition
process, the solution was continuously stirred to ensure
uniformity of the film. After modification, the electrode was
rinsed with distilled water followed by ethanol to eliminate
any residual chemicals.

2.1.3 Gold film modification

The gold film was deposited using a novel method outlined in
RF patent RU2753352C1 [50], which involves the reduction of
gold from its acidic form with sodium nitrite in a polyvinyl
alcohol (PVA) solution.

2H[AuCl,] + 3NaNO; + 8NaOH — 2Au + 3NaNOs + 8NaCl
+5H,0
A 100 mg-L ™" H[AuCly] solution, prepared from certified

reference materials provided in the TL-4 voltammetric
analyzer kit (Tom-Analyte, Tomsk), was reacted with 10°M
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sodium nitrite in 1 % PVA solution. The reaction was initiated
by the addition of 2M caustic soda, and the mixture was then
sonicated at 40°C for 20 min. The appearance of pink
coloration in the solution indicated the formation of gold
nanoparticles.

To modify the SPCE surface, a drop-casting method was
employed, wherein the colloidal gold nanoparticle solution
was applied to the working electrode surface and allowed to
dry. To further stabilize the gold film, the electrode was
subjected to cyclic voltammetry in 0.2 M hydrochloric acid,
with a potential scan range of —0.2V to -1.4V vs. Ag/AgCl,
repeated 15-20 times at a scan rate of 25-30 mV/s. This
unique approach to gold nanoparticle deposition enhances
the surface conductivity and electrochemical properties,
enabling superior sensor performance.

2.2 Instrumentation

Electrochemical measurements were performed using a
computerized PU-1 polarograph (Belarus), which digitized
the analytical signal from the working electrode. This data
was transmitted to a personal computer for analysis, where
peaks corresponding to metal ions were identified and
quantified. Cyclic voltammetry was conducted with an
ELINS P-40X potentiostat/galvanostat, equipped with an FRA
24 module (Russia), for detailed electrochemical character-
ization. Additionally, atomic absorption spectroscopy and
inductively coupled plasma atomic emission spectroscopy
(ICP-AES) were employed using an ISP5000 spectrometer
(Thermo Fisher Scientific, USA), providing complementary
methods for metal ion quantification. The morphology of the
modified electrode surfaces was examined using a Shimadzu
SSX-550 scanning electron microscope (Japan), which pro-
vided high-resolution imaging of the films deposited on the
SPCEs.

2.3 Research object

The study was carried out using model solutions containing
various heavy metal ions, as well as real-world water sam-
ples collected from the city of Samarkand and the Zeravshan
river. The heavy metal ion concentrations in these samples
were quantified to evaluate the performance of the modified
electrodes in environmental sensing applications.

Measurement accuracy was rigorously evaluated using
standard statistical methods, including the F-test, to ensure
reliable and reproducible results.
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3 Results and discussion

The use of screen-printed electrodes (SPCEs) in electro-
chemical experiments enables rapid and convenient detec-
tion, enhances experimental efficiency, and contributes to
the practicality and innovativeness of electrochemical
sensing systems, thereby meeting market demands. Figure 1
shows the general configuration of a standard screen-
printed electrode.

Early SPCEs used for the voltammetric determination of
heavy metal ions — such as zinc, cadmium, lead, and cop-
per — were modified in a manner similar to solid macro-
electrodes, using mercury films formed both in situ and ex
situ [51, 52]. Although mercury-modified SPCEs demon-
strated low detection limits for heavy metals at micromolar
and sometimes nanomolar concentrations, the use of mer-
cury did not address the need for environmentally friendly
electrodes.

As a result, researchers have focused on developing
mercury-free and environmentally benign SPCEs, typically
by modifying the surface with noble metal nanoparticles,
metal oxides, various carbon nanostructures, and hex-
acyanoferrates [53-55]. Of particular interest is the bismuth-
based electrode [56]. While its operational potential window
is narrower than that of mercury, bismuth is nearly
5,000 times less toxic [57]. Additionally, bismuth and its salts
are more readily available and environmentally safer. Like

—+— PTFE substrate

— auxiliary electrode
(graphite paste)

working electrode
(graphite paste)

\ Ag/AgCl reference
electrode (silver paste)

— insulator

—— contacts

Figure 1: Scheme of screen printed electrodes.
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mercury, bismuth is capable of forming intermetallic com-
pounds with many metals [58], and its film can be deposited
onto electrode surfaces using techniques similar to those
used for mercury, both in situ and ex situ, from solutions of
bismuth salts [59].

These advantages have led to the growing use of bis-
muth as a surface modifier [60-63]. Since then, bismuth-
modified electrodes have found applications in environ-
mental monitoring [35, 64, 65], food analysis [66], pharma-
ceutical testing [67-69], and the analysis of biological fluids
and plant materials [70]. Naturally, bismuth film modifica-
tion has also been extended to screen-printed electrodes.
However, information on Bi-SPCEs and their practical ap-
plications remains relatively scarce in the scientific litera-
ture. Therefore, a comprehensive study of the fabrication
technology and practical use of bismuth-modified SPCEs
remains a relevant and pressing issue.

In our study, we drew on prior experience in modifying
macroelectrodes with bismuth films [71]. The bismuth-
containing modifying solution was prepared by dissolving
bismuth nitrate to a concentration of 1 mmol of Bi(III) ions in
a 0.1 M sodium acetate buffer solution at pH 4.5. The Bi-SPCE

Figure 2: SEM images of unmodified (A) and bismuth-modified
(B) screen printed electrodes.
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was prepared as described in Section 2 (Materials and
Methods). The success of the bismuth modification was
confirmed by scanning electron microscopy (SEM).

Figure 2 shows SEM micrographs of unmodified (A) and
bismuth film-modified (B) screen-printed electrodes.
Comparative analysis of the micrographs revealed the
appearance of contrasting regions and the formation of
fibrillar structures in the Bi-SPCE image [72].

In a study [73], it was found that bismuth nanoparticles
deposited on a graphitized substrate from the gas phase had
an average radius of 56 + 6 nm, whereas the particles formed
during electrochemical deposition in our case had a radius of
150 + 9 nm. Typically, the sizes of nanoparticles in the ash are
smaller than those on the electrode surface. This phenome-
non was explained by the possibility of bismuth nanoparticle
aggregation during the drying of the gel deposited on the
graphitized electrode base.

For voltammetry, a key factor confirming the successful
modification of the indicator electrode is the acquisition of a
reproducible voltammogram with clearly separated peaks
corresponding to the metal ions present in the electrolyte.

Figure 3 presents the voltammogram of Cd** and Pb*" in
their combined presence, recorded on a Bi-modified SPCE
electrode.

It was experimentally determined that the calibration
plots for Cd** and Pbh** exhibit linearity in the ranges of 10—
120 pg/dm® and 10-160 ug/dm?, respectively. These concen-
tration dependences are shown in Figure 4.

The accuracy of the voltammetric determination of
cadmium and lead ions in their joint presence was verified
under laboratory conditions using the standard addition
method, with recovery percentage calculations. The results
are presented in Table 1.

The data in Table 1 confirm the potential of bismuth-
modified electrodes for voltammetric analysis of real
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Figure 3: Voltammograms showing the dependence of the analytical
signal on the increasing concentrations of Cd** and Pb?* in model
solutions, and the calibration graph Conditions: Eapp = =1.4 V; accumulation
time: 90 s; scan rate: 50 mV/s.
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Figure 4: Calibration curves for the determination of Cd(II)(a) and
Pb(II)(b) ions using Bi-SPCE.

Table 1: Results of the evaluation of the accuracy in determining Cd(II)
and Pb(II) ion concentrations in model solutions by stripping voltammetry
using Bi-SPCE.

Ion Introduced, Found, R%
gL gL

Cd(1n) 5 4.60 + 0.42 92.0
10 9.76 + 0.80 97.6

20 18.8 £ 1.01 94.0

50 473 +1.03 94.6

100 101.6 + 2.04 101.6

Phb(II) 10.0 10.2+0.7 102.0
20.0 182+1.4 91.0

40.0 381+1.6 95.3

80.0 84.8 +5.4 106.0

samples — specifically, for determining Cd** and Pb** ions in
wastewater, surface water, and drinking water.

Table 2 shows selected results of Cd** and Pb*" deter-
mination in these samples.

In this experiment, the results obtained by two inde-
pendent methods — stripping voltammetry using a Bi-SPCE
and atomic absorption spectroscopy (AAS) — were compared.
Statistical evaluation of both datasets using Fisher’s F-test
and Student’s t-test demonstrated that, for the given sample
size (n = 5) and significance level (P = 0.95), the calculated
values were significantly lower than the corresponding
tabulated ones (Fex < Fiap and teyx < tap ). This indicates that
there are no statistically significant differences between the
results obtained by the two methods, and therefore, the
analytical data can be combined.

Practical voltammetric analysis demonstrates that gold-
based indicator electrodes, owing to their chemical inertness
and high oxidation potential, offer a broader operational
potential window and are thus more suitable for determining
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Table 2: The results of the stripping voltammetry determination of Cd?* and Pb?* ions in aqueous media using the Bi-SPCE additive method (n = 5;

P =0.95; Fiapl. = 6.4; teapr. = 2.31).

Determined ion Concentration of the Defined by stripping vol- Determined by AAS Fexp. texp.
introduced standard tammetry with Bi- SPCE method
additions
A Found, pg-L™* S Found, pg-L™ S,
pg-L
Industrial wastewater
cad? - 6.80 + 0.44 0.05 7.00 + 0.25 0.04 1.6 0.4
10 16.30 + 0.68 0.04 17.10 + 0.36 0.04
20 27.10 + 0.82 0.04 27.50 + 0.70 0.03
Pb%* - - - 0.72 + 0.06 0.04 2.2 0.56
10 10.60 + 0.07 0.01 11.23 £ 0.07 0.01
20 19.40 + 0.06 0.01 20.20 + 0.06 0.01
The water from an artificial reservoir
cd* - - - 1.60 + 0.05 0.02 2.1 0.62
10 11.02 + 0.08 0.02 11.90 + 0.07 0.03
20 21.22 + 0.09 0.02 21.80 + 0.07 0.03
Pb?* - 18.47 + 0.48 0.01 18.80 + 0.32 0.01 2.6 0.32
10 28.18 + 0.41 0.03 29.10 + 0.33 0.01
20 49.15+0.70 0.01 51.20 + 0.60 0.01
Drinking water
cd* - - - 0.52 + 0.05 0.04 2.0 0.90
10 10.72 + 0.06 0.04 9.78 + 0.07 0.05
20 20.56 + 0.07 0.05 19.32 + 0.05 0.05
Pb?* 0 9.19 + 0.46 0.04 8.98 + 0.28 0.03 2.4 0.69
10 18.62 + 0.28 0.01 19.12 + 0.44 0.01
20 29.68 + 0.60 0.02 28.92 + 0.24 0.06

various heavy metals. The modification of carbon-containing
electrodes with gold typically involves electrolytic deposition
from an H[AuCl,] solution, using either constant current (0.2—
0.3mA/cm? or constant potential (from -0.1 to +0.2V). By
varying the gold deposition time, one can form an irregular
ensemble of gold microelectrodes with dimensions ranging
from 100 to 1,000 nm on the surface.

Gold is readily reduced due to its high standard elec-
trode potential (+1.498 V for the Au**/Au couple), making
Au* cations strong oxidizing agents. This allows gold re-
covery from HAuCl, solutions using wet-chemical methods
similar to those described in Section 2.

A micrograph of the SPCE surface modified with gold
nanoparticles using the proposed method is shown in Figure 5.

Modified SPCEs were employed to determine individual
metal ions in aqueous solutions under laboratory conditions
using conventional stationary electrochemical cells with a
total volume of up to 10 mL (Figure 6a). This approach en-
ables the quantification of trace metal ions by the standard
addition method; however, it requires continuous mixing of

the solution, which limits its applicability in field conditions.
Consequently, flow-injection techniques are often preferred.
In these systems, the sample is introduced into a segmented
liquid stream that is delivered to the electrochemical cell by
means of a peristaltic pump or an alternative device (e.g., a
pressurized vial). Examples of commercial electrochemical
cells designed for SPCEs and operating in flow-injection
mode are presented in Figure 6b and c. Nevertheless, the use
of carrier-fluid delivery systems such as peristaltic pumps
complicates the experimental setup and reduces its suit-
ability for on-site applications.

In recent years, periodic injection systems have been
proposed as a simplified alternative, allowing operation
without continuous media flow. In such systems, a certain
volume of the sample is injected directly onto the surface of the
sensor using a syringe or an automatic pipette. The QMetrohm
sensor shown in Figure 6d uses an electronic micropipette as a
metering device, which increases both the complexity of the
design and the cost of installation, since it additionally re-
quires mechanical fixation and sealing of the pipette.
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Figure 5: SEM image of the modified screen-printed electrode surface
reveals the localization of gold micro- and nanoparticles, indicating suc-
cessful electrode modification.

Detailed information about the design and manufacturing
technology of the QMetrohm sensor has not been publicly
disclosed. However, a comparative analysis of the cell we
developed for periodic administration and the cell described
in the literature [74] shows that the latter has a significant

-
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“dead volume” and does not have both a mechanism for
removing the analyte after measurement and a built-in cell
flushing system (Figure 7a).

For clarity, Figure 7 presents schematic diagrams of the
compared electrochemical batch-injection cells. The cross-
sectional view of our device (Figure 7b) clearly illustrates the
principle of its construction and enables its independent
fabrication.

The electrochemical sensor housing is made of trans-
parent plexiglass and consists of an upper (1) and lower (2)
part, fastened together with screws (3). A shaped slot (4) for a
standard screen-printed electrode (5) is located between the
housing parts, into which the electrode is inserted. The
electrode is held in place by a threaded sleeve (6) screwed
into the lower part. The upper part contains a sleeve (7) with
a capillary (8) for introducing the analyte directly above the
electrode surface. The SPCE sensor is connected to the
measurement device.

Considering that only 15-20 uL of the analyzed solution is
sufficient to completely cover the SPCE surface, the introduc-
tion of 500-1,000 uL of analyte into the cell ensures multiple
rinsing of the electrode area (approximately 30-50 times). The
cell is filled directly with the sample, while any excess solution
is removed through a drainage tube. Such a design of the

Figure 6: Images of factory-made electro-
chemical cells for voltammetric analysis using
screen-printed electrodes. a) is a stationary
mode cell, b) is a DropSens flow-injection cell,
¢) is a RuSens flow-injection cell, d) batch-
injection cell of Q metrohm, e) batch-injection
cell (this work).
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Electronic
micropipette

g

Working
electrode
Top cover SPCE
Cell body

Working
electrode
electrical
contact

Figure 7: Comparative diagrams of a) the bath-injection cell [74] and b)
this work (explanations in the text).

electrochemical cell eliminates the need for a carrier solution
supplied by a peristaltic pump. Moreover, the analyzed sample
is not diluted during its introduction into the cell.

Thus, the proposed electrochemical cell design is
significantly simpler, includes fewer components, lacks
moving parts, and is therefore more reliable in operation.

Operation:
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Figure 8: Typical anode voltammograms for Cu(Il) and Cd(II), Pb(II) ions
obtained on a)Hg-SPCE and b) Bi-SPCE, respectively a) anodic differential
pulse voltammogram of Cu(II) ions on the Hg-SPCE in a medium of 0.2 M
HCl. Conditions: t =30, E;ccym. = —0.5V; v =50 mV/s. Ep. = + 0.25V.
LOD = 0.5 ug L™, b) Anodic differential pulse voltammogram of Cd(lI) and
Pb(II) ions on the Bi-SPCE in a medium of 0.1 M Na acetate buffer solution
pH 4.5. Conditions: T =305, Eyccum, = —1.1V; v =25mV/s. Ep. =- 0.72V
and - 0.52V for Cd(II) and Ph(II) ions, respectively. LOD =10 pg L™".

A sample prepared for measurement with a volume of
1,000 ul is inserted into the capillary opening of the upper
part of the body using a micropipette. The excess solution is
drained through the outlet (9). The cuvette is rinsed by
injecting distilled water or excess sample volume.

The developed sensor, with modified SPCE, is suitable
for analyzing both model and real solutions containing in-
dividual metal ions or their mixtures.

Figures 8 and 9 display voltammograms for various ions
and electrode types, demonstrating the analytical capabil-
ities of the sensors.
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Figure 9: Voltammograms of heavy metal ions obtained at Au-SPCE a) cathodic differential pulse voltammogram of Fe(III) ions on the Au-SPCE in a

phosphate buffer solution medium. Conditions: T=30's, Eccum. = 0 V;v =25 mV/s. in the scanning range —0.3 + —0.95 V; Ep.=—0.68 V. LOD =10 ug L™". b)
Cathodic differential pulse voltammogram of Cr(VI) ions on the Au-SPCE in a phosphate buffer solution medium. Conditions: t=30's, Eccym. = —1.2V;
v=25mV/s. Ep.=-1.40 V. LOD =5 pg-L™ c) anodic differential pulse voltammogram of Bi(III) ions on the Au-SPCE in a phosphate buffer solution medium.
Conditions: T=30's, Eaccym. = —0.2 ViV = 25 mV/s in the scanning range —0.2 + + 0.3 V. Ep. = +0.08. LOD =10 ug L™". d) Anodic square wave voltammogram
of TI(I) ions on Au-SPCE in a phosphate buffer solution medium. Conditions: T =30, E;ccym. = =1.0 V; v = 25 mV/s in the scanning range —1.0 + — 0.25 V.

Ep.=-0.62V.LOD =10ug L™

Laboratory studies have shown an adequate response of
screen-printed electrodes modified with a thin film of mer-
cury, bismuth and gold to the presence of the corresponding
Cu(II), Cd{I), Pb(II), Fe(IID), Bi(IIT) and Cr(VI) ions in solutions
and the possibility of using such voltammetry for the anal-
ysis of these ions in real samples by the method of standard
additions.

The object of the study was water samples from the
Zeravshan river, the main source of fresh drinking water for
the city of Samarkand and the Samarkand region. Currently,
due to the deterioration of the environment and the reduc-
tion of water resources suitable for consumption, this river
requires constant monitoring for the presence of heavy
metal ions and other ecotoxicants in it [75-78].

Water sampling from the Zeravshan river and analyt-
ical measurements were carried out jointly with represen-
tatives of the analytical laboratory of the Samarkand

Regional Department of Ecology, Environmental Protection
and Climate Change.

Figure 10 shows a map of the region with the section of
the Zeravshan river where the samples were taken, indi-
cating the location of 39°41'43” north latitude and 67°03'15”
east longitude.

The control method of analysis was emission spectroscopy
performed on an ICP5000 inductively coupled plasma atomic
emission spectrometer (Thermo Fisher Scientific, USA).

The measurement results are shown in Table 3.

Field measurements revealed elevated levels of lead,
cadmium, chromium, and arsenic compared to acceptable
limits, indicating the need for water purification [79-81].

Field measurements, on the one hand, provide faster
data collection, and on the other hand, help prevent the
effects of chemical changes occurring after sampling, such as
the oxidation of arsenic (III) to arsenic (V). An analytical
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Table 3: The results of measuring the content of heavy metal ions in the
Zeravshan river, conducted in the field.

Determined Type of Maximum permis-  Found, AES -ICP
ion electrode sible concentra-  pg-L™" pgL'n=3;

tions (MPC) P=095

pg-L " [67]

cu? Hg-SPCE 1,000 182 17.4+0.08
Pb%* Bi-SPCE 10 19.8 18.6+0.08
Cd Bi-SPCE 1 87 7.6+0.06
Bi** Au-SPCE 100 - 0.09 +0.02
TP Au-SPCE 0.1 - -
As® Au-SPCE 10 146 13.8+1.02
Fe**/Fe?* Au-SPCE 300 286 257 +1.12
cr Au-SPCE 50 62.3 59.4+208

platform utilizing a flow-injection cell and modified screen-
printed electrodes is virtually maintenance-free and can
meet all field measurement requirements, including real-
time and on-site analysis.

4 Conclusions

The study emphasizes the increasing demand for sensitive,
selective, and rapid methods for detecting environmental
pollutants, particularly heavy metal ions. Among the various
detection techniques, electrochemical methods — especially
those utilizing screen-printed electrodes (SPE) and micro-
fluidic technologies — offer significant advantages, including
high sensitivity, simplicity, and cost-effectiveness. A notable
advancement in voltammetry has been achieved through
the development of innovative technologies for modifying
the surface of screen-printed electrodes with noble metal
nanoparticles, their oxides, hexacyanoferrates, organic
compounds, and carbon nanomaterials.

In this study, the electrochemical behavior of SPCEs
modified with mercury, bismuth, and gold was investigated
for the detection of several heavy metal ions in both model
and real solutions. These measurements spanned a linear
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Figure 10: Map of the Zeravshan river valley
fafnmeienen et @l0 - showing the location of water sampling.

concentration range covering several orders of magnitude,
with a detection limit as low as 5 pg per liter.

Furthermore, a novel and ergonomic design for a bath-
injection cell compatible with standard SPCEs was developed
and tested, enabling real-time voltammetric measurements
at the sampling site.

A field trial of this cell with the modified SPCE was
conducted to analyze pollution levels in the Zeravshan river,
the primary freshwater source for the Samarkand region
and surrounding areas. Contamination with lead, cadmium,
chromium, and arsenic ions was detected, signaling the ur-
gent need for intervention to improve the environmental
conditions in the region.

Notably, the proposed devices enable the measurement
of heavy metal ion concentrations under field and expedi-
tionary conditions. These examples demonstrate the prom-
ising potential of these technologies to significantly enhance
environmental monitoring efforts. Furthermore, they sup-
portrapid decision-making, especially in the event of natural
or man-made disasters, thereby enabling timely and effec-
tive responses.
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