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Abstract: In this work, a solid-state electrochemical sensor
relying on potentiometric transduction was constructed
and optimized to detect Bosentan (BOS) in its pharmaceu-
tical dosage form and human plasma. BOS is useful in
pulmonary hypertension management as a nonselective
endothelin receptor antagonist. A printed circuit board
has been constructed and used as a substrate for microfabri-
cated Cu electrodes. In comparison to a microfabricated con-
trol (Cu/ISM) electrode, the sensor potential signal drift was
enhanced, and the response time was reduced by using multi-
walled carbon nanotubes (MWCNTs) as an ion-to-electron
transducer layer. According to IUPAC requirements, the sug-
gested BOS sensors have been electrochemically character-
ized, and the linear dynamic range is (1.0 × 10−8 to 1.0 ×

10−5) M with a limit of detection of 6.28 × 10−9 M and 6.12 ×

10−9 M for MWCNT-based sensor (Cu/CNT-NC/ISM) and control
sensor (Cu/ISM), respectively. The described sensors have
been used successfully to selectively determine BOS in dosage
form and human plasma without any pre-treatment steps.

Keywords: Bosentan, microfabricated sensors, solid-contact
electrodes, carbon nanotubes, ion-to-electron transducer

1 Introduction

Over 100 million people are thought to be affected by the
lethal condition known as pulmonary hypertension (PAH),
which has several different etiologies. A mean pulmonary
artery pressure (mPAP) of 25 mmHg or higher at rest is
used to haemodynamically identify this disease, which can
have major complications such as heart failure. Endothelin
receptor antagonists, such as Bosentan (BOS), are an impor-
tant class of drugs that have a role in the management of
PAH [1]. BOS (4-tert-butyl-N-[6-(2-hydroxyethoxy)-5-(2-meth-
oxyphenoxy)-2-(pyrimidin-2-yl)pyrimidin-4-yl] benzenesul-
phonamide) (Figure 1), is an oral antagonist of endothelin A
and B receptor. High amounts of endothelin, which is a
potent blood vessel constrictor, have been found in plasma
and lung tissue of individuals with PAH. In 2001, the US Food
and Drug Administration granted BOS, as the first orally
active drug, license for the treatment of PAH. Through vaso-
dilation, antifibrotic and antithrombotic actions, it relieves
symptoms, notably in people with World Health Organiza-
tion Class III or IV symptoms [2–4]. Another potential med-
ical use for BOS is that it could also be used, in combination
with other approved drugs, in the remediation of COVID-19
due to its antiviral effects [5,6]. In order to determine BOS
in pharmaceutical dosage forms and biological fluids, many
analytical techniques such as chromatography and spectro-
scopy have been published. However, to the best of our
knowledge, no potentiometric assay has been reported
for BOS determination [7–11]. Potentiometric approach
has many advantages over other methods for sample
analysis. These include fast response time, broad linear
range, low energy and cost, simplicity of preparation,
good sensitivity, and selectivity for many samples. In addi-
tion, potentiometric approaches do not need pre-treatment
steps or the use of organic solvents, which makes them more
eco-friendly. Other methods, on the other hand, are not appro-
priate for large-scale monitoring due to their high cost, com-
plex usage, high energy and time consumption, and sample
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pre-treatment requirements. Therefore, potentiometric assay is
a better option for sample analysis [12]. Potentiometric ion
sensors are essential members of the family of electroche-
mical sensors that can electrochemically measure primary
ion activity in a variety of sample matrices with minimal
sample pre-treatment [13–16]. A new generation of ion-selec-
tive electrodes was developed: solid-contact ion-selective
electrodes (SC-ISEs), which, among other benefits, were
able to prevent internal filling solution leakage that
occurred in the traditional liquid ion-selective electrodes
[17,18]. As a result of the quick development of micro/
nanofabrication processes and upraised understanding
of concepts and techniques of electrochemistry, micro/
nanoelectrode array sensing has recently withdrawn a
lot of attention, particularly in the field of bioanalysis
[19]. Recently, it has been verified that nanoparticles are
valuable additions that enhance ion-selective electrode
performance and minimize electrical resistance [20,21].
Using copper microfabricated electrodes to create SC-
ISEs has the advantages of both microfabrication and
SC-ISEs, such as low cost, miniaturization, simplicity,
portability, real-time analysis, energy savings, the ability
to be applied on large-scale analysis, robustness, and
reliability [13,22,23]. This study aimed to develop a poten-
tiometric sensor in order to determine BOS in human
plasma and its dosage forms while complying with green
analytical chemistry (GAC) through the fabrication of
microfabricated copper solid contact-based potentiometric
electrodes. The designed sensor response was improved to
minimize signal drift and long response time via modifica-
tion using carbon nanotubes (CNTs) as an ion-to-electron
transducer interlayer. Because of CNTs’ spacious nominated
surface area and premium chemical stability, these CNT-
based SC-ISEs have elevated potential stability and helped
in improving SC-ISEs performance. To examine the
importance of the transducer layer, the water layer
test and signal drift were studied. Green Analytical Pro-
cedure Index (GAPI), Analytical Eco-Scale Green, and
Analytical GREEnness Metric Approach and Software
(AGREE) were used to assess the greenness of the sug-
gested approach.

2 Experimental

2.1 Materials and reagents

BOS (purity 99.99%) was donated by EVA Pharma (Cairo,
Egypt). Ambrisentan (AMB) (purity 99.99%) was endowed by
AUG Pharma (Cairo, Egypt). Tridodecylmethylammonium
chloride as an anionic exchanger was bought from Sigma-
Aldrich (Cairo, Egypt). Polyvinyl chloride (PVC) was pur-
chased from Fluka (Seelze, Germany). Tetrahydrofuran
(THF) was obtained from Qualikems Fine Chem Pvt Ltd
(Delhi, India). Dioctyl phthalate (DOP) was obtained from
Acros Organics (Morris Plains, NJ, USA) and multi-walled
carbon nanotubes (MWCNTs) from Sigma-Aldrich (Cairo,
Egypt). Glacial acetic acid, acetone, sodium hydroxide
(NaOH), and ammonium persulphate (NH4S2O8) were pur-
chased from El Nasr Company (Cairo, Egypt). Samples
of human plasma were acquired from VACSERA (Giza,
Egypt) and kept at −4°C. Pulmiprove® 62.5 mg tablet was
obtained from a community pharmacy. Printed circuit
boards (PCBs) with photoresist coating were acquired
from the local market.

2.2 Standard solutions

2.2.1 Stock BOS standard solution

A stock solution of BOS (1.0 × 10−5 M) was made by weighing
1.5 mg of BOS into a 250mL volumetric flask, which was then
dissolved in an adequate quantity of carbonate buffer (pH =

9.2) before filling up to the final volume using the same
buffer.

2.2.2 Working BOS standard solutions

Freshly made solutions of various strengths (1.0 × 10−6 –1.0
× 10−10 M) were made by successive dilutions from stock
solution using a carbonate buffer with a pH of 9.2.

2.3 Procedures

2.3.1 Microfabricated copper electrode preparation

In this study, a microfabricated copper electrode was used
as a solid-contact electrode substrate. The electrodes were
created in accordance with published instructions [18,23].

Figure 1: Chemical structure of BOS (drawn by chemibio draw ultra).
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Using high-resolution laser printing equipment, CAD soft-
ware was utilized to create a photomask, which was
printed on a transparent sheet. The photomask on top of
pre-sensitized photoresist-coated PCBs was subjected to UV
light (365 nm) for 90 s, blocking the light away from the
needed areas while excluding areas that were not covered.
For removal of the exposed portion of the photoresist,
0.25 M NaOH was used (as a developer). The exposed Cu
was wet etched at 40°C with 1.1 M NH4S2O8. Acetone was
used for stripping the photoresist and revealing the pat-
terned Cu electrodes. The electrodes were first rinsed with
water and then dipped in acetic acid to eliminate surface
oxides just before applying either CNTs or an ion-selective
membrane (ISM).

2.3.2 ISM preparation

The ISM was prepared by blending 190 mg PVC, 0.4 mL
DOP, and 10mg tridodecylmethylammonium chloride in
6.0 mL of THF.

2.3.3 Carbon nanotubes/PVC nanocomposite
preparation

The solution-blending method was used to prepare CNTs/
PVC nanocomposite (CNT-NC), as described in the litera-
ture [24]. About 3.0 mL of THF and 0.2 mL of DOP were
used to dissolve 95.0 mg PVC entirely. To obtain a homo-
geneous CNT-NC dispersion, MWCNT (10 mg) was mixed
with the above-mentioned solution in an ultrasonic bath
to ensure proper dispersion of nanomaterials in THF.

2.3.4 Solid-state ion-selective electrode fabrication

The microfabricated potentiometric sensor 1 (Cu/CNT-NC/
ISM) was developed by applying 10.0 μL of CNT-NC disper-
sion onto the Cu microfabricated electrode and leaving it

24 h for solvent evaporation. Then, 10.0 μL of the ion-sen-
sing cocktail was applied to the copper-modified electrode
as presented in Scheme 1 and allowed to dry overnight.
As a preconditioning phase, the sensor was immersed in
a 1.0 × 10−5M BOS solution for 1 day at 25°C before being
used for the first time. CNT-NC free sensor as a control
sensor (sensor 2, Cu/ISM) was prepared to examine the
CNT-NC effect on potential drift and response time.

2.3.5 Potentiometric measurements

Potentiometric experiments were performed using a Jenway
pH meter 3310 Orion, reference electrode (Ag/AgCl, double
junction) model. Bandelin Sonorox, Rx 510 S, and magnetic
stirrer (Budapest, Hungary) as well as Jenway pH glass elec-
trode (UK) were used for pH adjustment. Each sensor was
individually coupled with an Ag/AgCl double junction refer-
ence electrode, calibrated by being submerged in BOS drug
solutions (1.0 × 10−5–1.0 × 10−10 M). Solutions were allowed to
equilibrate till the potentiometer’s readings were steady.
The observed emf from the two suggested sensors was
shown on calibration graphs in relation to – log [BOS] con-
centrations. Regression equations were computed for the
suggested sensors. The sensors’ performance was validated
in conformity with IUPAC recommendations [25].

2.3.6 Sensor selectivity

A matched potential approach was used to evaluate the
potentiometric selectivity factor. The change in potential
(E) related to increased activity of the analyte from aA =

1.0 × 10−8 M (reference solution) to a′A = 1.0 × 10−5 M is
recorded. Then, an interfering ion solution aB with a con-
centration range of 5.0 × 10−8 –1.0 × 10−5 M is mixed with
another 1.0 × 10−8 M (reference solution) until the same
potential change (ΔE) is observed [26]. The next equation
was used to determine the selectivity coefficient K for each
interferent

=
−

K
a a

a
.

A, B

MPM

A A

B

2.3.7 pH effect on sensor performance

Over a pH range of 3.0–11.0 regulated by adding 0.1 N HCl
and 0.1 N NaOH, the impact of pH on the response of the
studied sensors was observed on 1.0 × 10−6M and 1.0 × 10−7 M
BOS solutions. At each pH level, potential values were
acquired and recorded.

Scheme 1: A schematic illustration of a microfabricated solid-contact
sensor 1.
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2.3.8 Water layer test

The water layer test was developed by the Pretsch group
[27–29]. It is used to determine whether a layer of water
exists between the ion-to-electron transducer layer and the
ISM. Potentiometric readings were acquired for 1.0 × 10−6 M
BOS for 1 h; then, a more concentrated interfering solution
(1.0 × 10−5 M AMB) was placed, and the potential was mea-
sured for another 1 h and returned to 1.0 × 10−6 M BOS for
the third hour.

2.3.9 Analysis of BOS in pharmaceutical tablet
formulation

Ten BOS tablets were precisely weighed, the tablet mean
weight was determined, and the tablets were then pulver-
ized. Of this powder, a precise quantity was weighed out,
equal to 1.5mg of BOS, then put into a 250mL volumetric flask
and diluted to the appropriate concentration with carbonate
buffer, pH 9.2. The resultant solution was claimed to have a
concentration of 1.0 × 10−5M, then another two concentrations
were prepared (1.0 × 10−6, 1.0 × 10−7 M). Following Section 2.3.5,
the measurements were carried out, and the recovery percen-
tages were determined using the corresponding equations.

2.3.10 Analysis of BOS in spiked plasma

One millilitre of human plasma was put into a set of three
volumetric flasks (10 mL); then, 1.0 mL, 550 µL, and 100 µL
of BOS stock solution were added and completed to the final
volume with carbonate buffer (pH 9.2) to prepare 1.0 × 10−6,
5.5 × 10−7, and 1.0 × 10−7 M. Following Section 2.3.5, the
measurements were carried out, and the recovery percen-
tages were determined using the corresponding equations.

3 Results and discussion

For analysts, building SC-ISEs with consistent and repea-
table potentials has always been a big challenge. The aim of
this study was the fabrication of portable, affordable, min-
iature-sized solid-contact sensors with highly sensitive,
reproducible, and consistent readings.

3.1 Performance of the investigated sensors

Since BOS has a sulphonamide group (pka = 5.8) that car-
ries a negative charge in a basic medium, this study was

performed at an alkaline pH (9.2) [30]. The necessity of an
anion exchange mechanism is required for BOS ion-selec-
tive electrode membranes; therefore, tridodecyl methyl
ammonium chloride was used to introduce a lipophilic
anionic exchanger, where the exchangeable counter ion
(Cl−) was initially replaced with BOS by conditioning the
membrane for 1 day in 1.0 × 10−5M BOS [31,32]. PVC was
used as a polymer matrix in the fabrication of the ion-
sensing cocktail. In this study, MWCNT-based sensor per-
formance (sensor 1, Cu/CNT-NC/ISM) was evaluated com-
pared to the control CNT-NC free sensor (sensor 2, Cu/
ISM). According to IUPAC recommendations, the perfor-
mance characteristics of the suggested sensors were
assessed [25] and are listed in Table 1. The calibration plots’
slopes for sensors 1 and 2 exhibited near-Nernstian response
and were found to be 61.24mV/concentration decades and
58.49mV/concentration decades, respectively. The suggested
sensors covered a dynamic linear concentration range of
1.0 × 10−5–1.0 × 10−8 M, as shown in Figure 2. From the point
where the two curves’ linear extrapolated portionsmeet, the
limit of detection (LOD) in accordance with IUPAC recom-
mendations was determined and found to be 6.28 × 10−9 M
for sensor 1 and 6.12 × 10−9 M for sensor 2 [25]. Short
dynamic response time is a key parameter for increasing
the number of samples that can be quickly analysed and
hence contributes to the analytical application of the devel-
oped sensors [33]. For concentrations higher than 1.0 × 10−7

Table 1: Performance characteristics of the investigated sensors for BOS
determination

Parameter Sensor 1 Sensor 2

Slope (mV/decade)a ± SD 61.24 ± 0.18 58.49 ± 0.35
Intercept (mV)a ± SD 114.14 ± 1.2 516.24 ± 2.1
Correlation coefficient (r) 0.9997 0.9998
Response time 31 s 1.37 min
Working pH range 7.5–10.5 7.5–10.5
Concentration range (M) 1.0 × 10−5–1.0 × 10−8 1.0 × 10−5–1.0 × 10−8

Stability (days) 30 23
Accuracya (mean ± SD) 101.47 ± 1.10 101.26 ± 1.45
Precision (% RSD) Intra-
day precisionb

0.202 0.248

Inter-day precisionc 0.499 0.479
LOD (M)d 6.28 × 10−9 6.12 × 10−9

a Average of three determinations.
b Intra-day precision (n = 9), an average of three different concentrations
repeated three times within the same day.
c Inter-day precision (n = 9), an average of three different concentrations
repeated on three successive days.
d Limit of detection (according to the IUPAC definition, measured by the
intersection of the extrapolated arms of non-responsive and the
Nernstian segments of the calibration plot).
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M, sensor 1 responds quickly in 31 s, while sensor 2 takes
1.37 min. Meanwhile, a comparatively longer time is needed
for more diluted concentrations to achieve a stable potential
that is 56 s for Cu/CNT-NC/ISM sensor 1 and 1.50min for Cu/
ISM sensor 2. As expected, the lowest concentrations give the
longest response times due to the longer time needed to
attain equilibration. The shorter response time of sensor 1
is attributed to the presence of MWCNTs as a transducer
layer, whereas the transduction behaviour of MWCNTs
can be attributed to a high double-layer capacitance in the
CNT’s ion selective sensor. In contrast with conducting poly-
mers, where the transduction mechanism is based on ion-
exchange mechanisms and redox reactions, MWCNTs are
more robust against any redox side reactions that might
occur in the electrode [34]. The transducer layer (CNT) has
been previously characterized using both Raman spectro-
scopy and SEM imaging techniques [35].

3.2 Monitoring of signal drift and water
layer test

The sensor’s response time and signal drift can both be
affected by a water layer that might be formed between
the electrode substrate and the ISM; hence, the water layer
test was performed to detect its presence [27–29]. The test
relies on spotting potential drift when switching between a
primary ion solution (BOS; 1.0 × 10−6 M) and a potent inter-
fering ion solution (AMB; 1.0 × 10−5 M), then switching back
to the primary ion solution (BOS; 1.0 × 10−6 M). Although
the control Cu/ISM (sensor 2) showed good potentiometric
properties, it had a long response time (1.37 min) and
observable drift (25 mV·h−1), which is attributed to the for-
mation of the water layer. In contrast to sensor 2, Cu/CNT-
NC/ISM (sensor 1) had a lower response time (31 s) and less
drift (1.9 mV·h−1), as shown in Figure 3a and b, which is

attributed to the hydrophobicity and high capacitance of
CNTs that prevent the creation of a water layer between
ISM in sensor 1 and the transducer layer.

3.3 pH effect on sensor response

To attain the optimum experimental conditions, the impact
of pH on the effectiveness of the introduced sensors was
evaluated. There was no noticeable change in the sensors’
response in the pH range of 7.5–10.5, which is due to the
presence of the sulphonamide group that has a negative
charge in the basic medium. Below pH = 7.5, the drug began
to precipitate, so the emf is no longer stable, as shown in
Figure 4a and b.

3.4 Determination of sensors’ selectivity
coefficients

The selectivity of an ion-selective electrode is one of its most
crucial features. It is frequently used to judge whether a
valid measurement in the sample of interest is possible.
Assessment of selectivity coefficients was done utilizing
the matched potential method, which completely ignores
the Nernst equation in order to circumvent the challenge
of accurately determining selectivity coefficients in the pre-
sence of unequally charged ions [26]. Selectivity coefficients
were assessed for structurally linked compounds such as
AMB, co-administered drugs such as losartan and parace-
tamol, and other interfering ions such as chloride and
citrate. Table 2 provides values for selectivity coefficients.
The results revealed that both electrodes showed good selec-
tivity towards BOS against other studied interferents. Sensor
1 (Cu/CNT-NC/ISM) showed relatively higher selectivity for

Figure 2: Profile of the proposed sensors’ potential: (Cu/CNT-NC/ISM) sensor 1 and (Cu/ISM) sensor 2 in mV vs −log BOS (M) concentrations.
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BOS in the presence of ambrisentan, losartan, citrate, and
chloride ions than sensor 2 (Cu/ISM). In the presence of
losartan, sensor 1 showed the highest selectivity for BOS,
while the lowest selectivity was observed in the presence
of paracetamol. As KMPM BOS/interferent value decreases, it
means that the sensor is more selective to the drug under
study (BOS) [26].

3.5 Analysis of BOS in pharmaceutical tablet
formulation

BOS in its pharmaceutical preparation (pulmivort tablets®)
was directly measured without pre-treatment or extraction
steps using the investigated sensors. As shown in Table 3,
the suggested sensors were able to get precise and accurate
recoveries. For the quantification of BOS in the formula-
tion of pharmaceutical tablets, sensor 1 (Cu/CNT-NC/ISM)
displayed the lowest SD values.

3.6 Analysis of BOS in spiked human plasma

Cmax of BOS reaches a concentration of 1.12 × 10−6 M, after
receiving a single 62.5 mg dose in healthy male volunteers
on the first day [36]. This concentration is within the sen-
sors’ linear range. Thus, the proposed SC-ISE’s ability to
detect BOS in biological fluids was assessed using spiked
human plasma directly with no preliminary treatment or
extraction. The suggested sensors were successful in obtaining
precise and accurate recoveries based on the data in Table 4.
Sensor 1 (Cu/CNT-NC/ISM) showed a better recovery percen-
tage than sensor 2 (Cu/ISM).

3.7 Greenness evaluation of the developed
approach

The greenness of the developed approach was assessed
using AGREE greenness assessment tools, GAPI, along with
Analytical Eco-scale.

Figure 3: (a) Water layer test for sensors Cu/CNT-NC/ISM (sensor 1) and Cu/ISM (sensor 2). Measurements were recorded in 1.0 × 10−6 M BOS (a) and
1.0 × 10−5 M Ambrisentan (b). (b) Signal drift for Cu/CNT-NC/ISM (sensor 1) and Cu/ISM (sensor 2). Readings were recorded in 1.0 × 10−6 M BOS.
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3.7.1 Analytical eco-scale

The analytical eco-scale [37] is calculated by deducting pen-
alty points from a base of 100 for each analytical method
component. In conformity with its standards, the method
that is ideally green scores an eco-scale of 100, the excellent
green method scores an eco-scale of more than 75, and the
acceptable green method scores an eco-scale of more than
50 [38]. When the method yields an eco-scale score of less

than 50, it is believed to be an inadequately green analy-
tical method. The calculated penalty points for the suggested
assay, revealing that the suggested approach has an excel-
lent green Eco-Scale score, are illustrated in Table 5.

3.7.2 GAPI

The main benefit of GAPI is that it evaluates the greenness
from sample collection till determination of its concentration,

Figure 4: (a) pH effect on Cu/CNT-NC/ISM (sensor 1) response (working pH range: 3–11). (b) pH effect on Cu/ISM (sensor 2) response (working pH
range: 3–11).

Table 2: Potentiometric selectivity coefficients (KMPM BOS/interferent) of
the proposed sensors

Interfering
element (I)

Sensor 1 KMPM BOS/
interferent

Sensor 2 KMPM BOS/
interferent

Ambrisentan 9.0 × 10−3 1.6 × 10−2

Losartan 1.8 × 10−3 4.5 × 10−3

Paracetamol 9.9 × 10−2 8.2 × 10−2

Citrate 9.8 × 10−3 4.5 × 10−2

Chloride 4.5 × 10−3 8.2 × 10−3

Table 3: Determination of BOS in pharmaceutical dosage form

Claimed concentration (M) Recovery (%) ± % SDa

Sensor 1 Sensor 2

1.0 × 10−7 100.73 ± 0.01 100.81 ± 0.74
1.0 × 10−6 99.15 ± 0.20 98.13 ± 0.43
1.0 × 10−5 101.8 ± 0.05 98. 92 ± 0.65

aAverage of three determinations.

Potentiometric sensor for Bosnian determination  7



giving a comprehensive perspective of the suggested strategy
[39]. Five pentagrams, each having a three-colour scale.
Green indicates “low environmental impact,” whereas
yellow denotes “medium environmental impact,” while
red indicates “high environmental impact.” Since there
was no sample preparation step in this assay, its pentagram
was eliminated. GAPI pentagram has green dominance, indi-
cating that the procedure is of low risk, with only one yellow
coloured part due to using THF during manufacture, and
only one red coloured fraction denoting the total NFPA score
of all the solvents. The GAPI pentagram is illustrated in
Figure 5.

3.7.3 AGREE

Out of all the greenness evaluation techniques, only the
AGREE approach uses all 12 GAC principles and yields an
easily interpretable and informative result [40]. The ana-
lytical method is believed to be green for drug analysis if
the AGREE analytical score are greater than 0.75. Addition-
ally, a score of 0.50 indicates that the method is acceptable
for drug analysis. Scores less than 0.50 show that the

proposed analytical process is unacceptable. The proposed
GAC electrodes in this work received an AGREE score of 0.78,
as shown in Figure 6, indicating that the approach is extre-
mely green and may be used safely in routine analysis.

3.8 Statistical analysis

The variance ratio F test and Student’s t-test were used to
examine the validity of the proposed approach. A statistical
comparison of the suggested sensors and the reported
method [41] for BOS is presented in Table 6. The results
show that there is no statistically significant difference
between the reported method and the proposed sensors;
the calculated t and F values were less than the theoretical
ones at p = 0.05.

Table 4: Determination of BOS in spiked plasma

Spiked concentration (M) Recovery (%) ± %SDa

Sensor 1 Sensor 2

1.0 × 10−6 95.10 ± 0.41 92.84 ± 0.45
1.0 × 10−7 94.60 ± 0.65 90.73 ± 0.52
5.5 × 10−7 94.68 ± 0.75 92.82 ± 1.46

a Average of three determinations.

Table 5: Penalty points for the greenness assessment of the proposed
potentiometric approach

Hazard Penalty points
Reagents

Acetic acid (glacial) 4
acetone 4
Ammonium persulphate 6
Sodium hydroxide 2
PVC 1
THF 6
Instruments
Energy (≤0.1 kW·h per sample) 0
Occupational hazard 0
Waste 0
Total penalty points 23
Analytical eco-scale total score 77

Figure 5: GAPI green profile assessment of the proposed method.

Table 6: Statistical comparison between the proposed assay and the
reported reference method for the determination of BOS

Parameter Reported method Proposed assay

Sensor 1 Sensor 2

Mean 99.80 101.47 101.26
SD 0.45 1.10 1.45
Variance 0.20 1.21 2.12
N 3 4 4
Student t-test (2.571) 1.605 2.382
F (19.164) 5.937 10.407

Figure 6: Results of AGREE green profile assessment software.
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3.9 Comparison of other analytical
techniques for analysis of BOS

Various techniques, including spectrophotometry, voltam-
metry, LC-MS, and HPLC, have been published for deter-
mining BOS and are summarized in Table 7. All these
approaches, however, lack the mobility and affordability
of the suggested potentiometric approach in addition to
being slower and less straightforward compared to poten-
tiometric analysis.

4 Conclusion

In this study, the described sensors were applied for the
direct analysis of BOS in pharmaceutical formulation and
human blood plasma. They showed many advantages over
the traditional ion-selective electrodes in terms of stability
and durability (30 and 23 days), as well as several advan-
tages over other complicated methods such as HPLC, such as
being eco-friendly, portable, a real-time analysis approach,
easy to miniaturize, of low cost and energy saving. The
proposed sensors demonstrated good, reproducible, accu-
rate (a mean of 101.47 and 101.26 with SD < 2.0), precise
(%RSD < 0.5), and selective potentiometric results in the
presence of different interferents. They can be applicable
for routine analysis without tedious pre-treatment proce-
dures, due to their manufacturing simplicity and low cost.
The addition of CNTs as an ion to electron transducer
resulted in a shorter response time (31 s), lower signal drift,
and almost no water layer is formed between the polymeric
and transducer layers, as opposed to a blank ion-selective
electrode free of ion to electron transducer, which had a
longer response time (1.37min) and a higher signal drift.
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