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Abstract: Lignocellulosic biomass is considered an
attractive and most abundant renewable carbon feedstock.
Hydroxymethylfurfural (HMF) is one of the platform
molecules obtained from biomass. HMF transformation
in the reductive atmosphere allows to obtain numerous
value-added molecules with applications in several
recently emerged sectors, e.g. biofuels and biopolymers.
This process is still intensively investigated, and more
efficient, stable and sustainable solutions are envisaged.
Therefore, the choice of efficient analytical methods is of
great importance. This review covers the methodologies
used for the analysis of HMF hydrodeoxygenation,
including chromatographic and spectrometric methods.
Techniques such as gas chromatography, high-
performance liquid chromatography, Fourier transform
infrared spectroscopy, nuclear magnetic resonance, and
mass spectrometry are mentioned as well in this review.
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BHMF - 2,5-bishydroxymethylfuran

BHMTHF - 2,5-bis(hydroxymethyl)tetrahydrofuran
BPMF - 2,5-bis(isopropoxymethyl)-furan

DCM - dichloromethane

DFF - 2,5-diformyl furan

DMF - 2,5-dimethylfuran

DMSO - dimethylsulfoxide

DMTHF - 2,5-dimethyltetrahydrofuran

EFA - mono-ether-furfural alcohol

EMMF - ether 2-(ethoxymethyl)-5-methylfuran
FA - furfural

FFMF - (5-formylfuran-2-yl)methyl formate
FID - flame ionization detector

FOL - furfuryl alcohol

GC - gas chromatography

GVL - y-valerolactone

HA - 2-hexanol

HD - 2,5-hexanedione

HMF - 5-hydroxymethylfurfural

HMEFCA - 5- hydroxymethyl-2-furancarboxylic acid
HT - hexanetriol

MFM - 5-methyl-2-furanmethanol

MIBK - methyl isobutyl ketone

MTHFA - 5-methyltetrahydrofurfuryl alcohol
NMR - nuclear magnetic resonance

TCD - thermal conductivity detector

THF - tetrahydrofuran

THF2A - tetrahydro furfural

THFA - tetrahydrofurfuryl alcohol

1 Introduction

Lignocellulosic biomass is considered the most abundant
source of renewable carbon. Taking into account the
depletion of the fossil fuel reserves, biomass constitutes
a very attractive sustainable carbon feedstock. In the last
decade, we could observe an increasing interest in the
development of bio-based processes allowing to reach
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high yields of newly emerged products like biofuels or
various platform molecules [1-5]. Those processes provide
new, more advanced functionality of biomass-derived raw
materials, which is often allowed by precisely tailored
oxygen content [6].

Following this, 5-hydroxymethylfurfural (HMF) has
since the last decade of the 19th century been considered
a valuable platform molecule, which is broadly illustrated
in excellent reviews on this topic [710]. It is obtained
from lignocellulosic biomass via a multi-step reaction,
with acid hydrolysis of lignocellulose being the first step,
followed by dehydration of glucose or fructose in the
presence of acid catalysts (Scheme 1). Due to the higher
selectivity, fructose is considered as the preferred source
allowing to obtain high HMF yield. [11].

Thanks to the high functionalization of HMF, i.e.
both hydroxyl and carbonyl groups in its structure,
it possesses a high potential to be catalytically
transformed to multiple industrially relevant products
of both oxidation [12,13] and reduction reactions
[7]. Particularly its hydrodeoxygenation provides a
series of added-value molecules possessing a wide
range of applications. Among the products of the
HMF reductive transformation (Scheme 2) there are
2-methyltetrahydrofuran (2-MTHF), known as an
appealing eco-friendly aprotic ether solvent and
biofuel additive, 2,5-bishydroxymethylfuran (BHMF), a
potential substrate for biopolymer production [14,15], or
2,5-dimethylfuran (DMF), a biofuel [16], among others.
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Scheme 1 Synthesis of HMF from biomass.

Separation procedures in the identification of the hydrogenation products =— 89

As illustrated in Scheme 2, HMF transformation in
the reductive atmosphere involves several processes
like hydrogenation of the C-O bond, hydrogenation of
the furan ring, C-O hydrogenolysis, or polymerization.
The selectivity of this reaction strongly depends on the
reaction conditions, including the catalyst used [8].
This process is still intensively investigated, and more
efficient, stable and sustainable solutions are envisaged.
The vast potential of this reaction is however partly
overshadowed by analytical difficulties which are often
faced by researchers. The bottlenecks are associated with
the closure of the carbon balance for all reaction products,
their separation and identification.

HMF hydrodeoxygenation products can be of high
complexity. Therefore, specific, comprehensive, and
robust analytical methodologies need to be used in order
to understand the transformation pathways of this process
and to work out new, more efficient solutions. This review
concentrates on presenting various analytical methods
and their potential, as to the best of our knowledge the
analytical challenges of this process are omitted in most
of the papers. Although high-resolution chromatographic
techniques are fundamental for the characterization
of HMF value-added reaction products, they are not
exclusive. This work provides an overview of the current
state of the art, the main challenges that still need to be
addressed, and improvements concerning more robust,
sustainable and efficient separation processes.

2 HMF separation from cellulose/
sugars

The most conventional methods of HMF synthesis include
acid-catalyzed dehydration of monosugars obtained from
biomass. HMF is obtained from fructose rather than glucose
because the ring structure of glucose is more stable and
therefore fructose reacts faster [17]. Water is usually used as
a reaction solvent, although unfortunately it accelerates the
consecutive side reactions and consumes HMF. It is worth
noting that the formation of HMF by sugar dehydration
is a complicated process due to the possibility of many
side reactions. As a result of decomposition of fructose in
water at high temperatures, isomerization, dehydration
or condensation products may be formed. That is why the
process is usually carried out in a biphasic system in order
to extract HMF from the aqueous phase or aprotic organic
solvents like dimethylsulfoxide (DMSO). The used organic
solvent reduces the HMF degradation and the formation of
by-products such as soluble polymers or humines, among
others [18]. The most commonly used solvents include ethyl



90 —— Separation procedures in the identification of the hydrogenation products

OH OH OH
HO
+ +
OH OH
HO HO. HO

DE GRUYTER

O

N \Q/CHS

2,5-dimethyltetrahydrofuran

Cé alcohols
ring opening
(e}
OH

Ho 2,5-bis(hydroxymethyl)

(DMTHF)

hydrogenolysis

HaC ° o °
\Q/\OH Q/\ HaC CHg
\ / OH

5-methyltetrahydrofurfuryl

3-hydroxymethylcyclopentanol i
Y (KIMCPX) yelop tetrahydrofuran alcohol furfuryl alcohol 2,5-dimethyltetrahydrofuran
(BHMTHF) (MTHFA) (FoL) (DMTHF)
C=0 hydrogenation ring hydrogenation ring hydrogenation hydrogenolysis ring hydrogenation

HO

o} o
‘ ‘ ring arrangement \ / o
-

hydrogenolysis
2,5-bis(hydroxymethyl)furan
(BHMF)
HO
3-hydroxymethylcyclopentanone
(HMCP) C=0 hydrogenation
HO
hydrogenation 1)
quui d alkanes aldol condensation \ hydrogenolysis
\ )
5-hydroxymethylfurfural
(HMF)
+alcohols
reductive etherification
HaC HaC

HaC /QCH Ho

furfuryl ethers

Scheme 2 Conversion of HMF to valuable chemicals.

acetate, diethyl ether, and ionic liquids or methyl isobutyl
ketone (MIBK) [19-22]. In literature, there are also numerous
examples of efficient use of biphasic systems for direct
HMF production from sugars. Biphasic system MIBK/H,0
together with different zeolite catalysts was used for the HMF
production and its efficiency was much higher in comparison
to water only [23,24]. Biphasic THF/H,0 systems modified
with NaCl together with FePO, and NaH,PO, as catalysts
show a potential as an efficient solvent system as well [25].
Advanced approach related to the design of a biphasic
reactor system composed of the aqueous phase modified
with DMSO, combined with an organic extracting phase
composed of MIBK-2-butanol mixture or dichloromethane
(DCM) was shown by the group of Dumesic. By using the
modified conditions tuned for the specific feedstock this
reactor allows to obtain HMF with good selectivities at high
conversions, independently of the feedstock [26].
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Another approach includes environmentally friendly
solvents like 2-MTHF, y-valerolactone (GVL) or 1-butanol
are considered as good bio renewable, sustainable
alternative solvents, as they are effective, stable, and
reasonably cheap [27].

3 Analytical techniques used for the
analysis of HMF conversion products

HMF hydrodeoxygenation has been continuously
explored in the literature. In order to avoid side reactions,
the selectivity to the main products is tuned by the change
of reaction conditions (temperature, pressure, hydrogen
source, solvent) and the use of proper catalysts. A large
group of catalysts is based on noble metals (Pd, Au, Pt,
Ru) [78]. Non-noble metal-based catalysts are more
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appealing due to lower cost and availability, but harsher
experimental conditions are generally required in their
presence [28]. Electro- and photo-assisted approaches
to catalytic hydrogenation are examples of a greener
methodology found in the literature. Competitive side
reactions, which are often co-catalyzed by the same system
or are also sensitive to the experimental conditions, are
however difficult to avoid. In turn, this requires complex
analytical systems. This section is divided into two parts
and will be related to the analysis of the reaction products
by gas and liquid chromatography, Fourier transforms
infrared spectroscopy and nuclear magnetic resonance
spectroscopy.

4 Gas and liquid chromatography

For several decades, gas chromatography (GC) has been
one of the most popular techniques for the detection,
identification and separation of volatile and semi-volatile
analytes, in complex, including biomass-related samples
[29,30]. GC usually concentrates on the volatile organic
species with lower polarity and lower boiling point
(<350°C) [31].

Different detectors are applied in GC analysis due
to the different resolutions and sensitivities to specific
molecules. For instance, GC-MS is rather established
as a semi-quantitative tool, for which the limitation is
additionally related to its lack of capability of direct
analysis of nonvolatile or polar compounds.

In the case of highly polar analytes, a derivatization
step is usually required in order to increase both
volatility and thermal stability of the analyzed species.
This procedure can increase the detector response by
incorporating functional groups which lead to higher
detector signals and in consequence to improved GC
separation performances [32,33]. Multiple derivatization
reactions like silylation, alkylation, or acylation can be
used to mask the polar functional groups [34].

Several different derivatizing procedures are used in
the case of the HMF analysis. They are mostly based on the
formation of silylated derivatives with the use of different
reagents. Among the derivatizing reagents examined, N,O-
bis-trime- thylsilyltrifluoroacetamide (BSTFA) provided
very good deri- vatization yields, while those examples
are usually limited to food analysis [35].

The strong advantage of GC-MS is related to the
high reproducibility of the generated mass spectra
using electron impact ionization (EI). EI is a hard
ionization process that results in the production of
very reproducible mass spectra independently of the
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instrument used — in consequence, it allows the use of
broad EI-mass spectral libraries [36]. EI fragmentation
can be however sometimes too powerful and extensive
so that softer ionization techniques such as chemical
ionization (CI) can enhance the detection of molecular
ion-based species.

Flame ionization detectors (FID) are most commonly
used. Due to their broad detection limits, they can
measure organic substance concentration at very low
(10 g/s) and very high levels, having a linear response
range of 107 g/s. Here the analysis strongly depends on
the column choice and methodology applied, as the
separation depends on the interaction of the substances
with the stationary phase in the chromatography
column. One of the important features of GC column is
the kind of its active phase. Interaction between solutes
and stationary phases decides about the separation of
different solute molecules. For typical stationary phases
like polysiloxanes and polyethylene glycols, three factors
are crucial: dispersion, dipole-dipole interaction and
hydrogen bonding interaction. The presence of the
dipole-dipole interaction can enhance the separation of
solutes like in the case of polyethylene glycols phase. The
stationary phases that undergo dipole-dipole interactions
also undergo hydrogen bonding interactions that also
strongly influence the separation. The latter interaction
is present when there is hydrogen bonding between the
solute molecules and the stationary phase. Another
key issue is the column polarity, which can strongly
affect the separation of the solutes. For the molecules of
similar volatility, higher retention time is obtained for the
molecules possessing similar polarity to the polarity of
the stationary phase [37]. In the broad range of presented
examples (Table 1), FID was the most commonly used and
high-polarity columns (like WAX) with the polyethylene
glycol polymer phase were often applied. They are known
to be good in the separation of many nonhalogenated
organics, free C1-C26 fatty acids, alcohols, diols including
glycols, and many other chemicals with different nature.
When it comes to the subject of this review, the product
identification efficiency depends on many factors, of
which one of the most important is the selectivity of
HMF hydrodeoxygenation reaction and therefore the
number of products to analyze, and their difference in
volatility. There are some limited examples where only
one GC detector was used for analysis (FID) [38,39] and
for selective reactions with the presence of only a few
products (HMF, DMF, BHMF, 5-MFA) without many
impurities it proved fully sufficient, practically allowing to
close the carbon balance of the reaction [40-42]. However,
where a wide range of by-products is present, FID is
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often combined with MS detector or NMR spectroscopy
analysis, which allow the structure confirmation [42-48]
and therefore more complete detection. This combined
technique allows to nearly fully identify and quantify
all reaction products [40,46,49]. An interesting example
of analysis is described in the work of Chimentdo et al.
[41] with the use of GC-MS equipped with a f-dex column
containing permethylated p-cyclodextrin embedded
in an intermediate-polarity stationary phase. Those
types of phases are recommended for analysis of chiral
compounds like ketones, alkanes, alkenes, alcohols,
acids, ethers, etc. Performing the mass spectrometry
allowed to compare the mass spectral patterns (m/z) of
the compounds in the reaction mixture. The most intense
peaks in the mass spectrum (notably m/z: 97 and 126 for
HMF, 128 and 97 for BHMF, 56 and 41 for DMTHF, 96 and
95 for DMF) allowed to identify HMF and the reaction
products [41]. Analytics was as well established in detail
way in the work of Gyngazova et al. [50]. The study
focused on understanding the reaction kinetics of HMF
hydrogenation. Thanks to the identification of products
(2-MF, 5-MFA, DMTHF, BHMF, BHMTHF and 2-MTHF) in
a presence of different solvents by GC-FID with CP-Wax
57, the authors [50] understand the reaction network
and explained that it proceeds via the hydrogenation of
HMF aldehyde group to form BHMF and the subsequent
conversion of BHMF to 5-MFA, followed by its to DMF. Side
reactions include the formation of BHMTHF and DMTHF.
The proposed analysis did not allow however to close the
carbon balance. This could be caused by polymeric side
reaction products in the reaction mixture which could not
be analyzed by the current device [50].

Also, in the work of Li et al., a very detailed GC-MS
analysis did not allow to close the carbon balance [57].
When THF was used as a solvent, different unidentified
peaks with high molecular weights of ca. 200-250 could be
identified in the GC-MS spectrum. Only HMF dimer with
a molecular weight of 190 was identified, suggesting that
a polymerization catalyzed by the Lewis acidity of the Fe
catalysts can take part. Therefore, it was concluded that
the Lewis-acid-catalyzed polymerization formed humins
and other polymers, that could not be identified by GC-MS.

The side products resulting from HMF polymerization
products during the hydrogenation reaction were however
analyzed in the work of the group of Sun et al. [65] thanks
to the use of fluorescence spectrometer. In this work, the
reaction network was examined in detail and the liquid
reaction products were analyzed with a GC-MS with a
Wax pillar column. GC-MS spectra allowed to identify the
majority of the products, although not all were analyzed
in the quantitative manner [65]. Among the factors that
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increase the number of by-products, the authors included
side reactions like polymerization, dehydration and
the furan ring opening, that can be co-catalyzed by the
presence of acid/basic sites in the used catalyst.

On the other hand, there are several examples where
non-polar or low-polarity columns, like HP-5, or AB-5 with
(5%-phenyl)-methylpolysiloxane, or CP-Sil 5 containing
100% dimethylpolysiloxane phase, are used (Table 2).
Those columns are quite popular for general purposes
in a broad range of applications. Their advantage is the
high temperature limit. When a small number of reaction
products were observed [66], the carbon balance was
nearly fully closed. Of course, typical internal standards
(e.g. tetradecane, tridecane, or naphthalene) were often
used to improve the quantitative analysis of the products.
Typically, an MS detector with EI ionization or even liquid
chromatography was used for improved analysis [67,68].

A very interesting example is provided in the work of
Hu et al. [69] showing a detailed analysis of by-products
provided by the use of GC-FID with HP-5 column, with
confirmation of the DMF structure by GC-MS and NMR
and FT-IR. Moreover, the authors established a detailed
separation procedure of DMF from the by-product
mixture (2,5-hexanedione (HD), 2-hexanol (HA), FOL and
tetrahydrofurfuryl alcohol (THFA)) based on distillation
and fractionation. This allowed to obtain 98.9% purity of
the final product (DMF). Additionally, the structure of all
the reaction products was confirmed by GC-MS analysis,
which allows to propose a plausible mechanism of the
reaction [69].

In order to increase the sustainability aspect, the
reaction is frequently performed with internal hydrogen
source like formic acid. In this case for closing the carbon
balance, it is obligatory to use a thermal conductivity
detector (TCD) for analyzing the gaseous substances, like
in the work of Zhang et al. [67] and Yu et al. [68]. Three
GC detectors FID, MS, TCD were used for the analysis of
the HMF conversion products in the hydrogenation with
Ni-Fe catalysts with the use of different solvents. Besides
the typical reaction products HMF, BHMF, 5-methyl-2-
furanmethanol (MFM), DMF, and DMTHEF, as well as the
starting material, the authors identified different ethers,
products of decarbonylation and ring-opening product,
and humins [68].

In some cases, the presence of large amounts of non-
analyzed products is related to several factors. Firstly,
often the research focuses only on the key molecules
obtained in high yield [84], whereas the analysis of side
products is omitted. Another reason is the complexity
of the analysis itself. In the HMF valorization under
hydrogen atmosphere, the by-products are of similar
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chemical properties, particularly volatility, which can
make the analysis difficult. Additionally, by-products
are present in small quantities in comparison to the
main reaction product. On the other hand, side reactions
lead to various kinds of products, e.g. polymers or C1-C2
compounds present in the gas phase. The C1 products
can also be formed when another, the more sustainable
hydrogen source is used, e.g. formic acid. Its non-selective
decomposition can produce CO and CH, [85] that even in
small quantities can poison the catalyst used for the HMF
hydrodeoxygenation. This requires the use of complex
analysis tools, including several techniques.

Liquid chromatography is more frequently used for
the analysis of the compounds possessing lower vapor
pressure, lower thermal stability and higher polarity or
samples where water was used as a solvent. However, its
limitations include the lower resolution or sensitivity of
the columns to different impurities related to the catalyst
leaching to the reaction solvent. Various HPLC detectors
have been used for analyte characterization. Detectors
based on the absorption of light in the ultraviolet and
visible ranges are the most common, as they respond to
a wide variety of compounds with satisfactory sensitivity.
The same holds for the photodiode array detector (PDA)
since besides producing a typical chromatogram it can
deliver the UV/VIS scan of every component.

There are some examples shown in Table 3 of HPLC
analysis with the use of standard UV-VIS or PDA detectors,
that typically were performed with a gradient of two solvents
[86,87]. Due to the complexity of the reaction mixture,
this analysis was usually limited to the identification of
two reaction products [86]. Otherwise, examples, where
HPLC with UV-VIS is a dominant analytical technique, are
scarce. More typically, the UV-VIS detector was used in
combination with other techniques. The refractive index
detector (RID) thanks to its simplicity of analysis is often
applied. It has a broad range of analyzed products but does
not respond well to very low concentrations of measured
samples, cannot be used in a gradient of solvents and as
a result does not allow to provide information about the
reaction products obtained with the lower yield.

However, when combined with UV-VIS and
additionally GC, GC-MS and LC-MS [93,94], it allows to
nearly close the carbon balance of obtained products.

The use of LC-MS combined with GC-MS and H! NMR
was described in the work of Sun et al. and allowed to
describe and understand the reaction mechanism of
MF formation which occurred via esterification and
hydrogenolysis, rather than decarboxylation reaction [91].

The potential of RID is often used for the analysis
of sugars that are the HMF precursors or reaction
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impurities or by-products [94,95]. For complementarity
of analysis it is often combined with GC [94] or with MS
detector, allowing broader identification of the products
[83]. A detailed study concerning analytical procedures
of hydrogenolysis of 5-hydroxymethylfurfural towards
5-methylfurfural is shown by Sun et al. [91] who present
clear examples of HPLC-MS of HMF, FFMF ((5-formylfuran-
2-yl)methyl formate and 5-MF and GC-MS of the HMF
over hydrogenation products, combined also with NMR
analysis. HPLC with UV-VIS also clearly shows that the
product distribution was worked out elegantly. The
authors however concentrated mainly on the main reaction
product 5-MF, limiting the analysis of other products to the
qualitative aspect. To complete the overview, the analysis
of C1 gaseous products of the formic acid decomposition
would be desirable.

Besides the necessary complete analysis of gaseous
or liquid products formed during the hydrodeoxygenation
of HMF, we would like to emphasize that an extended
analysis of the reaction products might also request to
investigate the deposition with a time of solid or polymeric
carbonaceous products at the surface of the catalyst.
Indeed, while this might help in closing the carbon
balance, this also influences the catalytic performance
with potential impact on both conversion and selectivity
patterns, as well as on stability and reusability issues.
Whether academic or industrial investigations are
concerned, it is worth keeping always in mind that the
criteria for selecting the adequate analytical tool should
include the analysis time. Indeed, due to the high number
of products with close functions, the analysis might
remain time-consuming when a good chromatographic
product separation is desired.

5 Fourier transform infrared spect-
roscopy (FTIR) and Nuclear magnetic
resonance spectroscopy (NMR)

Another technique worth describing is Fourier transform
infrared spectroscopy (FTIR), which is frequently applied
in the qualitative and quantitative analysis of organic
substances [30]. The mid-infrared region is particularly
used to reveal the presence of various functional groups in
molecules, thanks to their characteristic absorption bands.
Bands around 3050 cm™ are commonly attributed to C-H
stretching vibrations indicating the presence of aliphatic
hydrocarbons. Bands around 3300-3400 cm™ correspond
to O-H stretching vibrations suggesting the presence of
carboxylic acids or alcohols. Bands in the region of 1450
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and 1600 cm™ show C=C stretching vibrations indicating
the presence of aliphatic or aromatic structure. Finally,
bands at 1600 and 1800 cm™ are attributed to the presence
of C=0 groups, whereas bands between 1000 and 1100 cm™
are assigned to C-O stretching vibrations which can indicate
the presence of e.g. ethers, alcohols or carboxylic acids.

In the HMF hydrodeoxygenation there are only
very limited examples of the application of this method
[96,97] and additionally, they are supported by other
techniques like GC. HPLC with IR detector was used
for HMF determination whereas all other products of
hydrogenolysis of HMF were analyzed by GC (Table 4).

Carbon ®C NMR and hydrogen 'H NMR allow both
qualitative and quantitative analysis of chemical
structures. They are however used marginally, and their
potential is mainly used for confirmation of the structure
functionality and purity rather than the analysis of the
reaction product range. The existing examples where
this technique is used solely for following the reaction
performance are limited to the analysis of one reaction
product [98].

The concentration of HMF and BHMF, the product of its
electrochemical or photoelectrochemical hydrogenation
in water was estimated thanks to hydrogen NMR by the
group of Roylance et al. [98] and Zhang et al. [99]. The
measurements were performed using acetonitrile as an
internal standard, and 90% H,0 and 10% D,0 were used
as a solvent. 'H signal originating from water was removed
by the water suppression method. Then the respective 'H
NMR peaks allowed to determine the selectivity to the
main reaction product and the HMF conversion. The
identification of other possible reaction products was
however omitted.

Another interesting example where the NMR
technique was efficiently exploited for analysis was also
used in the case of electrochemical reduction of HMF
to HD, a hydrated derivative of DMF, which can be used
for the production of terephthalic acid for polyethylene
terephthalate (PET) [100]. Here the analysis of other
main reaction products was also performed. In all those
examples water was used as a reaction medium, often
with the presence of inorganic salts working as a
buffer, which could be potentially problematic for other
chromatographic techniques.

6 Conclusions and future outlook

Conversion of HMF is a process of constantly growing
interest. It is a difficult reaction from an analytical point
of view due to the variety of formed products. Numerous
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analytical approaches have already been developed.
Most of the studies however concentrate only on the
most important reaction products, omitting the analysis
of by-products. Information about the detailed product
contributions therefore of high interest, as understanding
all side reactions that can occur allows improving the
whole process. The precise analysis includes a combined
approach using several techniques. Gas chromatography
coupled with various detectors (TCD, FID, MS) is the most
frequently used method and allows both qualitative and
quantitative understanding of most of the products. FTIR
and NMR analyses additionally provide information on
the functional groups and types of chemical bonds, which
allows to complete the picture of reaction network and
product distribution.

Besides the necessary complete analysis of gaseous
or liquid products formed during the hydrodeoxygenation
of HMF, we would like to emphasize that an extended
analysis of the reaction products might also request
to investigate on the deposition with time of solid or
polymeric carbonaceous products at the catalyst surface,
as well as to implement on-line product analysis. Indeed,
while this might help in closing the carbon balance, this
also influences the catalytic performance with potential
impact on both conversion and selectivity patterns,
as well as on stability and reusability issues. Whether
academic or industrial investigations are concerned,
it is worth keeping always in mind that the criteria for
selecting the adequate analytical tool should include
the analysis time. Indeed, due to the high number of
products with close functions, the analysis might remain
time-consuming when a good chromatographic product
separation is desired. We believe that that information
presented in this current review can also shed the light on
the selection of adapted chromatographic techniques for
other similar biomass-derived molecule hydrogenation
processes.

Further, the continuous improvement of the analytical
tools played a role — and is still expected to do so in the
future — in the progress obtained in the last decades both
from fundamental and applied points of view, notably by
allowing faster and more sensitive detection of the large
variety of the HMF hydrogenation side-products view.
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