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Abstract: Lignocellulosic biomass is considered an 
attractive and most abundant renewable carbon feedstock. 
Hydroxymethylfurfural (HMF) is one of the platform 
molecules obtained from biomass. HMF transformation 
in the reductive atmosphere allows to obtain numerous 
value-added molecules with applications in several 
recently emerged sectors, e.g. biofuels and biopolymers. 
This process is still intensively investigated, and more 
efficient, stable and sustainable solutions are envisaged. 
Therefore, the choice of efficient analytical methods is of 
great importance. This review covers the methodologies 
used for the analysis of HMF hydrodeoxygenation, 
including chromatographic and spectrometric methods. 
Techniques such as gas chromatography, high-
performance liquid chromatography, Fourier transform 
infrared spectroscopy, nuclear magnetic resonance, and 
mass spectrometry are mentioned as well in this review. 
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Abbreviations
2-MF – 2-methylfuran
2-MTHF – 2-methyltetrahydrofuran
5-MF – 5-methyl furfural 
5-MFA – 5-methylfurfural alcohol

BHMF – 2,5-bishydroxymethylfuran
BHMTHF – 2,5-bis(hydroxymethyl)tetrahydrofuran
BPMF - 2,5-bis(isopropoxymethyl)-furan
DCM – dichloromethane
DFF - 2,5-diformyl furan
DMF – 2,5-dimethylfuran
DMSO – dimethylsulfoxide
DMTHF – 2,5-dimethyltetrahydrofuran
EFA - mono-ether-furfural alcohol
EMMF - ether 2-(ethoxymethyl)-5-methylfuran
FA – furfural 
FFMF - (5-formylfuran-2-yl)methyl formate
FID – flame ionization detector 
FOL - furfuryl alcohol
GC – gas chromatography
GVL – γ-valerolactone
HA - 2-hexanol
HD – 2,5-hexanedione
HMF – 5-hydroxymethylfurfural
HMFCA - 5- hydroxymethyl-2-furancarboxylic acid
HT - hexanetriol
MFM - 5-methyl-2-furanmethanol
MIBK - methyl isobutyl ketone
MTHFA – 5-methyltetrahydrofurfuryl alcohol
NMR - nuclear magnetic resonance
TCD – thermal conductivity detector 
THF - tetrahydrofuran
THF2A - tetrahydro furfural 
THFA - tetrahydrofurfuryl alcohol

1  Introduction 
Lignocellulosic biomass is considered the most abundant 
source of renewable carbon. Taking into account the 
depletion of the fossil fuel reserves, biomass constitutes 
a very attractive sustainable carbon feedstock. In the last 
decade, we could observe an increasing interest in the 
development of bio-based processes allowing to reach 
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high yields of newly emerged products like biofuels or 
various platform molecules [1-5]. Those processes provide 
new, more advanced functionality of biomass-derived raw 
materials, which is often allowed by precisely tailored 
oxygen content [6].

Following this, 5-hydroxymethylfurfural (HMF) has 
since the last decade of the 19th century been considered 
a valuable platform molecule, which is broadly illustrated 
in excellent reviews on this topic [7-10]. It is obtained 
from lignocellulosic biomass via a multi-step reaction, 
with acid hydrolysis of lignocellulose being the first step, 
followed by dehydration of glucose or fructose in the 
presence of acid catalysts (Scheme 1). Due to the higher 
selectivity, fructose is considered as the preferred source 
allowing to obtain high HMF yield. [11]. 

Thanks to the high functionalization of HMF, i.e. 
both hydroxyl and carbonyl groups in its structure, 
it possesses a high potential to be catalytically 
transformed to multiple industrially relevant products 
of both oxidation [12,13] and reduction reactions 
[7]. Particularly its hydrodeoxygenation provides a 
series of added-value molecules possessing a wide 
range of applications. Among the products of the 
HMF reductive transformation (Scheme 2) there are 
2-methyltetrahydrofuran (2-MTHF), known as an 
appealing eco-friendly aprotic ether solvent and 
biofuel additive, 2,5-bishydroxymethylfuran (BHMF), a 
potential substrate for biopolymer production [14,15], or 
2,5-dimethylfuran (DMF), a biofuel [16], among others. 

As illustrated in Scheme 2, HMF transformation in 
the reductive atmosphere involves several processes 
like hydrogenation of the C-O bond, hydrogenation of 
the furan ring, C−O hydrogenolysis, or polymerization. 
The selectivity of this reaction strongly depends on the 
reaction conditions, including the catalyst used [8]. 
This process is still intensively investigated, and more 
efficient, stable and sustainable solutions are envisaged. 
The vast potential of this reaction is however partly 
overshadowed by analytical difficulties which are often 
faced by researchers. The bottlenecks are associated with 
the closure of the carbon balance for all reaction products, 
their separation and identification. 

HMF hydrodeoxygenation products can be of high 
complexity. Therefore, specific, comprehensive, and 
robust analytical methodologies need to be used in order 
to understand the transformation pathways of this process 
and to work out new, more efficient solutions. This review 
concentrates on presenting various analytical methods 
and their potential, as to the best of our knowledge the 
analytical challenges of this process are omitted in most 
of the papers. Although high-resolution chromatographic 
techniques are fundamental for the characterization 
of HMF value-added reaction products, they are not 
exclusive. This work provides an overview of the current 
state of the art, the main challenges that still need to be 
addressed, and improvements concerning more robust, 
sustainable and efficient separation processes.

2  HMF separation from cellulose/
sugars
The most conventional methods of HMF synthesis include 
acid‐catalyzed dehydration of monosugars obtained from 
biomass. HMF is obtained from fructose rather than glucose 
because the ring structure of glucose is more stable and 
therefore fructose reacts faster [17]. Water is usually used as 
a reaction solvent, although unfortunately it accelerates the 
consecutive side reactions and consumes HMF. It is worth 
noting that the formation of HMF by sugar dehydration 
is a complicated process due to the possibility of many 
side reactions. As a result of decomposition of fructose in 
water at high temperatures, isomerization, dehydration 
or condensation products may be formed. That is why the 
process is usually carried out in a biphasic system in order 
to extract HMF from the aqueous phase or aprotic organic 
solvents like dimethylsulfoxide (DMSO). The used organic 
solvent reduces the HMF degradation and the formation of 
by-products such as soluble polymers or humines, among 
others [18]. The most commonly used solvents include ethyl Scheme 1 Synthesis of HMF from biomass.
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Another approach includes environmentally friendly 
solvents like 2-MTHF, γ-valerolactone (GVL) or 1-butanol 
are considered as good bio renewable, sustainable 
alternative solvents, as they are effective, stable, and 
reasonably cheap [27].

3  Analytical techniques used for the 
analysis of HMF conversion products 
HMF hydrodeoxygenation has been continuously 
explored in the literature. In order to avoid side reactions, 
the selectivity to the main products is tuned by the change 
of reaction conditions (temperature, pressure, hydrogen 
source, solvent) and the use of proper catalysts. A large 
group of catalysts is based on noble metals (Pd, Au, Pt, 
Ru) [7,8]. Non-noble metal-based catalysts are more 

acetate, diethyl ether, and ionic liquids or methyl isobutyl 
ketone (MIBK) [19-22]. In literature, there are also numerous 
examples of efficient use of biphasic systems for direct 
HMF production from sugars. Biphasic system MIBK/H2O 
together with different zeolite catalysts was used for the HMF 
production and its efficiency was much higher in comparison 
to water only [23,24]. Biphasic THF/H2O systems modified 
with NaCl together with FePO4 and NaH2PO4 as catalysts 
show a potential as an efficient solvent system as well [25]. 
Advanced approach related to the design of a biphasic 
reactor system composed of the aqueous phase modified 
with DMSO, combined with an organic extracting phase 
composed of MIBK–2-butanol mixture or dichloromethane 
(DCM) was shown by the group of Dumesic. By using the 
modified conditions tuned for the specific feedstock this 
reactor allows to obtain HMF with good selectivities at high 
conversions, independently of the feedstock [26].

Scheme 2 Conversion of HMF to valuable chemicals. 
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appealing due to lower cost and availability, but harsher 
experimental conditions are generally required in their 
presence [28]. Electro- and photo-assisted approaches 
to catalytic hydrogenation are examples of a greener 
methodology found in the literature. Competitive side 
reactions, which are often co-catalyzed by the same system 
or are also sensitive to the experimental conditions, are 
however difficult to avoid. In turn, this requires complex 
analytical systems. This section is divided into two parts 
and will be related to the analysis of the reaction products 
by gas and liquid chromatography, Fourier transforms 
infrared spectroscopy and nuclear magnetic resonance 
spectroscopy.

4  Gas and liquid chromatography 
For several decades, gas chromatography (GC) has been 
one of the most popular techniques for the detection, 
identification and separation of volatile and semi-volatile 
analytes, in complex, including biomass-related samples 
[29,30]. GC usually concentrates on the volatile organic 
species with lower polarity and lower boiling point 
(<350°C) [31]. 

Different detectors are applied in GC analysis due 
to the different resolutions and sensitivities to specific 
molecules. For instance, GC–MS is rather established 
as a semi-quantitative tool, for which the limitation is 
additionally related to its lack of capability of direct 
analysis of nonvolatile or polar compounds.

In the case of highly polar analytes, a derivatization 
step is usually required in order to increase both 
volatility and thermal stability of the analyzed species. 
This procedure can increase the detector response by 
incorporating functional groups which lead to higher 
detector signals and in consequence to improved GC 
separation performances [32,33]. Multiple derivatization 
reactions like silylation, alkylation, or acylation can be 
used to mask the polar functional groups [34]. 

Several different derivatizing procedures are used in 
the case of the HMF analysis. They are mostly based on the 
formation of silylated derivatives with the use of different 
reagents. Among the derivatizing reagents examined, N,O-
bis-trime- thylsilyltrifluoroacetamide (BSTFA) provided 
very good deri- vatization yields, while those examples 
are usually limited to food analysis [35]. 

The strong advantage of GC-MS is related to the 
high reproducibility of the generated mass spectra 
using electron impact ionization (EI). EI is a hard 
ionization process that results in the production of 
very reproducible mass spectra independently of the 

instrument used – in consequence, it allows the use of 
broad EI-mass spectral libraries [36]. EI fragmentation 
can be however sometimes too powerful and extensive 
so that softer ionization techniques such as chemical 
ionization (CI) can enhance the detection of molecular 
ion-based species.

Flame ionization detectors (FID) are most commonly 
used. Due to their broad detection limits, they can 
measure organic substance concentration at very low 
(10−13 g/s) and very high levels, having a linear response 
range of 107  g/s. Here the analysis strongly depends on 
the column choice and methodology applied, as the 
separation depends on the interaction of the substances 
with the stationary phase in the chromatography 
column. One of the important features of GC column is 
the kind of its active phase. Interaction between solutes 
and stationary phases decides about the separation of 
different solute molecules. For typical stationary phases 
like polysiloxanes and polyethylene glycols, three factors 
are crucial: dispersion, dipole-dipole interaction and 
hydrogen bonding interaction. The presence of the 
dipole-dipole interaction can enhance the separation of 
solutes like in the case of polyethylene glycols phase. The 
stationary phases that undergo dipole-dipole interactions 
also undergo hydrogen bonding interactions that also 
strongly influence the separation. The latter interaction 
is present when there is hydrogen bonding between the 
solute molecules and the stationary phase. Another 
key issue is the column polarity, which can strongly 
affect the separation of the solutes. For the molecules of 
similar volatility, higher retention time is obtained for the 
molecules possessing similar polarity to the polarity of 
the stationary phase [37].  In the broad range of presented 
examples (Table 1), FID was the most commonly used and 
high-polarity columns (like WAX) with the polyethylene 
glycol polymer phase were often applied. They are known 
to be good in the separation of many nonhalogenated 
organics, free C1-C26 fatty acids, alcohols, diols including 
glycols, and many other chemicals with different nature. 
When it comes to the subject of this review, the product 
identification efficiency depends on many factors, of 
which one of the most important is the selectivity of 
HMF hydrodeoxygenation reaction and therefore the 
number of products to analyze, and their difference in 
volatility. There are some limited examples where only 
one GC detector was used for analysis (FID) [38,39] and 
for selective reactions with the presence of only a few 
products (HMF, DMF, BHMF, 5-MFA) without many 
impurities it proved fully sufficient, practically allowing to 
close the carbon balance of the reaction [40-42]. However, 
where a wide range of by-products is present, FID is 
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often combined with MS detector or NMR spectroscopy 
analysis, which allow the structure confirmation [42-48] 
and therefore more complete detection. This combined 
technique allows to nearly fully identify and quantify 
all reaction products [40,46,49]. An interesting example 
of analysis is described in the work of Chimentão et al. 
[41] with the use of GC-MS equipped with a β-dex column 
containing permethylated β-cyclodextrin embedded 
in an intermediate-polarity stationary phase. Those 
types of phases are recommended for analysis of chiral 
compounds like ketones, alkanes, alkenes, alcohols, 
acids, ethers, etc. Performing the mass spectrometry 
allowed to compare the mass spectral patterns (m/z) of 
the compounds in the reaction mixture. The most intense 
peaks in the mass spectrum (notably m/z: 97 and 126 for 
HMF, 128 and 97 for BHMF, 56 and 41 for DMTHF, 96 and 
95 for DMF) allowed to identify HMF and the reaction 
products [41]. Analytics was as well established in detail 
way in the work of Gyngazova et al. [50]. The study 
focused on understanding the reaction kinetics of HMF 
hydrogenation. Thanks to the identification of products 
(2-MF, 5-MFA, DMTHF, BHMF, BHMTHF and 2-MTHF) in 
a presence of different solvents by GC-FID with CP-Wax 
57, the authors [50] understand the reaction network 
and explained that it proceeds via the hydrogenation of 
HMF aldehyde group to form BHMF and the subsequent 
conversion of BHMF to 5-MFA, followed by its to DMF. Side 
reactions include the formation of BHMTHF and DMTHF. 
The proposed analysis did not allow however to close the 
carbon balance. This could be caused by polymeric side 
reaction products in the reaction mixture which could not 
be analyzed by the current device [50]. 

Also, in the work of Li et al., a very detailed GC-MS 
analysis did not allow to close the carbon balance [57]. 
When THF was used as a solvent, different unidentified 
peaks with high molecular weights of ca. 200-250 could be 
identified in the GC-MS spectrum. Only HMF dimer with 
a molecular weight of 190 was identified, suggesting that 
a polymerization catalyzed by the Lewis acidity of the Fe 
catalysts can take part. Therefore, it was concluded that 
the Lewis-acid-catalyzed polymerization formed humins 
and other polymers, that could not be identified by GC-MS.

The side products resulting from HMF polymerization 
products during the hydrogenation reaction were however 
analyzed in the work of the group of Sun et al. [65] thanks 
to the use of fluorescence spectrometer. In this work, the 
reaction network was examined in detail and the liquid 
reaction products were analyzed with a GC–MS with a 
Wax pillar column. GC-MS spectra allowed to identify the 
majority of the products, although not all were analyzed 
in the quantitative manner [65]. Among the factors that 

increase the number of by-products, the authors included 
side reactions like polymerization, dehydration and 
the furan ring opening, that can be co-catalyzed by the 
presence of acid/basic sites in the used catalyst. 

On the other hand, there are several examples where 
non-polar or low-polarity columns, like HP-5, or AB-5 with 
(5%-phenyl)-methylpolysiloxane, or CP-Sil 5 containing 
100% dimethylpolysiloxane phase, are used (Table 2). 
Those columns are quite popular for general purposes 
in a broad range of applications. Their advantage is the 
high temperature limit. When a small number of reaction 
products were observed [66], the carbon balance was 
nearly fully closed.  Of course, typical internal standards 
(e.g. tetradecane, tridecane, or naphthalene) were often 
used to improve the quantitative analysis of the products. 
Typically, an MS detector with EI ionization or even liquid 
chromatography was used for improved analysis [67,68].

A very interesting example is provided in the work of 
Hu et al. [69] showing a detailed analysis of by-products 
provided by the use of GC-FID with HP-5 column, with 
confirmation of the DMF structure by GC-MS and NMR 
and FT-IR. Moreover, the authors established a detailed 
separation procedure of DMF from the by-product 
mixture (2,5-hexanedione (HD), 2-hexanol (HA), FOL and 
tetrahydrofurfuryl alcohol (THFA)) based on distillation 
and fractionation. This allowed to obtain 98.9% purity of 
the final product (DMF). Additionally, the structure of all 
the reaction products was confirmed by GC-MS analysis, 
which allows to propose a plausible mechanism of the 
reaction [69]. 

In order to increase the sustainability aspect, the 
reaction is frequently performed with internal hydrogen 
source like formic acid. In this case for closing the carbon 
balance, it is obligatory to use a thermal conductivity 
detector (TCD) for analyzing the gaseous substances, like 
in the work of Zhang et al. [67] and Yu et al. [68]. Three 
GC detectors FID, MS, TCD were used for the analysis of 
the HMF conversion products in the hydrogenation with 
Ni-Fe catalysts with the use of different solvents. Besides 
the typical reaction products HMF, BHMF, 5-methyl-2-
furanmethanol (MFM), DMF, and DMTHF, as well as the 
starting material, the authors identified different ethers, 
products of decarbonylation and ring-opening product, 
and humins [68].

In some cases, the presence of large amounts of non-
analyzed products is related to several factors. Firstly, 
often the research focuses only on the key molecules 
obtained in high yield [84], whereas the analysis of side 
products is omitted. Another reason is the complexity 
of the analysis itself. In the HMF valorization under 
hydrogen atmosphere, the by-products are of similar 
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chemical properties, particularly volatility, which can 
make the analysis difficult. Additionally, by-products 
are present in small quantities in comparison to the 
main reaction product. On the other hand, side reactions 
lead to various kinds of products, e.g. polymers or C1-C2 
compounds present in the gas phase. The C1 products 
can also be formed when another, the more sustainable 
hydrogen source is used, e.g. formic acid. Its non-selective 
decomposition can produce CO and CH4 [85] that even in 
small quantities can poison the catalyst used for the HMF 
hydrodeoxygenation. This requires the use of complex 
analysis tools, including several techniques.

Liquid chromatography is more frequently used for 
the analysis of the compounds possessing lower vapor 
pressure, lower thermal stability and higher polarity or 
samples where water was used as a solvent. However, its 
limitations include the lower resolution or sensitivity of 
the columns to different impurities related to the catalyst 
leaching to the reaction solvent. Various HPLC detectors 
have been used for analyte characterization. Detectors 
based on the absorption of light in the ultraviolet and 
visible ranges are the most common, as they respond to 
a wide variety of compounds with satisfactory sensitivity. 
The same holds for the photodiode array detector (PDA) 
since besides producing a typical chromatogram it can 
deliver the UV/VIS scan of every component.

There are some examples shown in Table 3 of HPLC 
analysis with the use of standard UV-VIS or PDA detectors, 
that typically were performed with a gradient of two solvents 
[86,87]. Due to the complexity of the reaction mixture, 
this analysis was usually limited to the identification of 
two reaction products [86]. Otherwise, examples, where 
HPLC with UV-VIS is a dominant analytical technique, are 
scarce. More typically, the UV-VIS detector was used in 
combination with other techniques. The refractive index 
detector (RID) thanks to its simplicity of analysis is often 
applied. It has a broad range of analyzed products but does 
not respond well to very low concentrations of measured 
samples, cannot be used in a gradient of solvents and as 
a result does not allow to provide information about the 
reaction products obtained with the lower yield. 

However, when combined with UV-VIS and 
additionally GC, GC-MS and LC-MS [93,94], it allows to 
nearly close the carbon balance of obtained products.

The use of LC-MS combined with GC-MS and H1 NMR 
was described in the work of Sun et al. and allowed to 
describe and understand the reaction mechanism of 
MF formation which occurred via esterification and 
hydrogenolysis, rather than decarboxylation reaction [91].

The potential of RID is often used for the analysis 
of sugars that are the HMF precursors or reaction 

impurities or by-products [94,95]. For complementarity 
of analysis it is often combined with GC [94] or with MS 
detector, allowing broader identification of the products 
[83]. A detailed study concerning analytical procedures 
of hydrogenolysis of 5-hydroxymethylfurfural  towards 
5-methylfurfural is shown by Sun et al. [91] who present 
clear examples of HPLC-MS of HMF, FFMF ((5-formylfuran-
2-yl)methyl formate and 5-MF and GC-MS of the HMF 
over hydrogenation products, combined also with NMR 
analysis. HPLC with UV-VIS also clearly shows that the 
product distribution was worked out elegantly. The 
authors however concentrated mainly on the main reaction 
product 5-MF, limiting the analysis of other products to the 
qualitative aspect. To complete the overview, the analysis 
of C1 gaseous products of the formic acid decomposition 
would be desirable. 

Besides the necessary complete analysis of gaseous 
or liquid products formed during the hydrodeoxygenation 
of HMF, we would like to emphasize that an extended 
analysis of the reaction products might also request to 
investigate the deposition with a time of solid or polymeric 
carbonaceous products at the surface of the catalyst. 
Indeed, while this might help in closing the carbon 
balance, this also influences the catalytic performance 
with potential impact on both conversion and selectivity 
patterns, as well as on stability and reusability issues. 
Whether academic or industrial investigations are 
concerned, it is worth keeping always in mind that the 
criteria for selecting the adequate analytical tool should 
include the analysis time. Indeed, due to the high number 
of products with close functions, the analysis might 
remain time-consuming when a good chromatographic 
product separation is desired.

5  Fourier transform infrared spect-
roscopy (FTIR) and Nuclear magnetic 
resonance spectroscopy (NMR) 

Another technique worth describing is Fourier transform 
infrared spectroscopy (FTIR), which is frequently applied 
in the qualitative and quantitative analysis of organic 
substances [30]. The mid-infrared region is particularly 
used to reveal the presence of various functional groups in 
molecules, thanks to their characteristic absorption bands. 
Bands around 3050 cm−1 are commonly attributed to C-H 
stretching vibrations indicating the presence of aliphatic 
hydrocarbons. Bands around 3300–3400 cm−1 correspond 
to O-H stretching vibrations suggesting the presence of 
carboxylic acids or alcohols. Bands in the region of 1450 
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and 1600 cm−1 show C=C stretching vibrations indicating 
the presence of aliphatic or aromatic structure. Finally, 
bands at 1600 and 1800 cm−1 are attributed to the presence 
of C=O groups, whereas bands between 1000 and 1100 cm−1 
are assigned to C-O stretching vibrations which can indicate 
the presence of e.g. ethers, alcohols or carboxylic acids. 

In the HMF hydrodeoxygenation there are only 
very limited examples of the application of this method 
[96,97] and additionally, they are supported by other 
techniques like GC. HPLC with IR detector was used 
for HMF determination whereas all other products of 
hydrogenolysis of HMF were analyzed by GC (Table 4). 

Carbon 13C NMR and hydrogen 1H NMR allow both 
qualitative and quantitative analysis of chemical 
structures. They are however used marginally, and their 
potential is mainly used for confirmation of the structure 
functionality and purity rather than the analysis of the 
reaction product range. The existing examples where 
this technique is used solely for following the reaction 
performance are limited to the analysis of one reaction 
product [98].

The concentration of HMF and BHMF, the product of its 
electrochemical or photoelectrochemical hydrogenation 
in water was estimated thanks to hydrogen NMR by the 
group of Roylance et al. [98] and Zhang et al. [99]. The 
measurements were performed using acetonitrile as an 
internal standard, and 90% H2O and 10% D2O were used 
as a solvent. 1H signal originating from water was removed 
by the water suppression method. Then the respective 1H 
NMR peaks allowed to determine the selectivity to the 
main reaction product and the HMF conversion. The 
identification of other possible reaction products was 
however omitted.

Another interesting example where the NMR 
technique was efficiently exploited for analysis was also 
used in the case of electrochemical reduction of HMF 
to HD, a hydrated derivative of DMF, which can be used 
for the production of terephthalic acid for polyethylene 
terephthalate (PET) [100]. Here the analysis of other 
main reaction products was also performed. In all those 
examples water was used as a reaction medium, often 
with the presence of inorganic salts working as a 
buffer, which could be potentially problematic for other 
chromatographic techniques.

6  Conclusions and future outlook 
Conversion of HMF is a process of constantly growing 
interest. It is a difficult reaction from an analytical point 
of view due to the variety of formed products. Numerous 

analytical approaches have already been developed. 
Most of the studies however concentrate only on the 
most important reaction products, omitting the analysis 
of by-products. Information about the detailed product 
contributions therefore of high interest, as understanding 
all side reactions that can occur allows improving the 
whole process. The precise analysis includes a combined 
approach using several techniques. Gas chromatography 
coupled with various detectors (TCD, FID, MS) is the most 
frequently used method and allows both qualitative and 
quantitative understanding of most of the products. FTIR 
and NMR analyses additionally provide information on 
the functional groups and types of chemical bonds, which 
allows to complete the picture of reaction network and 
product distribution.

Besides the necessary complete analysis of gaseous 
or liquid products formed during the hydrodeoxygenation 
of HMF, we would like to emphasize that an extended 
analysis of the reaction products might also request 
to investigate on the deposition with time of solid or 
polymeric carbonaceous products at the catalyst surface, 
as well as to implement on-line product analysis. Indeed, 
while this might help in closing the carbon balance, this 
also influences the catalytic performance with potential 
impact on both conversion and selectivity patterns, 
as well as on stability and reusability issues. Whether 
academic or industrial investigations are concerned, 
it is worth keeping always in mind that the criteria for 
selecting the adequate analytical tool should include 
the analysis time. Indeed, due to the high number of 
products with close functions, the analysis might remain 
time-consuming when a good chromatographic product 
separation is desired. We believe that that information 
presented in this current review can also shed the light on 
the selection of adapted chromatographic techniques for 
other similar biomass-derived molecule hydrogenation 
processes.

Further, the continuous improvement of the analytical 
tools played a role – and is still expected to do so in the 
future  – in the progress obtained in the last decades both 
from fundamental and applied points of view, notably by 
allowing faster and more sensitive detection of the large 
variety of the HMF hydrogenation side-products view.
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