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1  Introduction
Polycyclic aromatic hydrocarbons (PAHs) constitute a 
large class of organic materials that are of global concern 
due to their stability in the environment and their 
carcinogenic effects [1]. These compounds are produced 
from anthropogenic and natural sources [2]. They are 
formed mainly as a result of the incomplete combustion 
of organic materials, such as coal, petrol, wood, garbage, 
and tobacco [3]. Sixteen PAHs are listed as priority organic 
pollutants by the United States Environmental Protection 
Agency (EPA) and the European Union due to their high 
toxicity and adverse effects on human health. In addition, 
one of the PAHs, i.e., benzo[a]pyrene, is considered as a 
marker for cancer [4, 5]. Due to the very low concentrations 
of PAHs and their distribution in complex environmental 
samples, proper sample preparation methods and sensitive 
analytical techniques are required to extract, isolate, and 
determine their trace and ultra-trace amounts in various 
samples [6]. To date, different extraction methods, 
including solid-phase extraction (SPE) and liquid-liquid 
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Abstract: Polycyclic aromatic hydrocarbons (PAHs) 
are a large group of organic compounds comprised of 
two or more fused benzene rings, which arise from the 
incomplete combustion of organic materials. These 
compounds have been of concern as carcinogens and 
mutagens for the past 50-60 years. Lately, they are also 
receiving attention as endocrine-disrupting chemicals. 
Therefore, proper analytical methods are required for 
sampling and analyzing these compounds. In response to 
problems associated with the conventional methods like 
solid-phase extraction (SPE) and liquid-liquid extraction 
(LLE), many studies have focused on the miniaturization 
of different sample preparation techniques. In this regard, 
the use of different types of liquid phase microextraction 
(LPME) techniques has increased significantly during the 
recent few decades. LPME techniques are advantageous 
because they use single-step sample preparation 
and have shown a greater sensitivity, selectivity, and 
efficiency than the conventional methods. In addition, 
these techniques have good potential for automation, to 
reduce the time and cost of analysis. This review focuses 
on the most important configurations of LPME including 
single‐drop microextraction (SDME), hollow-fiber liquid-
phase microextraction (HF-LPME), and dispersive liquid-
liquid microextraction (DLLME) techniques used for the 
sampling and determination of PAHs in different samples, 
along with their cons and pros, as well as their prospects.
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extraction (LLE), have been used to preconcentrate 
samples and remove interferences before PAHs analysis 
[7-9]. However, these methods can be tedious and time-
consuming and sometimes require large volumes of 
organic solvents. In response to these limitations, many 
studies have focused on the miniaturization of the sample 
preparation process [10, 11]. Sample preparation is a 
crucial step during the analytical process because it can 
dramatically affect the results. The primary objective of the 
analytical methods field is to develop reliable and efficient 
methods for the qualitative and quantitative analysis of 
different compounds [12, 13]. The development of extraction 
techniques that facilitate the removal of potentially 
interfering compounds and preconcentrate the analytes 
of interest in a single step will simultaneously increase 
selectivity and sensitivity during a trace analysis. More 
recently, methods known as microextraction techniques 
have been widely used for various sample analysis. 
These techniques reduce sample volume, cost, and 
solvent consumption while achieving higher enrichment 
factors [14, 15]. Liquid-phase microextraction (LPME) was 
introduced as a miniaturized sample preparation technique 
in 1996 [16]. This technique is based on the equilibrium 
between an aqueous sample and a micro-volume organic 
solvent as the extraction phase [17, 18]. LPME overcome 
the issues associated with the conventional LLE and is 
advantageous in terms of enrichment, excellent sample 

cleanup, low consumption of organic solvents, and ease 
of implementation and use [19]. Additionally, the LPME 
technique is compatible with a wide range of analytical 
instruments, such as gas chromatography (GC) and liquid 
chromatography (LC) systems [20, 21]. In recent years, the 
efforts towards improvement of the performance have led 
to the development of different new extraction media for 
LPME like ionic liquids (ILs) [22, 23], surfactants [24, 25], 
switchable hydrophilicity solvents [25], and deep eutectic 
solvents (DESs) [26, 27]. Hypotoxicity, low vapor pressure, 
easy synthesis, safety, and convenient phase-separation 
are the main properties of these extraction media [28]. LPME 
techniques can be mainly classified into three categories 
(Figure 1), including single-drop microextraction (SDME), 
hollow-fiber LPME (HF-LPME) and dispersive liquid-liquid 
microextraction (DLLME) [29]. Table 1 has summarized the 
advantages and the drawbacks of the LPME techniques 
described in this review.  Due to the importance of PAHs 
and their adverse effects on human and environmental 
health, many articles have been published on the sampling 
of them from different matrices. One of the most widely 
used methods are LPME techniques. To the best of our 
knowledge, no review article summarizing this subject has 
yet been published. So, in this paper, for the first time, we 
reviewed the history and prospects of LPME techniques for 
the sampling of PAHs from different matrices.

Figure 1 Schematic of different types of LPME techniques: (a) SDME, (b) HF-LPME, and (c) DLLME.



� A. Barkhordarib et al.: Liquid-phase microextraction of polycyclic aromatic hydrocarbons   3

2  Polycyclic aromatic hydrocarbons 
PAHs are a group of over 100 different compounds that 
generally are produced during the incomplete combustion 
of organic materials. PAHs have been classified into two 
main categories including (1) compounds with a low 
molecular weight that has fewer than four rings and (2) 
compounds with a high molecular weight that has four 
or more rings [30]. Various factors associated with PAHs, 
such as their molecular weights and structures, resulting 
in their having different physical properties. For example, 
PAHs with low molecular weights have high vapor 
pressures [31]. The physical properties and structural 
formula of 16 PAHs defined as the priority pollutants by 
the US EPA are presented in Table 2. These compounds are 

measured in the atmosphere for air quality assessment, 
in biological matrices for monitoring health effects, in 
sediments for environmental monitoring, and in foods for 
safety purposes [32]. Understanding the sources of PAHs 
and level of their pollution are important in conducting 
environmental studies, especially in determining their 
background concentrations [33]. PAHs released into the 
atmosphere from various sources, such as industrial 
processes, exhausts of vehicles, incineration of waste 
materials, and domestic heating. In addition, there also 
are some natural emissions of these compounds [34]. 
Overall, anthropogenic sources of PAHs can be classified 
into two main categories, i.e., petrogenic and pyrogenic. 
Petrogenic sources are petroleum products, such as 
kerosene, gasoline, diesel fuel, lubricating oil, and asphalt. 

Table 1 Strengths and weaknesses of LPME techniques.

LPME Techniques Advantages Disadvantages

SDME

 Easy to use  Impermanence of solvent drops (DI-SDME)

 Fast  Limited solvent choice (DI-SDME)

 Inexpensive  Low sensitivity and precision

 Possibility of using various solvents (HS-SDME) 

 �Good clean-up ability with a complex matrix composition 
(HS-SDME) 

 �Possibility of extracting volatile and water-soluble analytes 
(HS-SDME) 

 Possibility of derivatization 

 Required small amount of organic solvents

 Possibility of using various solvent 

 High enrichment factor

HF-LPME

 Easy to use  Possibility of fiber pores getting blocked 

 good clean-up ability  Preconditioning of protection membrane 

 Inexpensive  Long extraction time

 Protection of extraction solvent  Possibility of carryover when reusing membranes

 Easy to automate and miniaturize 

 �High repeatability 
Possibility of derivatization 

DLLME

 Easy to use  Limited solvent choice

 Fast  �Not appropriate for samples with a complex 
matrix composition 

 Required small amount of organic solvents  Requires the use of three solvents 

 Required small amount of sample  �Various steps such as centrifugation/freezing/
auxiliary solvent/demulsifier are required

 Possibility of automation

 �High contact level between the extraction phase and 
sample

 High recovery and high enrichment factor

 The extraction efficiency does not depend on the time

 Very short balance time is required
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Table 2 Physical properties and structural formula of 16 PAHs defined as priority pollutants by the US EPA [170].

NO PAH Abb. Mw B.P. (°C) Structure Vp (Pa) Log (Kow)

1 Naphthalene (C10H8) Na 128 218 10.4 3.37

2 Acenaphthene (C12H10) Ac 154 278 3.0 3.92

3 Acenaphthylene (C12H8) Acn 152 265 0.9 4.00

4 Fluorene (C13H10) Fl 166 295 0.09 4.18

5 Phenanthrene (C14H10) Phe 178 339 0.02 4.57

6 Anthracene (C14H10) An 178 340 0.001 4.54

7 Fluoranthene (C16H10) Fa 202 375 0.0012 5.22

8 Pyrene (C16H10) Py 202 360 6.0×10−4 5.18

9 Benz[a]anthracene (C18H12) B[a]A 228 435 2.8×10−5 5.91

10 Chrysene (C18H12) Chr 228 448 5.7×10−7 1.65

11 Benzo[b]fluoranthene (C20H12) B[b]F 252 481 NA 5.80

12 Benzo[k]fluoranthene (C20H12) B[k]F 252 481 5.2×10−8 6.00
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Pyrogenic sources include power plants that use fossil 
fuels, smelting, garbage incinerators, and forest fires. In 
addition, there are natural sources of PAHs, such as oil 
leaks, the erosion of ancient sediment, and early diagenesis 
[35-37].  Due to their stable structures, most of PAHs have 
high boiling points and low vapor pressures [38-41]. PAHs 
can also persist and accumulate in the environment; 
therefore, the characterization of PAHs in the environment 
has been an important focus of research for decades [42]. 
PAHs found in the environment often contain two or more 
fused benzene rings [42], and many PAHs are considered 
to be environmental pollutants that can have destructive 
effects on flora and fauna. The uptake and accumulation 
of toxic chemicals in the food chain can result in health 
problems and/or genetic defects in humans [43]. However, 
different PAHs have different effects on health, and some 
PAHs are more heavily studied due to their highly adverse 
effects on humans [44, 45]. Human exposure to PAHs 
occurs through a variety of methods including direct 
inhalation of polluted air or tobacco smoke, dietary intake 
of smoked foodstuffs and polluted water, direct contact 
with polluted soil, and dermal contact with soot and oils. 
In addition, PAHs are found with high concentration in 
the environment and have been shown to have mutagenic 
and carcinogenic effects [44, 45]. PAHs are highly lipid-
soluble and can be rapidly distributed to a wide variety of 
tissues through body fat. The metabolites of some PAHs 
have the ability to bind to cellular proteins and DNA with 
toxic effects, and the damage that is caused to the cells can 
result in mutations and cancer. The microsomal mixed-
function oxidase (MFO) system is an enzyme system that 
primarily is responsible for the metabolism of PAHs. Some 
enzymes convert the nonpolar PAHs into polar hydroxyl 

and epoxy derivatives [37]. The epoxides that are formed 
are metabolized to other compounds, such as dihydrodiols 
and phenols. The hydroxylated metabolites of PAHs 
can be found in human urine, both as free hydroxylated 
metabolites and as hydroxylated metabolites conjugated 
to glucuronic acid and sulfates [46, 47]. The main factor 
that contributes to the toxicity of PAHs in tissues and 
organs is their biotransformation to reactive intermediates. 
The components of the human body in the order of 
their metabolizing capacities are liver, lungs, intestinal 
mucosa, skin, brain, hair follicles, erythrocytes, platelets, 
leukocytes, placenta, and uterus. The enzyme systems that 
metabolize PAHs are distributed extensively in people’s 
cells and tissues [48, 49].  The embryotoxic effects of PAHs 
have been investigated in many studies, and the results 
have shown that exposure to PAHs during pregnancy can 
result in adverse birth outcomes [50]. In addition, the results 
of several studies have indicated that exposure to PAHs 
is associated with low IQ at the age of three, behavioral 
problems among children whose ages are in the range of 
6 to 8 years, and childhood asthma [51, 52]. Several factors 
can contribute to the acute effects of PAHs including extent 
of exposure, concentrations of the PAHs during exposure, 
route of exposure (e.g., inhalation or direct contact), as 
well as the health conditions and age of the people who 
are exposed [53-55]. In workers exposed to PAHs and other 
workplace chemicals, health problems, such as skin, lung, 
bladder, and gastrointestinal cancers, have been reported. 
Therefore, PAHs pose serious threats to human health [56-
60]. In recent years, the application of LPME techniques 
during PAH analysis has increased remarkably [61-64].  
Table 3 gives a list of various LPME techniques that have 
been reported in the literature for PAHs analysis.

Table 2 Continued.

NO PAH Abb. Mw B.P. (°C) Structure Vp (Pa) Log (Kow)

14 Benzo[ghi]-perylene (C22H12) B[ghi]P 276 N/A 6.0×10−8 6.50

15 Indeno[1,2,3-cd]-pyrene (C22H12) IP 276 536 NA 6.58

16 Dibenz[a,h]-anthracene (C22H14) D[ah]A 278 524 3.7×10−10 6.75

�
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Table 3 Applications different types of LPME techniques in the determination of PAHs in various matrices

Technique Matrix Separation 
technique

Concentration 
range (µg L−1) R2 LOD ( µg L−1) LOQ ( µg L−1) Refs.

SDME Aqueous sample HPLC-FLD 0.01–50 0.992–0.997 0.004–0.247 – [74]

SDME Aqueous sample GC-MS 0.02–10 0.9912 – 0.9995 0.0012–0.0101 0.0041–0.0336 [76]

SDME Aqueous sample HPLC 0.3–53071 0.981–0.999 0.03–1.2 – [77]

SDME Aqueous sample HPLC 0.5-10 0.9169–0.9976 0.01–0.05 0.03–0.1 [171]

SDME Seawater GC-MS 0.01–10 0.9981–1 0.00033–0.0075 0.0011–0.025 [75]

HF-LPME Aqueous sample GC-MS 0.5–50 0.9984–0.9995 0.005–0.011 – [98]

HF-LPME Aqueous sample HPLC-FLD 0.002 –1 0.9954–0.9986 0.0004 – 0.004 – [100]

HF-LPME Cigarette filter HPLC-UV 0.2– 10 0.9984– 0.9996 0.04 –0.136 – [96]

HF-LPME Pine needles GC-MS 10–2000 ( ng g−1) 0.9915–0.9993 0.01–0.95 ( ng g−1) – [97]

HS- HF-LPME Soil and plant GC-FID 1–10000 (  ng g−1) 0.99–0.998 0.01–0.1 ( ng g−1) 1–3( ng g−1) [99]

DLLME Aqueous sample Molecular-
FLD 2.5–500 0.9979 – 0.9981 17–2.3 2.3–4.8 [172]

DLLME Aqueous sample HPLC- Flu 0.02–200 0.9994– 0.9999 0.00003–0.002 0.0001–0.0067 [173]

DLLME Aqueous sample GC-MS 0.01–0.25 0.992– 0.998 0.0005–0.0087 0.0017–0.0287 [174]

DLLME Aqueous sample HPLC 0.1–500 0.9980–0.9996 0.045–1.1 – [114]

DLLME Aqueous sample HPLC 0.02–200 0.9994–0.9999 0.00003–0.002 0.0001 – 0.0067 [173]

DLLME Aqueous sample GC-MS 0.01–10.00 0.995– 0.999 0.0003–0.0078 – [115]

DLLME Aqueous sample GC-MS 0.05–50 0.9803 – 0.9965 0.0037–0.0391 0.01 – 0.15 [175]

DLLME Aqueous sample GC-MS 0.1–50 0.9915– 0.9964 0.023 – 0.058 0.077–0.193 [116]

DLLME Aqueous sample HPLC 0.2–600 0.9856 – 0.9999 0.02–0.6 0.02–0.61 [117]

DLLME Aqueous sample GC-MS 0.2–100 0.9966–0.9999 0.022–0.060 – [176]

DLLME Aqueous sample GC-MS 0.5-50 0.9817–0.9991 0.0117–0.614 0.04–0.21 [177]

DLLME Aqueous sample HPLC-UV 0.5–150 0.9963–0.9994 0.0005–0.88 – [44]

DLLME Aqueous sample GC-MS 0.01–100 0.9951 0.003–0.016 – [178]

DLLME Aqueous sample GC-MS 0.4–10,000  
( ng kg−1) 0.9989–0.9999 0.1–0.5 ( ng kg−1) 0.4–0.8( ng kg−1) [113]

DLLME Aqueous sample HPLC 0.01–800 0.9977 – 0.9988 0.002–0.8 – [179]

DLLME Aqueous sample HPLC 0.3–800 0.995– 0.997 0.04–0.6 0.3–2 [180]

DLLME Aqueous sample UV–visible 
spectrum 11.9–395 0.993 0.5 – [181]

DLLME Seawater GC-MS 0.005–2 0.976–0.998 0.001–0.01 – [182]

DLLME Smoked rice HPLC 0.2 –100 0.996–0.998 0.05–0.12 0.14–0.38 [183]

DLLME Smoked fish GC-MS 1–200 (  ng g−1) 0.981–0.993 0.36–1.6 ( ng g−1) 0.11–0.48  
( ng  g−1) [184]

DLLME Food and 
beverages GC-FID 0.0001–0.15 0.9944–0.9986 0.00002–0.00007 – [185]

DLLME Grilled Pork HPLC 0.5–1000 0.9973–0.9997 0.1–0.3 0.3–0.5 [62]

DLLME Honey GC-MS 0.111–500 0.9971–0.9995 0.014–0.052 ( ng g−1) 0.047–0.173  
( ng g−1) [186]

DLLME Grilled meat GC-MS 0.000097–1000  
( ng g−1) 0.9789–0.9997 0.029–0.082 ( ng g−1) 0.097–0.277  

( ng g−1) [187]

DLLME Baby food GC-MS 1–15 ( µg kg−1) 0.9909–0.9993 0.1–0.3 ( µg kg−1) 0.25–1 ( µg kg−1) [188]

DLLME Tea beverages HPLC-FLD 1–500 0.9952–0.9999 0.00202–0.00286 0.00673–0.0952 [61]

DLLME Tea and coffee HPLC-FD 0.005-50 0.9939–0.9999 0.001–0.3 – [189]

DLLME Sugar cane 
spirits GC-MS 0.65–12.2 0.9939–0.9999 0.06–1.5 0.2–5 [190]
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3  Liquid-phase microextraction 
techniques
3.1  Single-drop microextraction

Single‐drop microextraction (SDME) is the simplest mode of 
LPME, in which the extraction medium is a microdrop organic 
solvent at the tip of a microsyringe needle. The needle tip is 
placed in aqueous solution for extraction of the analyte, and 
the analyte is transmitted from the aqueous sample into a 
hanging drop. After the extraction process, the organic drop is 
aspirated into the syringe and transferred for further analysis 
[65, 66]. SDME has been applied as a sample preparation 
technique to obtain acceptable analytical data. Simplicity, 
ease of implementation, and low cost make SDME accessible 
to all laboratories. In addition, this technique has been shown 
to be applicable to real samples [67]. However, SDMS has 
also different limitations comprise the limited drop surface, 
instability of the microdrop, and consequently limitation 
of agitation slow kinetics [68, 69]. SDME can be done in the 
headspace (HS-SDME) or direct (DI-SDME) sampling modes. 
[70]. In DI-SDME, the extractant phase is directly immersed 
into a sample solution and both volatile and non-volatile 
compounds can be extracted. The HS‐SDME mode uses a 
microdrop of an organic solvent in the headspace of the 
sample solution that is suitable for the extraction of volatile or 
semi‐volatile analytes [71-73]. In this mode, unlike in DI‐SDME, 
the extracting solvent doesn’t need to be water‐immiscible, 
since it is not in direct contact with the sample phase. In this 
mode, water can also be used as the extracting solvent for 
soluble analytes, which increases the range of extractable 
analytes and the variety of analytical techniques that can 
be coupled to SDME. On the other hand, HS-SDME provides 
excellent cleanup for samples of complex matrices [17].

Wu et al. [74] used HS-SDME followed by HPLC with 
fluorescence detection for the determination of trace PAHs 
in environmental samples. In this research, five PAHs 
were studied as target analytes and a solution of saturated 
β-cyclodextrin was used as the extraction solvent. In 
addition, performance parameters that affected extraction 
efficiency were investigated and the optimal extraction 
conditions were determined. The limit of detection (LOD) 
of this method ranged between 0.004–0.247 ng mL−1 with 
relative standard deviations (RSDs) ranging from 5.1–7.1%. It 
was also found that β-cyclodextrin improved the extraction 
efficiency of target analytes. The results demonstrated that 
the SDME technique generated satisfactory results for the 
analysis of trace PAHs in environmental samples [74].

Wang et al. [75] used SDME equipped with GC-MS for 
the determination of hydroxylated PAHs in seawater. In 
this study, the kinetics of mass transfer and derivatization 

were investigated. After optimization of the experimental 
parameters, the analytes in the upper and bottom layers 
of seawater from 25 sampling sites were analyzed. Under 
optimized conditions, the LOD and limit of quantification 
(LOQ) ranged between 0.33 to 7.50 ng L−1 and 1.11 to 25 ng L−1, 
respectively. Recoveries ranged between 68% to 128% and 
RSDs were less than 15%. These results demonstrated that 
the SDME technique is capable of detecting hydroxylated 
PAHs in the surface and bottom layers of seawater [75].

Li et al. [76] identified 16 PAHs in environmental water 
samples using column clean-up along with continuous 
flow SDME, prior to PAH determination by GC-MS. In this 
method, purification, extraction, and enrichment steps 
were performed in a single step, which reduced the effect 
of interfering compounds on the determination of the 
analytes of interest. Additionally, this approach simplified 
the operation process and shortened the extraction time. 
The performance parameters that affected the extraction 
efficiency were optimized, including type and amount of 
column packing material, type and volume of extraction 
solvent, the flow rate of the sample solution, and extraction 
temperature. For allanalyte, the results showed linearity 
in the range of 0.02-10 µg L−1, with correlation coefficients 
more than 0.99. The LOD and LOQ of the analytes were in 
the range of 0.0012–0.0101 µg L−1 and 0.0041–0.0336 µg L−1, 
respectively. The recoveries of target analytes were in the 
range of 81.8–105.8%, with RSDs ranging from 0.5% to 6.4%. 
This method has several advantages including simplicity, 
fast processing time, satisfactory recoveries, and low 
consumption of organic solvent. The results showed that the 
proposed method has considerable potential for the analysis 
of trace PAHs in environmental water samples [76].

In another study, SDME coupled to HPLC along 
with a new class of ionic liquids (containing the tris 
(pentafluoroethyl) trifluorophosphate anion paired with 
imidazolium, phosphonium, and pyrrolidinium cations) 
was used as extraction solvents for the extraction of PAHs 
from aqueous samples. The extraction parameters that 
were investigated included stirring rate, extraction time, 
salt content, microdroplet, and sample volume. The LOD 
was in the range of 0.03–1.2 µg L−1 and the correlation 
coefficients were between 0.981 and 0.999. This study 
demonstrated that the application of SDME for analysis of 
PAHs had high efficiency [77].

Comments: Since its introduction, the SDME sample 
preparation technique has been widely applied for the 
sampling and analysis of a variety of compounds, including 
PAHs. Despite its history of reliability, SDME still needs to be 
improved in several aspects comprising stabilization of the 
microdrop, using environmentally friendly solvents, and the 
realization of high extraction efficiency. Future studies should 
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also assess the use of new materials to permit combined 
extractant, improvement of the SDME devices, and online 
and or automated coupling with chromatographic and 
spectroscopic instruments. Furthermore, new applications 
such as integrative artificial intelligence systems to predict 
appropriate extraction conditions are expected to ensure the 
future vitality of this technique.

3.2  Hollow-fiber liquid phase 
microextraction

In 1999, HF-LPME was introduced by Pedersen and 
Rasmussen as a way of avoiding the drop instability in 
SDME [66, 78]. In HF-LPME, extraction takes place inside 
a porous hollow-fiber typically made of propylene. Prior 
to the extraction, the hollow fiber is dipped into a water-
immiscible organic solvent, which enters the pores of 
the fiber by capillary forces and becomes a supporting 
liquid membrane. During the extraction, the fiber helps to 
mechanically protect the sample and prevents losses of it 
[79-81]. In this technique, the target analytes are extracted 
from the aqueous sample into the organic phase in the pores 
of the fiber. The pores can increase selectivity by preventing 
the extraction of high molecular weight materials [82-84]. 
There are two main modes of HF-LPME: the two-phase and 
the three-phase mode. In two-phase HF-LPME, analyte is 
extracted from an aqueous sample placed in the membrane 
pores. The extractant uses the same organic solvent as that 
immobilized in the pores, and the analytes are extracted in 
an organic phase that is compatible with GC [85, 86].  In three-
phase LPME, the analytes of interest are extracted from the 
aqueous sample, by the organic solvent in membrane pores, 
and then subsequently into another aqueous extractant, in a 
back-extraction-like process.  In this mode, the extractant is 
another aqueous phase and the analytes are transported into 
it via the thin film of the organic solvent. This process makes 
this mode compatible with processes such as HPLC, capillary 
electrophoresis (CE), and atomic absorption spectrometry 
(AAS) [87-91]. Two-phase HF-LPME, is capable to extract 
uncharged hydrophobic analytes, which cannot be efficiently 
extracted by a three-phase mode. The important point is 
that the final extract can be directly injected into the GC. In 
this technique, only the partition coefficient determines the 
maximum enrichment [92]. Generally, this technique is more 
cost-effective and has a higher potential for automation and 
miniaturization than the SDME technique [93, 94]. HF-LPME 
is currently being used for passive sampling of different 
analytes. Recently Eduard et al. [95] applied HF-LPME as 
a new passive sampling device for effective monitoring of 
pesticides in water and their study showed good results by 

using this technique [95]. On the contrary to the attributed 
advantages, HF-LPME suffers from its low-speed passive 
diffusion, the need for pre-conditioning of the membrane, 
possibility of fiber pores getting blocked, and the possibility 
of carryover when membranes are reused [68, 69].

Demirci et al. [96] used HF-LPME-HPLC for the 
identification of different PAHs in cigarette filter tar. In this 
study, the performance parameters affecting the optimum 
conditions for HF-LPME, such as the sample solution 
condition, pH, extractant’s type, mixing rate, and extraction 
time were investigated. The LOD of the six PAHs were in 
the range of 0.040 to 0.136 ng mL−1, and the percentage of 
recoveries and enrichment factors for the model samples 
solutions ranged from 63% to 97% and 208 to 320, 
respectively. The recoveries from real samples were between 
8% and 71%, and the enrichment factors ranged from 27 to 
234. The total amounts of PAHs in the three brands of filter 
tar were 165.49, 50.49, and 51.04 ng, respectively. This study 
result showed that HF-LPME-HPLC can be a useful method 
for quantification of the PAHs in cigarette filter tar [96].

Ratola et al. [97] used HF-LPME for the quantification of 
PAHs in complex pine needle samples. Important parameters 
including type of extractant, salt addition, sample agitation, 
and sampling time, were investigated and optimized, based 
on the response of the GC-MS instrument. The LOD for a 
signal-to-noise ratio (S/N) of 3, ranged between 0.01 and 0.95 
ng g−1, and the linear range concentration was between 10 
and 2000 ng g−1 for most of the target analytes. In this study, 
the repeatability and reproducibility of HF-LPME results 
were also good for the analysis of PAHs. Results showed 
that HF-LPME is an effective and reliable technique in the 
determination of PAH residues in sonicated extracts of plant 
materials such as pine needles [97].

HF-LPME coupled with GC-MS was used for the analysis 
of PAHs in wastewater treatment plant effluents. In this 
study, the performance parameters and experimental 
conditions were controlled. Under optimal conditions, the 
calibration graphs were linear in the range of 0.5-50 µg L−1 
for all of the target analytes, with determination coefficients 
bigger than 0.991. The LODs ranged between 0.005 and 
0.011 µg L−1. The method repeatability (intra-day) and 
reproducibility (inter-day) were found to be 2.7-11.3% and 
7.9-14.4%, respectively. Additionally, it was shown that the 
performance of HF-LPME was comparable with solid-phase 
microextraction (SPME) for separation and preconcentration 
of organic analytes. This study demonstrated that HF-LPME 
has the ability to concentrate many organic analytes such as 
PAHs in aqueous samples [98].

Ghiasvand et al. [99] used cooling-assisted headspace 
HF-LPME, coupled with the GC-FID, for the determination 
of PAHs in soil samples for the first time, they used volatile 
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solvents as the extraction phase for HF-LPME. Different 
performance parameters including type and volume of 
extraction solvent, extraction time and temperature, and 
temperature of the cooled organic solvent, were studied. 
The results showed that the linear concentration range 
was 1-10,000 ng g−1, with good linearity of the calibration 
curves ( > 0.99). The LODs and LOQs were obtained over 
the ranges of 0.01-0.1 ng g−1, and 1-3 ng g−1, respectively. 
The RSDs were found to be 4.7% to 10.1%. This study 
demonstrated that HS-HF-LPME coupled with GC-FID 
could be successfully used for the determination of PAHs 
in soil and plant samples [99].

In another study, ordered mesoporous carbon (OMC)–
reinforced HF-LPME coupled with HPLC and fluorescence 
detection was used for the determination of PAHs in 
water samples. The influential experimental parameters 
including extraction time, fiber length, stirring rate, type 
of extraction solvent, pH, concentration of OMC, and salt 
effect were evaluated. Results showed good linearity in the 
range of 2 ng L−1 to 1,000 ng L−1, with correlation coefficients 
of 0.9954 to 0.9986. The recoveries for the spiked samples 
were in the range of 88.96-100.17%. The LODs were 0.4 
to 4 ng L−1, and the RSDs were 4.2% to 5.9%. This study 
proved that the OMC-HF-LPME method has excellent 
enrichment factors and efficiency parameters and can be 
a good alternative approach for the determination of PAHs 
in environmental water samples [100].

Comments: As mentioned in the reviewed reports, 
HF-LPME possesses enormous potential for trace analysis 
of different compounds in a variety of matrices. To date, it 
has been used successfully to determine PAHs in a variety 
of liquid and solid samples. Nevertheless, HF-LPME 
could be improved in terms of automation, simplicity of 
workflow, and higher throughput to provide a robust and 
suitable alternative to the conventional extraction methods. 
Automation would help facilitate tasks, reduce operator-
associated error, and increase reproducibility and accuracy 
of the analytical process. The development of commercial 
equipment to reduce manual labor can lead to broader 
applications of this technique in the routine analyses. Finally, 
future HF-LPME studies most likely will be focused on its 
automation, compatibility with different sample matrices, 
and online coupling with chromatographic systems.

3.3  Dispersive liquid-liquid microextraction 
technique

Dispersive liquid-liquid microextraction (DLLME) is another 
sample preparation technique derived from LPME, in 
which small volumes (μL) of an extraction solvent is used. 

DLLME is a powerful preparation technique based on the 
use of a ternary solvent system [101]. The solvent system 
includes an aqueous sample, a disperser organic solvent, 
and an organic extracting solvent. The extraction solvent 
is dispersed in the aqueous sample by getting help from 
the disperser and consequently forms microdroplets of the 
extractant, inside the aqueous sample, which enables a 
very fast extraction process [102, 103]. After the extraction, 
the extractant is settled by centrifugation or solidification 
and the quantification of the enriched analytes performed 
by an analytical instrument. The enriched analytes can 
be analyzed by GC, due to the use of water‐immiscible 
solvents in DLLME. Nevertheless, DLLME can also be used in 
combination with other analytical tools such as LC [104, 105]. 
The choice of an appropriate extraction solvent that ensures 
high extraction efficiency requires the consideration of many 
physicochemical properties such as the capability to extract 
the analytes of interest, low solubility in water, the formation 
of tiny droplets in the disperser solvent, and the compatibility 
of the solvent with the analytical instrumentation [106, 
107]. The main advantages of the DLLME technique are low 
consumption of organic solvents, short extraction time, and 
high enrichment factors. Accordingly, the DLLME technique 
is a simple, fast, high-performance, and low-cost operation 
that also meets the requirement for the development of 
green analytical chemistry. However, it suffers from a few 
drawbacks like using two different organic solvents in the 
extraction process, need for high density extracting solvents 
(which limited the choice of suitable solvent), and need for 
centrifugation or solidification, as an extra step [69]. Since 
the invention of DLLME in 2006, the number of studies 
concerning its application in the determination of PAHs has 
been continually growing [68, 108-112]. 

A magnetic SPE sorbent coupled with DLLME (MSPE–
DLLME) followed by GC–MS was used in the determination 
of 16 PAHs from real environmental samples, including 
tap water, seawater, wastewater, sewage, and soil 
samples. The parameters of influence, such as the amount 
of extraction adsorbent, type of stripping, extraction 
solvents, salt effect, and the pH and volume of the sample 
solution were studied. Under optimal conditions, the LOD 
values were in the range of 0.1–0.5 ng kg−1 at S/N = 3 and 
the method precision values were satisfactory (RSD% ≤ 
8.66). The results showed good linearity in the range of 
0.4–10,000 ng kg−1, with the correlation determinations 
between 0.9989 and 0.9999. Overall, the study results 
indicated that the combined MSPE–DLLME method shows 
excellent performance for the trace analysis of PAHs in 
environmental samples [113].

A DLLME procedure based on the solidification 
of floating organic droplets was investigated for the 
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determination of PAHs in water samples. In this 
method, an organic solvent with a low density and an 
appropriate melting point is used. Thus, the needle tip 
of a microsyringe and a hollow fiber are not required and 
the extractant droplet (extraction phase) can be obtained 
by solidifying it at a lower temperature. In this study, the 
performance parameters were also investigated. Under 
optimal conditions, the LOD values were in the range 
of 0.045–1.1 ng ml−1 and the linear range concentrations 
ranged between 0.10–500 ng ml−1. The recoveries were 
also in the range of 92–110% and RSDs values ranged 
from 3.4–5.8%. In addition, the results showed correlation 
coefficients between 0.99600 and 0.9986. The results of 
this study confirmed that this method is a simple and 
low-cost method that can be successfully applied to 
determine PAHs in environmental water samples and 
provides an alternative method for the analysis of non-
polar compounds in complex environmental water [114].

Leong et al. [115] used DLLME-GC–MS for the extraction 
and determination of 16 PAHs in water samples. In their 
study, they proposed the use of a low-toxic bromo-solvent 
as the extractant, whereas in the conventional DLLME, 
chloro-solvents are mostly used. The extraction efficiencies 
of five chloro-solvents and 13 bromo/iodo- solvents were 
investigated. The results indicated that some of the bromo/
iodo- solvents have high extraction capability and lower 
toxicity than chloro-solvents. The range of enrichment 
factors and extraction recoveries were 372–1308 and 
87–105%, respectively. The linear concentrations ranges 
were found to be 0.01–10.00 µg L−1, and the LOD values were 
between 0. 3 and 7.8 ng L−1. The RSDs values for 10 ng L−1 of 
PAHs in tap water were also in the range of 5.1–10.0%. These 
results showed that the low-toxic DLLME method can be 
successfully used in the separation and preconcentration 
of trace PAHs in water samples [115].

An automated low-density-solvent-based DLLME 
method, coupled with GC-MS, was carried out for the 
determination of PAHs in environmental water samples. 
In that study, different types of extraction parameters 
were investigated, including the type and volume of 
extraction solvent, the dispersive solvent extraction and 
demulsification times, and the speed of solvent injection. In 
the study, the LOD and LOQ values ranged from 0.023–0.058 
µg L−1 and 0.077–0.193 µg L−1, respectively. The calibration 
graphs were linear in the concentration range of 0.1–50 
µg L−1 with correlation coefficients were between 0.9915 
and 0.9964. The RSDs values (n = 6) were determined to 
range between 4.9% and 7.3%. These study results showed 
that an automated method that integrates low-density-
solvent-based DLLME and GC–MS was successfully used to 
determine PAHs in environmental aqueous samples [116].

Fernández et al. [117] used the DLLME technique 
coupled with an HPLC fluorescence detector for the 
determination of 15 PAHs in water samples, including tap 
water, rainwater, and river water. The authors investigated 
the parameters affecting the extraction efficiency including 
type and volume of extractant solvent, type and volume of 
dispersive solvent, and extraction time. The intra-day and 
inter-day relative standard deviations ranged from 1.6–4.7% 
and 2.1–5.3%, respectively. The DLLME technique exhibited 
good linearity in the range of 0.2–600 μg L−1 with correlation 
coefficients higher than 0.999. The LOD and LOQ values 
were 0.02–0.61 μg L−1 and 0.02–0.61 μg L−1, respectively. The 
enrichment factors of PAHs were in the range of 86–95, and 
the extraction time had no effect on the recovery of the 
PAHs. Their results indicated the successful application 
of DLLME in the separation and pre-concentration of low 
concentration PAHs compounds in water samples [117].

Vera et al. [61] used an ionic liquid based DLLME 
method, coupled to a HPLC with fluorescence detector, 
in the determination of carcinogenic PAHs in tea 
beverages. The performance parameters associated with 
the extraction efficiency and tea infusion preparation 
were optimized. This method exhibited good precision, 
with RSDs values between 2 and 5%. The LOD and LOQ 
values ranged from 2.0 to 30.8 ng L−1 and 6.73 to 95.2 ng 
L−1, respectively. The calibration plots for chlorobenzenes 
were linear in the range of 1-500 μg L−1, and the recoveries 
ranged from 56% to 94%. Given the results obtained, this 
method can be considered as a good alternative for the 
analysis of PAHs in tea beverages [61].

In another study, Tan et al. [118] coupled microwave-
assisted extraction with DLLME (MAE-DLLME) for the 
extraction of PAHs from vegetables. They investigated 
the influential parameters in the efficiency of DLLME 
including extraction solvent, dispersive solvent, and 
extraction time, as well as MAE parameters such as solvent 
type, microwave power, and irradiation time. A GC-FID 
was used for the determination of PAHs. In addition, they 
studied the impacts of the physiochemical properties of 
the extraction solvents on the extraction efficiency. The 
results showed that extraction solvents with low viscosity 
and low polarity have higher extraction efficiency. The 
results indicated that the selected dispersive solvents and 
extraction time had no significant effect on the extraction 
efficiency. The results demonstrated that the MAE–
DLLME–GC-FID method can be successfully used for the 
sampling and analysis of PAHs in vegetable samples [118]. 

Comments: DLLME has been successfully applied for 
the extraction and separation of a wide range of analytes 
from a variety of samples, including environmental, 
biological, water, and food. However, still, there is a need for 
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the application of new extraction media for better viscosity 
hydrophobicity, and other properties that improve the 
selectivity and efficiency of this technique. Furthermore, more 
additional research must be conducted to develop automatic 
DLLME systems. One of the significant challenges in the 
utilization of microextraction techniques such as DLLME is 
in-line coupling of them to different chromatographic and 
spectroscopic systems, to reduce time and cost of analysis, 
as well as to improve sensitivity and enrichment factor. 

4  Extraction media used in LPME 
techniques
The choice of an appropriate extractant is the most 
important factor in the ultimate results of LPME 
experiments. To develop new LPME extracting solvents 
different physicochemical properties like polarity, boiling 
points, density, viscosity, cost, and toxicity must be 
considered. In recent years, the use of new solvents in 
LPME techniques has increased remarkably to improve 
extraction efficiency and selectivity [119, 120]. 

4.1  Ionic liquids

The term ILs describes liquids that made up of cations and 
anions (salts) which melt at or below 100 °C. Indeed, ILs are 
organic salts that are liquid at mild temperature conditions. 
These compounds were first introduced by Walden, in the 
nineteenth century. ILs are composed of large asymmetric 
organic cations and inorganic or organic anions and their 
characters are determined by the structure and interaction 
of the ions in the melt [121, 122]. ILs are mostly non-
flammable, non-volatile, and low vapor pressure (meaning 
the risk of atmospheric contamination) solvents. For this 
reason, they are usually considered as “green solvents” for 
green technologies. The high solubility of organic species 
in ILs makes them appropriate solvents for the extraction of 
various analytes from a variety of sample matrices [123-125]. 
In addition, ILs offers high thermal and chemical stability, 
significant recoverability, electrical conductivity, and 
efficient dissolution ability for biopolymers. [126]. The first 
use of ILs in microextraction techniques reported in 2003 
and since then, the potential of ILs as alternative solvents 
for LPME techniques is increasingly being pursued [127]. ILs 
have shown higher selectivity than the other conventional 
extracting solvents. It has been proved that IL-based LPME 
techniques are potential sample pretreatment methods 
for the analysis of target analytes in complex matrices 
like biological, pharmaceutical, food, and environmental 

samples [128]. However, the flammability, toxicity, and 
causticity of some ILs have not yet been thoroughly 
investigated and much care should be taken to choose them 
as the extraction solvent. On the other hand, the cost of ILs 
used in LPME is high and the synthesis of cheaper and 
more functional IL must be a targeted aim in the IL-based 
microextraction techniques [129].

4.2  Magnetic ionic liquids

Magnetic ionic liquids (MILs) have been introduced as a 
new subclass of ILs for numerous analytical applications. 
MILs are produced by the incorporation of a paramagnetic 
part into the cation or anion in the IL structure [130, 131]. 
MIL solvents are used in solvent-based extractions and 
microextractions, membrane applications, gas absorption, 
chromatographic separations, electrochemical and sensing 
applications, magnet-based sensors, etc. [132-134]. In 
addition to the general characters of ILS, MILs have more 
tunable solvation properties, which make them suitable 
extraction solvents for the LPME applications [135]. The use 
of MIL solvents can be magnetically manipulated and their 
physicochemical properties are possible to be tailored to 
perform specific applications. as a result, the use of MILs in 
analytical chemistry is significantly increasing due to their 
unique advantages and tunable properties, in the presence 
of an external magnetic field [136].

4.3  Deep eutectic solvents

DESs are a new class of solvents that can address the 
main limitations of common ILs like costly and laborious 
synthesis process, high toxicity, and non-biodegradability. 
DESs were introduced in 2003 by Abbot and co-workers. 
These solvents are produced by mixing of choline chloride 
with a metal salt, at temperatures below 100 °C, followed by 
freeze drying [137, 138]. Compared to other solvents, DESs 
offer outstanding advantages such as biodegradability, 
low-toxicity, good solvating ability, sustainability, low-
cost, and easy preparation method. For this reason, they 
have been applied in a large range of applications like 
drug development, catalysis, synthesis of new compounds, 
and analytical chemistry [120, 139]. In this regard, the 
applications of DESs in analytical chemistry can be divided 
into several areas including extraction of target analytes 
from complex matrixes,  sorbent modifiers,  dissolution or 
digestion of solid samples, elution solvent for dispersive 
solid-phase extraction, and application in chromatography 
as mobile phase additive or modifier [116, 140-142]. DESs 
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have potential applications in chemical analysis for 
both liquid samples and solid samples, especially for the 
extracting of polar analytes. These solvents have the ability 
to extract both dissociated and undissociated forms of 
acidic compounds [143].  In this sense, it can be anticipated 
that these type of solvent need to be more studied because 
applications of DESs in analytical chemistry and separation 
sciences is still in its infancy stage [144]. More recently, 
significant attention has been given to the application of 
DESs in LPME techniques in order to reduce toxic waste and 
to improve selectivity and extraction efficiency [145-147].

4.4  Supramolecular solvents

Supramolecular solvents (SUPRASs) is a term that describes 
nano-structured liquids produced by spontaneous, sequential 
phenomena of self-assembly, and coacervation. SUPRASs are 
well-known in analytical chemistry and have been employed 
for different extraction processes [148]. SUPRASs have a 
unique array of physicochemical properties including use of 
self-assembly based synthetic routs, ubiquity of amphiphiles 
in nature and synthetic chemistry, tunability of solvent 
properties by varying the hydrophobic or polar group of 
the amphiphile, presence of different polarity regions in 
the supramolecular, non-volatility, and non-flammability 
(permits the implementation of safer processes). SUPRASs 
are eco-friendly solvents produced from inexpensive bio-
surfactants [149-151]. These solvents have been widely used in 
extraction methods due to their high ability to extract various 
compounds including organic and inorganic specie [152]. 
They can form different ionic, hydrogen bonding, π-cation, 
and hydrophobic interactions with target analytes to enhance 
the extraction efficiency [153, 154]. They can efficiently extract 
compounds covering a wide polarity range by a selection of 
proper functional groups of the amphiphiles [155]. SUPRASs 
are appropriate green alternatives for the conventional 
solvents in microextraction methods and can be widely 
used for the extraction of organic and inorganic traces from 
different samples [156-159]. These solvents are properly 
compatible with different LPME formats, as well as various 
detection instruments. According to literature, SUPRASs-
LPME has been described as a fast, cost effective, and highly 
efficient extraction technique [160, 161].

5  Influential parameters on extrac-
tion efficiency of LPME techniques 
Different parameters can affect the extraction efficiency of 
LPME techniques. These parameters include the organic 

solvent, sample volume, extractant volume, extraction 
time, pH, agitation, and salting-out effect, which may differ 
according to the extraction strategy and sample/solvent 
specifications [162]. The choice of a suitable organic solvent 
is one of the most important factors in the ultimate success 
of the analysis in LPME techniques. Several parameters must 
be considered when choosing an organic solvent, including 
boiling points, density, viscosity, economic factors, and 
compatibility of the solvent with the proposed analytical 
instrumentation [106, 107]. The viscosity of the solvent 
of choice must be enough to form a stable microdrop in 
SDME, or a properly settled drop in DLLME. Further, a high 
boiling point and low vapor pressure should be consideredto 
reducing evaporation during the extraction process [67, 163]. 
The volume of sample and extractant solutions are the most 
important factors that affect the enrichment factor. However, 
it should be noted that when the volume ratio of sample/
extractant increases the enrichment factor can increase. 
[84, 164]. The extraction process in LPME techniques is time 
dependent because the extraction efficiency is attained at the 
equilibrium between the extraction phase and the sample. 
Generally, longer extraction times in the non-equilibrium-
based extraction systems lead to higher extraction 
efficiencies but such conditions are not sometimes feasible, 
in terms of time, cost, and required sensitivity of the analysis. 
Due to the large surface area between the extractant and 
sample solution, in the dispersed system, extraction time 
in DLLME is almost shorter than SDME and HF-LPME. 
Some novel methods accelerate the process through carrier-
mediated extraction or electrokinetic migration [103, 165, 
166]. Another affecting factor in extraction efficiency is 
the pH adjustment, since the pH of sample and extractant 
affects the solubility, distribution ratio, enrichment factor, 
and recoveries of target analytes, especially for the analytes 
with acid-base characters. In the LPME sampling of ionic 
analytes, pH of the sample solution should be precisely 
adjusted to allow ionization of the target analytes and obtain 
an efficient extraction [82, 164]. For this purpose, using of 
suitable buffers can lead to increase in the reproducibility, 
selectivity, and sensitivity of the sampling process [167]. The 
agitation of the sample is important to enhance extraction 
efficiency. This creates continuous exposure of the extraction 
phase to the aqueous sample and thus equilibrium can be 
achieved in a shorter time [84]. Based on the convective-
diffusive mass transfer theory, increasing of stirring rate 
decreases the thickness of the stagnant film around the 
extracting phase, improve the mass transfer,  and results in a 
reduction in extraction time. Various methods like agitation, 
stirring, vibration, shaking, and irradiation with ultrasonic 
waves have been applied to improve the extraction efficiency 
of LPME methods via increasing the mass transfer rate [83, 
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168]. The addition of salt or increasing of ionic strength in 
an aqueous solution almost improves the partitioning of 
lipophilic analytes into the extraction phase. However, 
the high concentrations of salt may change the physical 
characteristics of the Nernst diffusion layer and decrease the 
transmission of the analytes into the extraction phase. The 
enhancing effect of salt addition was clearly demonstrated 
by Wand et al. for the analysis of hydroxylated PAHs in water 
samples [75]. However, the nature of the target analytes and 
sample solution play an important role in salting-out effect 
[164, 169].

6  Conclusions and prospects
The screening of trace and ultra-trace levels of PAHs 
is important to avoid health complications caused by 
exposure. To date, the conventional sample preparation 
methods have been widely applied for the sampling of 
PAHs. However, these methods usually are tedious, costly, 
and time-consuming, and use large amounts of toxic 
organic solvents. Notwithstanding significant advances 
in the analytical instrumentation, sample preparation 
steps are still inevitable prior to instrumental analysis of 
complex samples. Sample preparation is an essential step 
in most of the analytical process, and generally involves 
a combination of extraction, preconcentration, and 
presenting the analytes into a form that is compatible with 
the analytical system, depending on the case. Thus, many 
efforts have been directed toward the development of green 
sample preparation methods that minimize dangerous 
solvent consumption and result in the determination of 
target analytes in a highly efficient manner. In this way, the 
use of different types of LPME techniques has increased 
remarkably for determining of PAHs. Here, we reviewed 
the studies that utilize LPME techniques for the sampling 
and analysis of PAHs. LPME techniques are advantageous 
due to their high performance, simplicity, automation, 
short analysis time, ease of coupling with chromatographic 
systems, lower cost, higher sensitivity and selectivity, 
and environmental friendliness. Considering the 
studies discussed in this review, LPME techniques show 
considerable opportunity for the determination of trace 
amounts of PAHs in different samples. These techniques 
have been successfully used for the sampling and analysis 
of PAHs at different concentrations in various matrices. 
Altogether, the combined use of LPME techniques with a 
sensitive analysis instrument provides a powerful method 
for the sampling and analysis of PAHs. Therefore, LPME 
techniques are recommended as an alternative for the 
conventional methods for the analysis of PAHs. These 

considerations clearly suggest that in the future, these 
techniques will be applied more frequently in multiple 
fields, including PAHs analysis. It is still desirable to widen 
the applications of LPME to more analytes and complex 
matrices in various forms. In the coming years, new efforts 
are expected to be more focused on automation of different 
configurations of LPME system, as well as to develop 
more efficient green extracting solvents. Especially, more 
research needs to be initiated to implement safer and lower 
toxicity extraction solvents, which will lead to an increase 
in the green aspects of the LPME techniques. In-line 
coupling of LPME to the sensitive analytical instrument by 
using flow-based hyphenation systems and application of 
chemometric models for the optimization of the methods 
are other aspects that are expected to be more investigated. 
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