Home Voltammetric/amperometric screening of compounds of pharmacological interest
Article Open Access

Voltammetric/amperometric screening of compounds of pharmacological interest

  • Antonio Doménech-Carbó

    Antonio Doménech-Carbó is a Professor at the Department of Analytical Chemistry of the University of Valencia. His research is focused on solid state electrochemistry. He has published more than 150 articles, including one IUPAC report, and several books. Currently, he is the topical editor of Journal of Solid State Electrochemistry.

    EMAIL logo
    , Leandro M. de Carvalho

    Leandro M. de Carvalho is currently a Professor of Analytical Chemistry at Federal University of Santa Maria (UFSM) in Santa Maria, Brazil, and a research scientist of the National Council of Scientific and Technological Development (CNPq). He has published over 100 articles on the determination of metals, metalloids, and drugs in samples of clinical and environmental relevance employing capillary electrophoretic, chromatographic and electroanalytical methods.

    , Mariele Martini

    Mariele Martini obtained her PhD at Federal University of Santa Maria (UFSM) in Santa Maria, Brazil. Her research activities have been focused on the development of analytical methods for the determination of drugs in pharmaceuticals formulations by using capillary electrophoretic, chromatographic, and electroanalytical methods.

    and Gerardo Cebrián-Torrejón

    Gerardo Cebrián-Torrejón studied Pharmacy and Biochemistry at the Universities of Valencia and Leeds and obtained his PhD at the University Paris 11. Currently, he is postdoctoral researcher at the University of São Paulo. His research interests focus on natural products, in particular total synthesis, pharmaceutical chemistry and more recently electrochemistry.

Published/Copyright: August 28, 2014
Become an author with De Gruyter Brill

Abstract

Voltammetric and amperometric methods for screening compounds of pharmacological interest are reviewed on the basis of the types of electrodes and analytical strategies. The scope of conventional voltammetric and amperometric methods has been considerably expanded in the last years due to the development of a plethora of modified electrodes, in particular, those involving nanocomposites. The application of solid state voltammetric techniques for pharmacological screening has been also reviewed.

Introduction

Screening of compounds of pharmacological interest is an obvious analytical target in the fields of pharmacology and biomedical chemistry. Electrochemical methods have been extensively used in such fields for determining different types of pharmacologically active compounds.They have also been used for targeting biochemical activity, namely, antioxidant capacity (Andlauer and Héritier 2011), antitumoral activity (Richardson et al. 2006), electrochemical cofactor regeneration for electroenzymatic reduction of redox mediators (Gajdzik et al. 2012), enzymatic activity (Abdellaoui et al. 2013), among many others. Correlation between electrochemical properties and bioactive properties was reviewed by De Abreu et al. (2002) and this correlation has experienced a significant expansion during the last years due to the implementation of high-throughput methodologies derived from the application of the principles of combinatorial chemistry to electrochemical screening (Ozkan 2010, Pinkzewska et al. 2012). Other increasing growing fields are those based on electro-optical assays (or screens) (Zhao et al. 2009) and bioelectrochemical sensors, these last were constituted with a biological recognition component directly connected to an electrochemical transducer (De Souza Gil and Rodrigues de Melo 2010).

The purpose of the current review is to provide a synthetic view of the application of electrochemical techniques for screening pharmaceuticals. Several preliminary considerations should be made:

  • Based on the IUPAC’s definition of activity in biomolecular screening (Proudfoot et al. 2011), the term screening can be applied to any assay that produces a response or signal of the analyte(s) above a defined threshold at a tested concentration. In a more restricted meaning, screening could be defined as any assay devoted to producing a set of signaling features able to characterize a given analyte (or family of analytes) within a given matrix where potential interferents could be present. Even using this definition, a large number of analytical methods devoted to determine one or several pharmaceuticals in different matrices have been reported. Mainly, either voltammetric, amperometric and potentiometric sensing is used in such determinations. For reasons of similarity in electrode materials, this report will be limited to amperometric and voltammetric sensors.

  • The current review is focused on voltammetric methods, those involving the record of the current response of an electrochemical cell as a function of the applied potential upon application of a certain time-dependent potential input, and amperometric methods, where only the current response of the cell upon application of a constant or a pulsed potential input is measured. In the last years, a plethora of new materials have been developed. These are able to be used in voltammetric/amperometric sensing and include conducting polymers (Malhotra et al. 2006), carbon nanotubes (Jacobs et al. 2010) and graphene (Shao et al. 2010, Wu et al. 2013), metal nanoparticles and quantum dots (Pumera et al. 2007, Siangproh et al. 2011), and other nanomaterials with molecular dimensions (Mousty 2004). Much of this research has been focused on several biochemical compounds: mainly glucose, ascorbic acid, dopamine, uric acid, hydrogen peroxide and NADH, several of which can be regarded as active components of pharmacological formulations. The current report, however, will be focused on pharmaceuticals other than these compounds extensively treated in the electroanalytical chemistry literature, ascribed to the following families: analgesics, anesthetics, anxiolytics, anorexics, antibiotics, antimalarials, anti-inflammatory compounds, antidepressants, antihypertensives, antivirals, antifungals, diuretics, hypoglycemics, laxatives and stimulants. It is pertinent to note that the number of publications dealing with this matter is growing increasingly.

  • The electrochemical screening of pharmaceuticals by solution phase voltammetry and amperometry mainly involves stripping voltammetric and pulse amperometric methods. A recent review and textbook (Uslu and Ozkan 2011, Ozkan 2012) reports the most important voltammetric methods for the screening and determination of pharmaceuticals in different matrices of pharmacological and clinical interest. The application of the voltammetric and amperometric methods by using different techniques and working electrodes are mostly focused on the determination of the drugs as a main active principle in dosage forms. Another application field is the analysis of biological fluids for screening of the drugs as a diagnostic tool. The existing voltammetric/amperometric methods will be reviewed according to two classification criteria: the pharmaceutical classes and the types of working electrodes used for their analytical determination. The current report will be focused “purely” on electrochemical methods with no participation of biological components (enzymes, antibodies, etc.); i.e., bioelectrochemical sensing will be bypassed here.

  • Electrochemical methods can be applied hyphenated with other techniques (typically, spectroelectrochemistry and electrochemical luminiscence) and coupled with separation methods as detector arrangements. This last is the case of electrochemical detection applied to high performance liquid chromatography (HPLC). Capillary electrophoresis, an important electrochemical-separation technique can also be used for screening pharmaceuticals (De Carvalho et al. 2014). All these techniques will also be omitted in this report.

  • Electrochemical methods are being used increasingly for monitoring the pharmacological activity of drugs and obtaining mechanistic information on that activity. The electrochemical screening of drugs with anticancer activities was recently reviewed by Rauf et al. (2005), and the use of nucleic acid-based electrochemical sensors has been summarized by Labuda et al. (2010). For obvious reasons of space, these aspects will not be treated here.

Electrochemical methods for determining pharmaceuticals are dominated by voltammetric and amperometric sensors, accompanied by a less numerous representation of potentiometric sensors, but other electrochemical techniques such as scanning electrochemical microscopy (SECM) have been proposed for the analysis of pharmaceuticals (Lima et al. 2013). Electrochemical impedance spectroscopy, which is increasingly used for impedimetric sensing (Bonanni and del Valle, 2010) is frequently used for characterizing modified electrodes. The most extended voltammetric techniques are cyclic, differential pulse and square wave voltammetry. Among others, data treatment involves background subtraction, deconvolution and derivation techniques.

Types of electrodes

Although a part of voltammetric and amperometric sensors is constituted by unmodified electrodes (mercury, platinum, gold, glassy carbon, etc.), much of the recent research is focused on a variety of chemically modified electrodes. Following Durst et al. (1997), a chemically modified electrode is an electrode made of a conducting or semiconducting material that is coated with a selected monomolecular, multimolecular, ionic or polymeric film of a chemical modifier and by means of faradaic (charge-transfer) reactions or interfacial potential differences (no net charge transfer) exhibits chemical, electrochemical, and/or optical properties of the film. This definition encompasses surface modified electrodes where modification consists of coating the electrode surface with a thin film of a specified material.

It is convenient to distinguish between composites, systems formed by addition of a binder to a mixture of two or more components, and functionalized materials prepared by chemical attachment of functional groups to the pristine electrode modifier (Doménech-Carbó 2010). Optionally, the base electrode can also be functionalized. Table 1 summarizes the main types of electrodes, classified according to an operational criterion, used for determining pharmacological compounds by means of voltammetric and amperometric methods. It is pertinent to note that the variety of nanocomposite formulations is enormous. Among them, multilayers of single-walled and multi-walled carbon nanotubes, graphene and/or graphene oxide, metal nanoparticles, often embedded into polymeric binders have been frequently reported. Table 1 includes a representative but non-exhaustive selection of nanocomposites. The analytical performance of carbon paste electrodes (Svancara et al. 2009), glassy carbon electrodes film-modified with acidic functionalities (Desimoni and Brunetti 2012), clays (Mousty 2004) and metal nanoparticle-modified electrodes (Oyama 2010) have been reviewed recently.

Table 1

Summary of the main types of electrodes used for voltammetric and/or amperometric screening of pharmaceuticals.

Type of electrodeSub-typesExamples
Unmodified electrodesMercury electrodes and amalgam electrodesNouws et al. 2007, Pecková et al. 2009
Metallic electrodes (Pt, Au)De Carvalho et al. 2013
Carbon electrodes (glassy carbon, pyrolitic graphite, screen-printed graphite, etc.)Mozo et al. 2012, Raoof et al. 2012, Merli et al. 2013
Boron-doped diamond electrodesArdelean et al. 2013
Others (ITO, FTO, etc.)Armijo et al. 2010
Carbon paste electrodes (CPEs)Carbon pastesStefan-van Staden et al. 2010, Liu et al. 2012
Modified carbon pastesHeli et al. 2012, Arvand and Fallahi 2013
Carbon pastes with advanced bindersGupta et al. 2013a,b
Electrochemically pretreated electrodesGrafting/functionalizing carbon electrodesLi et al. 2012, Yang et al. 2012a,b
Metal-plated electrodesTyszczuk 2009, Pournaghi-Azar et al. 2010
Anodization of metal electrodesWolfart et al. 2013
Coatings on solid electrodesSelf-assembled monolayers (SAMs)Temsamani et al. 1997
Host-guest monolayersSaraswathyamma et al. 2008
Polymer filmsKalimuthu and John 2010
Lipid filmsNikolelis and Mitrokotsa 2004
Particulate deposits on solid electrodesMicroparticulate depositsYin et al. 2012
Metal nanoparticlesNair et al. 2009, Atta et al. 2011a,b
Semiconductor (typically metal oxide) nanoparticlesZidan et al. 2011, Ye et al. 2012
Deposits of nanostructured carbon-based materials:FullerenesGoyal and Singh 2006
Carbon nanotubesMohammadi et al. 2013
Graphene (graphene oxide, reduced graphene oxide)Kang et al. 2010, Li et al. 2012
Deposits of nanocomposite layers and multilayers combining the above materialsPolymer binding of carbon-based materialsYin et al. 2010, Babael et al. 2011, Filik et al. 2013
Metal nanoparticles/carbon-based materialsTsierkezos et al. 2014, Li et al. 2014

In general, the enhancement of the sensitivity in the analyte-localized signals results from the increase of the specific surface area of the electrode (effect typical of nanoparticulate and nanoporous materials) and the redox-mediating effect of the electrode modifier, the number of active sites for electrocatalysis being crucial in this regard. The attachment of the modifier to the surface of the base electrode (generally glassy carbon, Au or ITO) can be achieved via linker molecules (typically alkanethiols), self-assembled sol-gel silica networks, polymers and other methods resulting in integrated nanoarchitectures (Oyama 2010). It is pertinent to remark that the sensing properties of nanocomposite-modified electrodes depend, apart from the conducting properties of the individual modifiers, on the particle size, density and textural properties of the deposit. These properties can be studied using electrochemical impedance spectroscopy (EIS), a technique which has become popular for characterizing modified electrodes (Go and Pyun 2007).

Analytical methods

Analytical targets and strategies

Much research is devoted to the determination of individual pharmaceuticals in comercial formulations where in general, accuracy, repeatability, reproducibility and robustness are the main analytical demands. Determinations of pharmaceuticals or their metabolites (Baranowska and Koper 2009, Naggar et al. 2012) in biological fluids and other matrices (for instance, as contaminants in water) are in general more exigent in terms of sensitivity and selectivity, and attention must be paid to interference and matrix effects. The gross of the reported methods are devoted to determinations in pharmaceutical formulations, and can be eventually extended to biological fluids. Application to pharmaceutical suspensions as well, however, is rare (Carapuca et al. 2005). Several reports directly treat electrochemical control and assessment of quality (Lencastre et al. 2006, Liu et al. 2012).

Explicit application for determination of drugs in human urine (El-Maali 2000, Garcia-Fernandez et al. 2000, Fernandez Torres et al. 2002, Kasim et al. 2002, Shih et al. 2002, Hilali et al. 2003, Morais et al. 2003, Reddy and Sreedhar 2003, Razak 2004, Goyal et al. 2006, Ensafi and Hajian 2008a,b, Daneshgar et al. 2009a,b, Muralidharan et al. 2009, Tyszczuk and Korolczuk 2009a,b, Behpour et al. 2010, Ensafi et al. 2011, Zayed 2011, Gopu et al. 2012, Khaskheli et al. 2012, Gupta et al. 2013a,b, Lakshmi and Vedhi 2013, Švorc et al. 2013) and human serum (Radi et al. 2001, Sreedhar et al. 2001, Yilmaz et al. 2001, Altinoz and Nemutlu 2002, Uslu and Ozkan 2002, El-Hefnawy et al. 2003, Ghoneim et al. 2003, Coruh and Ozkan 2006, Wang et al. 2006, Altun et al. 2007, Beltagi et al. 2007a,b; El-Desoky 2009, Alarfaj 2013, Arvand and Gholizadeh 2013) are numerous. In contrast, few reports are addressed to determinations in cerebrospinal fluid (Jimenez Palacios et al. 2003), bovine muscle and serum (Ammida et al. 2004, Barbosa et al. 2006), and milk (Billova et al. 2003).

Although interference studies usually accompany analytical studies, few reports are addressed to account for specific interference processes. An example of this kind of contribution would be the determination of lovastatin in the presence of H2O2 in pharmaceuticals, human urine and serum (Xu and Song 2004).

Another analytical target of interest is the determination of pharmacological compounds treated as contaminants in foods (Masawat and Slater 2007, Ni et al. 2011, Mersal 2012) and herbal formulations (De Carvalho et al. 2010a,b,c, De Carvalho et al. 2013). Screening in leaves (Komorsky-Lovrić and Novak 2009) and blackberry, raspberry, strawberry, pomegranate, and sweet and blue potatoes, using solid state electrochemistry (vide infra) has been reported by Komorsky-Lovrić and Novak (2009, 2011).

The majority of reported approaches involve the performance of the electrochemical measurement in a solution of the analyte and/or the real samples from biological fluids, pharmaceutical formulations etc., using a suitable electrode and external calibration or standard additional strategies. Other analytical strategies have been reported in recent literature. These are summarized in Table 2.

Table 2

Several electrochemical strategies complementing the direct voltammetric/amperometric measurements at macroelectrodes in analyte solutions reported in recent literature for determining pharmaceuticals.

StrategieExample of application
Based on electrolyte modifications
Use of micellar mediaQuantification of menadione in sodium dodecyl sulfate micellar media (Ziyatdinova et al. 2013)
Addition of catalystsDetermination of metformine in pharmaceuticals catalyzed by Cu(II) (Tian and Song 2007)
Based on electrode modifications/arrangements
Use of micro and nanoelectrodesPenicillin G determination at gold ultramicroelectrode (Norouzi et al. 2006a,b)
Advanced electrode pretreatments and/or electrode functionalizationsDetermination of paracetamol, caffeine and orphenadrine at a cathodically pretreated boron-doped diamond Electrode (Pires Eisele et al. 2013)
Host-guest recognition strategies of electrode modification
Molecularly imprinted polymersDetermination of doxycycline at molecularly imprinted overoxidized polypyrrole electrodes (Gürler et al. 2013)
CyclodextrinsDetermination of levodopa and carbidopa at cyclodextrin-modified electrodes (Abbaspour et al. 2011)
Screen printed electrodesParacetamol determination (Fanjul-Bolado et al. 2009)
Based on modifications of the measurement technique
Hydrodynamic voltammetrySelection of Pharmaceutical Antioxidants by Hydrodynamic Voltammetry (Webster et al. 2012)
Constant current coulometryDetermination of antioxidants (Ziyatdinova et al. 2012)
Flow-injection with multiple-pulsed amperometric detectionVerapamil determination (Ortuño et al. 2005)
Nanochannel-based arrangementsNagaraj et al. 2014

In this context, screening of different compounds and/or families of compounds can be obtained from discriminating voltammetric responses. In several cases, separated voltammetric signals can be obtained for the different compounds, as is the case of screening of anxiolytics as adulterants in herbal formulations using mercury electrodes (De Carvalho et al. 2010c). Figure 1 shows the voltammetric signals of a 1,4-benzodiazepine mixture and amfepramone in Ringer buffer at pH 10.0. Modification of the electrolyte composition, selective enhancement/depletion of compound-characteristic signals by using electrodes modified with modifiers exhibiting high selectivity, combination of voltammetric data with separation techniques such as liquid chromatography (Ağin et al. 2013) or solid state voltammetry (vide infra) can be used. Discrimination between different analytes is, in principle, easier using voltametry measurements whereas amperometric measurements provide higher sensitivity.

Figure 1 Voltammetric signals at HMDE of a 1,4-benzodiazepine mixture and amfepramone in Ringer buffer at pH 10.0. clonazepam=6×10–5 m; amfepramone=3×10–5 m; other benzodiazepines: 1×10–5 m. Negative-going potential scan; pulse mplitude 50 mV, pulse duration 40 ms, scan rate of 50 mV s–1. From De Carvalho et al. 2010c, with permission.
Figure 1

Voltammetric signals at HMDE of a 1,4-benzodiazepine mixture and amfepramone in Ringer buffer at pH 10.0. clonazepam=6×10–5 m; amfepramone=3×10–5 m; other benzodiazepines: 1×10–5 m. Negative-going potential scan; pulse mplitude 50 mV, pulse duration 40 ms, scan rate of 50 mV s–1. From De Carvalho et al. 2010c, with permission.

Voltammetric methods

The group of antibiotics has been the most extensively studied for voltammetric screening. Determinations at mercury electrodes have been reported for cefadroxil (Al-Ghamdi et al. 2009), cefatemet (Kapetanovic et al. 2000a,b, Aleksic et al. 2003), cefazolin (El-Desoky et al. 2005), cefdinir (Jain et al. 2007a,b, 2008), cefepine (Palacios et al. 2000, Jimenez Palacios et al. 2003, Kumar et al. 2005), cefixime (Jain et al. 2010), cefminox (Hilali et al. 2003), cefonicid (Radi et al. 2003), cefoperazone (Billova et al. 2003), cefpodoxime (Aleksic et al. 2004), cephalosporins (Prasad and Gupta 2000, Abo El-Maali et al. 2005), cephalotin (Al-Ghamdi et al. 2004), cholarphenicol (Dumitrescu et al. 2001), and clarithromycin (Ghoneim and El-Attar 2008), imipenem (Fernandez-Torres et al. 2008), isoniazid (Ghoneim et al. 2003), josamycin (Belal et al. 2002a), shiomarin (Gu, 2002), mitomycin (Sreedhar et al. 2001), nalidixic acid (Ibrahim et al. 2002), nitrofurantoin (Hammam 2002, Jain et al. 2009a,b), nitroxaline (Ghoneim et al. 2011), rifamycin (Alonso et al. 2000), rifampicin (Alonso Lomillo et al. 2002), sulfonamides (Sabry 2007), tobramycin (Sun et al. 2005), trimethoprim (Carapuca et al. 2005) and vancomycin (Belal et al. 2001a,b). Determination of floxacines at mercury electrodes was reported by several authors, (Kapetanovic et al. 2000a,b, Rizk et al. 2000, Vilchez et al. 2001, 2003, Navalón et al. 2002, Beltagi 2003, Solangi et al. 2005, Abdel Ghani et al. 2007, Al-Ghamdi 2009, El-Desoky 2009). Simultaneous determination of several tetracycline antibiotics was described by Ni et al. (2011). Determinations at glassy carbon electrodes have been proposed for azithromycin (Nigovic and Simunic 2003, Nigovic 2004), cefadroxil (Ozkan et al. 2000), cefixime (Golcu et al. 2005), cefoperazone (Dogan et al. 2009a), cefotaxime (Dogan et al. 2009b), dapsone (Manisankar et al. 2001), erythromycin (Wang et al. 2000), levofloxacin (Radi and El-Sherif 2002), nifuroxazide (Toral et al. 2004), and floxacines (Ghoneim et al. 2001, Kumar et al. 2006). Carbon paste electrodes were also used for azithromycin (Farghaly and Mohamed 2004), ceftazidime (El-Maali 2000), doxycycline (Attia and Saber 2011), floxacines (Ries et al. 2005) and others (Gutierrez-Fernandez et al. 2004, Hammam et al. 2004, Wahdan 2005, Souza et al. 2012). Determinations at boron-doped diamond electrodes were reported by Uslu et al. (2008), Andrade et al. (2009), De Lima-Neto et al. (2010), and Švorc et al. (2012a,b). Gold electrodes and ultramicroelectrodes were used by few authors (Palaharm et al. 2003, Norouzi et al. 2006a,b, 2008).

The use of nanocomposites has also been considerably developed for the determination of anti-inflammatory drugs. Carbon nanotubes were the favorite electrode modifiers on edge plane pyrolitic graphite (Goyal and Bishnoi 2009, Goyal and Bishnoi 2010a,b, Goyal et al. 2010a,b,c,d,e) and carbon paste (Abbaspour and Mirzajani 2007) Wang et al. (2006). Composites of carbon nanotubes with Schiff base metal complexes (Amiri et al. 2011), Cu(OH)2 (Arvand et al. 2012) and cysteic acid (Wang et al. 2006) have been also reported. Electrode modification with polypyrrole film (Santhosh et al. 2007), montmorillonite (Beltagi 2009), Ni-curcumin (Heli et al. 2009), iron complexes (Hasanzadeh et al. 2012), β-cyclodextrin (Balaji et al. 2008) and chitosan-doped carbon nanoparticles (Shahrokhian et al. 2010) complete the scope of anti-inflammatory screening.

Electrode modification strategies involved with conducting polymers combined with micellar media (Brahman et al. 2013) to carbon paste electrodes modified with complexes (Bergamini et al. 2006), ferrocenedicarboxylic acid alone (Khalilzadeh et al. 2009) or combined with carbon nanotubes (Fouladgar et al. 2011) or carbon nanotubes alone (Shahrokhian and Amiri 2007, Shahrokhian and Asadian 2010, Arvand et al. 2011). Glassy carbon electrodes were also used as substrates for electrode modification with carbon nanotubes (Fotouhi and Alahyari 2010, Jain et al. 2011a,b), polymers (Msagati and Ngila 2002, Huang et al. 2008, Yang et al. 2008). The deposition of carbon nanotubes on gold was less usual (Yan et al. 2011).

Modifiers involved with β-cyclodextrin (Reddy and Sreedhar 2003) and double stranded DNA (dsDNA) (Radi et al. 2005) on dysprosium hydroxide nanowires (Daneshgar et al. 2009a,b). Carbon nanotubes decorated with spinels and related inorganic solids (Ensafi et al. 2012a,b, 2013a,b). Screen printed electrodes (Ammida et al. 2004, Bergamini et al. 2010) and molecularly imprinted polymers (Gürler et al. 2013) were also reported. Graphene plus ionic liquid composite (Peng et al. 2011) and lead films on glassy carbon electrode (Korolczuk and Tyszczuk 2007, Tyszczuk and Korolczuk 2009a,b) were other types of electrode modifications used for screening of antibiotics.

Voltammetric methods for the screening of chemicals in pharmaceutical formulations and biological fluids reported since 2000, organized by families of drugs other than antibiotics, are summarized in Table 3. In the case of analgesics, acetaminophen is by far the most studied drug, alone and simultaneously, with other drugs. Apart from unmodified carbon electrodes, glassy carbon and boron-doped diamond electrodes, a variety of nanocomposites have been reported for this purpose (Goyal et al. 2005, Ghorbani-Bidkorbeh et al. 2010, Fan et al. 2011, Samadi-Maybodi et al. 2011, Khaskheli et al. 2012). Methods for electrochemical determination of morphine have also been proposed, including metal complexes (Teixeira et al. 2004; Teixeira and Dadamos 2009) and minerals (Shih et al. 2002, Gualandi et al. 2011), among others (Ensafi et al. 2013a,b).

Table 3

Voltammetric methods for the screening of important families of chemicals in pharmaceutical formulations and biological fluids reported since 2000.

Family (representative analytes)ElectrodeReference
Analgesics (acetaminophen, morfine)CGarcia-Fernandez et al. 2000, Ni et al. 2004, Uliana et al. 2010, Ozcan and Sahin 2011
GCGarrido et al. 2002, Garrido et al. 2003a,b, Torriero et al. 2006, Kashefi-Kheyrabadi and Mehrgardi 2012
BDDWangfuengkanagul and Chailapakul 2002, Lourenção et al. 2009, Sartori et al. 2009, Švorc et al. 2012a,b, 2013
CNTWan et al. 2009a,b, Goyal et al. 2010a,b,c,d,e, Sanghavi and Srivastava 2010, 2011a,b, Shahrokhian and Asadian 2010, Habibi et al. 2011, Lu and Tsai 2011, Arvand and Gholizadeh, 2013 Ghadimi et al. 2013
HgNiazi and Yazdanipour 2008
Au NPAtta et al. 2011a,b
PAtta and El-Kady 2009, Muralidharan et al. 2009, Gopu et al. 2012, Thomas et al. 2013
OtherGoyal et al. 2005, Ghorbani-Bidkorbeh et al. 2010; Fan et al. 2011, Samadi-Maybodi et al. 2011, Khaskheli et al. 2012
Anestethics (lidocaine, procaine)BDDOliveira et al. 2007
HgAli et al. 2000, mercury
GCE/PLi et al. 2003
AnxiolyticsCPELozeno-Chaves et al. (2006)
HgDos Santos et al. 2002, El-Hefnawy et al. 2004a,b, Sabry et al. 2004, Hammam 2007, Ghoneim et al. 2008, Jain et al. 2009a,b, Naggar et al. 2012
Pb filmTyszczuk 2010
AnorexicsHgDe Carvalho et al. 2007, 2010a,b,c
AntimalarialsCPRadi 2005, Mashhadizadeh and Akbarian 2009
GCArguelho et al. 2003, 2005, Uslu et al. 2005a,b,c, Jain and Vikas 2011a,b
Anti-inflammatoryCPMalode and Nandibewoor 2013a,b
GCYilmaz et al. 2001, Altun et al. 2007, Farhadi and Karimpour 2007, El-Sayed et al. 2009, Ghavami and Navaee 2012
BDDSuryanaron et al. 2005
HgRadi et al. 2001, Sayin and Kir 2001, Altinoz and Nemutlu 2002, Beltagi et al. 2002, 2007a,b; Kasim 2002; El-Enamy et al. 2003, El-Hefnawy et al. 2003, Ghoneim and Beltagi 2003, Ghoneim and Tawfik 2003a,b, Hammam 2007, Zayed 2011
AuNorouzi et al. 2007, Malode and Nandibewoor 2013a,b
PtUslu et al. 2001, Adhoum et al. 2003
AntidepressantsGCUslu and Ozkan 2002, Lencastre et al. 2006, Turhan and Uslu 2008, Erdogan et al. 2011, Altunöz-Erdoğan et al. 2013
CNTHegde et al. 2009, Sanghavi and Srivastava 2011a,b
HgVela et al. 2001, El-Enany et al. 2002, Ozaltin et al. 2002, Ozaltin et al. 2002, Morais et al. 2003, Nouws et al. 2005a,b, 2006a,b, 2007, Jain and Radhapyari 2008, Erdogan et al. 2011, Altunöz-Erdoğan et al. 2013
AumNorouzi et al. 2006a,b
AntihypertensiveCPArranz et al. 2000a,b, Radi 2001, Radi et al. 2004a,b, Kazemipour et al. 2009, Patil et al. 2009, Attia, 2010
GCOzkan 2002, Dogan et al. 2004, Gazy 2004, Dogan and Ozkan 2005, Kumar et al. 2005, Radi and Elmogy 2005, Öztürk et al. 2011, Ensafi and Arabzadeh 2012
CNTGoyal et al. 2008, Goyal and Bishnoi 2010a,b, Ensafi et al. 2011, 2012a,b, Jara-Ulloa et al. 2012, Karimi-Maleh et al. 2012, Stoiljković et al. 2012
BDDSartori et al. 2010
HgAl-Majed et al. 2000, Belal et al. 2001a,b, 2002a, 2001b, 2003, Dumitrescu et al. 2001, Ghandour et al. 2001, 2002, El-Ries et al. 2002, Kasim et al. 2002, Tamer et al. 2002, Demircigil et al. 2003, Ghoneim and Tawfik 2003a,b, Ioannides et al. 2003, Prieto et al. 2003, Razak et al. 2003, Parham and Zargar 2005, Ensafi and Hajian 2008a,b, Suslu et al. 2008, 2009, El-Desoky et al. 2011, Gupta et al. 2011, Alarfaj 2013
PtAltiokka 2001, Ziyatdinova et al. 2006
AntiviralGCUslu and Ozkan 2004, Dogan et al. 2006, Uslu et al. 2005a,b,c, 2006
HgVacek et al. 2004, Dogan et al. 2005, 2008, Jain et al. 2007a,b, Skrzypek et al. 2009, Leandro et al. 2010, Gaber et al. 2013
AntifungalCPAki et al. 2005
GCShamsipur and Farhadi 2000, 2001
CNTRadi 2001
HgArranz et al. 2003, Ibrahim and El-Enany 2003, El-Desoky 2005
Ag(Hg)Dantas et al. 2010
Au, PtShamsipur and Farhadi 2000, 2001
DiureticsCPRadi 2001
GCRazak 2004
CNTMalode et al. 2012
HgEl-Hefnawy et al. 2004a,b, Hammam 2004, Al-Ghamdi et al. 2008, Ensafi and Hajian 2008a,b
Hypocholesterolemic (estatins)CPAbbar and Nandibewoor 2013
GCOzkan and Uslu 2002, Coruh and Ozkan 2006, Dogan-Topal et al. 2007, 2009a,b
BDDDogan-Topal et al. 2007
HgFernandez Torres et al. 2002, Xu and Song 2004, Yardimci and Ozaltin 2004, Nigovic 2006, Korany et al. 2008, Neves et al. 2008, Nigovic et al. 2008, Nigovic and Pavkovi 2009, Eskiköy et al. 2011
HypoglycemicsGCRadi et al. 2004a,b, El-Ries et al. 2008, Badawy et al. 2010
HgGhoneim et al. 2007
Laxatives (bisacodyl) and stimulants (caffeine)CPMersal 2012
GCOzkan et al. 2004, Uslu et al. 2005a,b,c
CNTSanghavi and Srivastava 2010, Liu et al. 2013
HgBerzas et al. 2000, Rodriguez et al. 2004
AumDaneshgar et al. 2009a,b
Pb filmTyszczuk and Korolczuk 2010

C, unmodified carbon; CP, carbon paste; GC, glassy carbon; BDD, boron-doped diamond; CNT, carbon nanotubes; P, polymer electrodes. The superscript m denotes microelectrodes.

Anestethics, anorexics and anxiolytics have been also studied. The analysis of anxiolytics illustrates the importance of developing screening methods because most anxiolytics are 1,4-benzodiazepines (alprazolam, clonazepam, diazepam, flurazepam, etc.) having a common active unit. Because of their chemical and structural similarity, but not equivalent pharmacological activity, there is need for developing methods for individualizing such compounds in both pharmaceutical formulations and biological fluids. In this regard it would be pertinent to emphasize the significance of mechanistic studies on the voltammetric response (Garrido et al. 2008, Pournaghi-Azar et al. 2010, Altunöz-Erdoğan 2013).

In the case of antidepressants composites based on carbon nanotubes using β-cyclodextrin (Ferancova et al. 2000), graphite-polyurethane (De Toledo et al. 2006) and polymer films (Lakshmi and Vedhi 2013) have been described, but a biosensor based on silica modified with niobium oxide, aluminium and DNA embedded into carbon paste has been recently described (Marco et al. 2013), and fullerenes (Goyal and Singh 2006), mordenite-type zeolite (Arvand et al. 2010), clays (Madhusudana Reddy and Jayarama Reddy 2004), ferrocenedicarboxylic acid (Karimi-Maleh et al. 2010), metal complexes (Shahrokhian et al. 2005, Eleotério et al. 2012), metal nanoparticles (Goyal et al. 2006, Behpour et al. 2010, Stoiljković et al. 2012) have been reported with the determination of antihypertensive pharmaceuticals.

Voltammetric methods for the determination of antiviral, antifungal and diuretic ragents are also listed in Table 3. In this last group, graphite-polyurethane composite (Seman et al. 2008) and ferrocenedicarboxylic acid modified carbon paste electrodes (Karimi-Maleh et al. 2009) have also been used.

Several general aspects dealing with the voltammetric screening of pharmaceuticals can be applied:

  • Electrode modification strategies generally used to promote an electrocatalytic effect on the oxidation or reduction of the analyte. In most cases, synergistic effects appear between different electrode modifiers. This permits enhancement of the sensitivity (and often the selectivity) of the determinations relative to unmodified electrodes, and electrodes modified with each one of the modifiers separately. This is the reason for testing a wide variety of combinations of modifiers (metal nanoparticles, polymers, carbon nanotubes, graphene, etc.) for working electrode preparation.

  • Apart from sensitivity and selectivity, the repeatability and reproducibility of the sensing method and the robustness of the electrode are important aspects to be considered in order to evaluate the analytical performance of the electrochemical method. It is pertinent to note that the environmental protection (“green” sensors), economy and ease of preparation (“one-pot” synthetic procedures) are important factors acting as guidelines for electrode modification (Li et al. 2014).

  • However, much less attention has been devoted to the detailed description of the electrocatalytic pathways involved in voltammetric/amperometric sensing. This obeys, in part, with the essentially operational nature of much of the research involved, focused on the analytical aspects with no need for a detailed knowledge of the involved electrochemical pathway. However, it appears reasonable to put emphasis on the interest of better understanding of the nature of the involved electrochemical processes, in particular for explaining the selectivity effects and the synergistic interactions among different electrode modifiers.

  • Screening of different pharmaceuticals is, in general, obtained from voltammetric signals appearing at sufficiently separated potentials permitting the detection, and even quantification, of the different components. A typical example is the discrimination between paracetamol and its glucuronide and sulfate metabolites (Baranowska and Koper 2009). Figure 2 shows an example of the voltammetric discrimination of 1,4-benzodizepines in the presence of amfepramone using differential pulse voltammetric measurements at the hanging mercury drop electrode (De Carvalho et al. 2010c).

Figure 2 Amperometric response of carbon paste electrode in flux injection analysis of benzocaine with concentration 10; 8; 6; 4; 2; 1×10-5 mol l-1. Carrier solution Briton-Robinson buffer pH 4 containing 80% of methanol (v/v), flow rate 1.0 ml min–1, Detection potential +1.2 V, injected 20 μl of benzocaine solution. From Dejmkova et al. 2011, with permission; copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Figure 2

Amperometric response of carbon paste electrode in flux injection analysis of benzocaine with concentration 10; 8; 6; 4; 2; 1×10-5 mol l-1. Carrier solution Briton-Robinson buffer pH 4 containing 80% of methanol (v/v), flow rate 1.0 ml min–1, Detection potential +1.2 V, injected 20 μl of benzocaine solution. From Dejmkova et al. 2011, with permission; copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Apart from electrode modification, variations of the pH of the media, selection of the electrochemical mode (linear scan vs. pulsed techniques, etc.) and optimization of the electrochemical parameters (scan rate, frequency, etc.) can significantly alter the discriminating ability of a given electrochemical sensor.

Amperometric methods

Amperometric methods for the screening of pharmaceuticals appear frequently associated with flow injection analysis and high performance liquid chromatography. In the case of analgesics: boron-doped diamond electrodes were used for determinations of acetaminophen (Wangfuengkanagul and Chailapakul 2002, Silva et al. 2011), acetylsalicylic acid (Miranda et al. 2012) and codeine (Gimenes et al. 2013). Other determinations involve glassy carbon (Garrido et al. 2000, 2003a,b, Dos Santos et al. 2009, Au (Dos Santos et al. 2008), Cu (Quintino et al. 2002a,b) and unmodified carbon paste electrodes (Marcolino-Júnior et al. 2003). Different types of thiol-modified Au (gold) electrodes (Pedrosa et al. 2006, Nair et al. 2009) were used, among other electrode modifications (Catarino et al. 2002, Cervini and Cavalheiro 2008a,b, Razmi and Harasi 2008, Fanjul-Bolado et al. 2009, Gualandi et al. 2011).

Reported amperometric methods for determining anestethics include screen-printed carbon electrodes (Bergamini et al. 2007), carbon paste (Dejmkova et al. 2011) and multi-walled carbon nanotubes on glassy carbon (Guo et al. 2013). In the case of anxiolytics, determination of buspyrone hydrochloride at multi-walled carbon nanotubes-modified electrode was reported (Cheemalapati et al. 2013).

Antibiotic screening methods are almost unanimously focused on determinations in pharmaceutical formulations. Glassy carbon (Palomeque and Ortíz 2007, Pfaffen et al. 2013), paraffinated graphite (Perantoni et al. 2011), carbon paste (Dejmkova et al. 2013), boron-doped diamond (Wangfuengkanagul et al. 2004) and, particularly, gold (Palaharm et al. 2003, Charoenraks et al. 2004, Codognoto et al. 2010) and screen-printed gold (Masawat and Slater 2007) were reported electrode materials. Electrode modification with metalloporphyrin (Gong et al. 2003), cyclodextrin (Lomillo et al. 2005), carbon nanotubes (Chen et al. 2012), among others (Won et al. 2013), have been reported. Electrode modification strategies are becoming increasingly complicated, thus Lian et al. (2012) have reported a molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites for sensing erythromycin in real samples.

Also, amperometric methods have been applied to the group of antidepressants, represented by the determination of citalopram on glassy carbon (Nouws et al. 2008), and to antihypertensive pharmaceuticals: Atenolol was determined in pharmaceutical formulations using graphite-polyurethane composite (Cervini et al. 2007) and captopril was determined with carbon paste (Marcolino et al. 2009). Determination in urine was reported by Ensafi and Arabzadeh (2012) using glassy carbon electrodes.

Determinations of anti-inflammatory drugs involved boron-doped diamond (Gimenes et al. 2011, 2013), tubular bismuth film (Rodríguez et al. 2007) and glassy carbon (Silva et al. 2007, Stefano et al. 2012), and the amperometric screening of amiloride, chlorthalidone, furosemide and hydrochlorothiazide diuretics in herbal formulations on gold electrodes was reported recently by De Carvalho et al. (2013). Hypocholesterolemic products were determined in pharmaceuticals formulations using unmodified (Neves et al. 2008) and multi-walled carbon nanotubes-modified glassy carbon electrodes (Jalali et al. 2010). Figure 2 shows a typical amperometric graph illustrating the current response of carbon paste electrode in flux injection analysis of benzocaine with injections of the analyte in decreasing concentrations taken from Dejmkova et al. (2013).

Finally, determination of stimulants at boron-doped diamond electrodes (Silva et al. 2011, Júnior et al. 2012) and nafion-modified glassy carbon electrodes(Torres et al. 2014) were proposed. Kan et al. (2012) described a caffeine amperometric sensor consisting of molecularly imprinted polymers associated with carbon nanotubes and gold nanoparticles.

Amperometric sensing involves the application of potential constant steps under conditions of diffusion control of the electrochemical experiment. Stability and repeatability of the measurements are obvious analytical demands often requiring electrode cleaning/regeneration, an aspect that is overlayed in most literature. The linearity of the response is another crucial aspect in amperometric (and voltammetric) measurements. In this regard, it is pertinent to indicate that in most cases, two different linear regimes at relatively low, and relatively high, analyte concentrations are reported. The appearance of two almost linear regimes can be attributed, in principle, to the occurrence of different diffusion regimes, but this would be another aspect requiring more detailed research.

Solid state techniques

Much pharmaceutical products are prepared and commercialized as solid materials usually constituted by a mixture of pharmacologically active components or by a mixture of the active component and a suitable excipient. Analysis of solid materials as well can reduce the time analysis and reduce opportunity for sample alteration or contamination associated with pretreatments involving digestion, dissolution, etc. of the sample. Application of electrochemical techniques for analyzing solid materials was initiated by the introduction of carbon paste electrodes by Adams (1958), and Kuwana et al. (1965). The electrochemical methods for analyzing solids have been notably expanded with the development of the voltammetry of immobilized particles (VIMP) by Scholz et al. (1989a,b), Scholz and Meyer (1998) and Scholz et al. (2005). As recently reviewed by De Carvalho et al. (2010a), this technique provides voltammetric records characterizing the composition of solid materials attached to inert electrodes (typically, paraffin-impregnated graphite electrodes) in contact with suitable electrolytes. The key point is that the solid analytes experience solid-state electrochemical processes where ion insertion/release was coupled to electron transfer so that voltammetric signals were characteristic of the chemical/mineralogical composition of the solid material, thus providing qualitative and quantitative information on the composition of mixtures of solids, mixed phases and oxidation state (Scholz et al. 2005) prompting the use of the voltammetry of microparticles as a method for electrochemical analysis of solids (Doménech-Carbó et al. 2013a).

After the application of the VIMP for screening pesticides (Reddy et al. 1996) and determining cocaine (Komorsky-Lovrić et al. 1999), this technique has been applied by Komorsky-Lovrić et al. (2003) for characterizing local anesthetics and antithusics and other pharmaceutical products (Komorsky-Lovrić and Nigović 2004, 2006, Komorsky-Lovrić et al. 1999). More recently, VIMP has been applied to determine antioxidative properties of tea leaves (Komorsky-Lovrić and Novak 2009, 2011). The VIMP methodology has been used for screening of pharmacologic adulterant classes in herbal formulations (Doménech-Carbó et al. 2013b,c) and antimalarial drugs acting via the hemozoin mechanism (Doménech-Carbó et al. 2013d).

Figure 3 illustrates the application of the VIMP for assessing the presence of adulterants in phytotherapeutic formulations (Doménech-Carbó et al. 2013b). Here, square wave voltammograms for paraffin-impregnated graphite electrodes modified with microsamples of different commercial herbal formulations were compared with the voltammograms for standards of: a) chlorpropamide, glibenclamide, and glimepiride hypoglycemics; b) furosemide (diuretic); c) lorazepam (anxiolytic) and d) femproporex (anorexic), in contact with aqueous acetate buffers. As can be seen in this figure, the different pharmaceuticals provide characteristic voltammetric profiles which permit the identification of such compounds as adulterants in commercial herbal formulations. The relevant point to emphasize is that micro- or, if necessary, nanosamples of the solid material can be transferred by abrasion to the surface of the base graphite electrode where the particles of the different materials display independent voltammetric responses. This highly sensitive methodology avoids interferences often appearing in dissolved samples and contamination and/or alteration associated with sample pretreatment, also allowing for multicomponent analysis.

Figure 3 Square wave voltammograms initiated at +1.05 V in the negative direction for paraffin-impregnated graphite electrodes modified with different samples of herbal formulations (black lines) and standards of adulterants. A) chlorpropamide (C peaks, red), glibenclamide (green) and glimepiride (blue); B) a second sample (red) and furosemide (F peaks, green); C) a second sample (red) and lorazepam (L peaks, green); D) a second sample (red) and femproporex (P peaks, green). Electrolyte 0.25 m HAc/NaAc. Insets: structures of C) lorazepam and D) glibenclamide. Adapted from Doménech-Carbó et al. 2013b, with permission from Elsevier.
Figure 3

Square wave voltammograms initiated at +1.05 V in the negative direction for paraffin-impregnated graphite electrodes modified with different samples of herbal formulations (black lines) and standards of adulterants. A) chlorpropamide (C peaks, red), glibenclamide (green) and glimepiride (blue); B) a second sample (red) and furosemide (F peaks, green); C) a second sample (red) and lorazepam (L peaks, green); D) a second sample (red) and femproporex (P peaks, green). Electrolyte 0.25 m HAc/NaAc. Insets: structures of C) lorazepam and D) glibenclamide. Adapted from Doménech-Carbó et al. 2013b, with permission from Elsevier.

VIMP can also be applied for quantitations. Relative quantitation can be derived from peak current (or peak area) ratios, whereas absolute quantitation can be achieved via standard additions experiments. The application of this technique for determining psychoactive 1,4-enzodiazepine and antidepressants drugs as adulterants in phytotherapeutic formulations has been reported recently (Doménech-Carbó et al. 2013b).

Based on the VIMP methodology, electrode modification with microparticulate deposits of solids can be used for screening analytes in solution on the basis of the modification of the voltammetric signals of the solid modifier. This have will been the case with cysteine determination at copper hexacyanoferrate modified electrodes (Ravi Shankaran and Sriman Narayanan 1998). This methodology has been recently applied in discriminating between dsDNA, ssDNA, G-quadruplex DNA, and nucleosomal DNA (Doménech-Carbó et al. 2014).

Concluding remarks

Screening of pharmaceuticals can be considered as an important analytical target to be achieved by electrochemical methods. The number of voltammetric and amperometric methods for screening compounds of pharmacological interest has experienced an explosive growth in the last years due to the development of a plethora of modified electrodes, in particular involving a wide variety of combinations of nanostructured materials, and analytical strategies. It would be interesting to combine applied research with fundamental research in order to better understand the electrochemical mechanisms involved in electrochemical recognition processes. Apart from conventional solution electrochemistry, solid state voltammetric techniques could also be applied.


Corresponding author: Antonio Doménech-Carbó, Departament de Química Analítica, Universitat de València, Dr. Moliner, 50, 46100, Burjassot (València), Spain, e-mail:

About the authors

Antonio Doménech-Carbó

Antonio Doménech-Carbó is a Professor at the Department of Analytical Chemistry of the University of Valencia. His research is focused on solid state electrochemistry. He has published more than 150 articles, including one IUPAC report, and several books. Currently, he is the topical editor of Journal of Solid State Electrochemistry.

Leandro M. de Carvalho

Leandro M. de Carvalho is currently a Professor of Analytical Chemistry at Federal University of Santa Maria (UFSM) in Santa Maria, Brazil, and a research scientist of the National Council of Scientific and Technological Development (CNPq). He has published over 100 articles on the determination of metals, metalloids, and drugs in samples of clinical and environmental relevance employing capillary electrophoretic, chromatographic and electroanalytical methods.

Mariele Martini

Mariele Martini obtained her PhD at Federal University of Santa Maria (UFSM) in Santa Maria, Brazil. Her research activities have been focused on the development of analytical methods for the determination of drugs in pharmaceuticals formulations by using capillary electrophoretic, chromatographic, and electroanalytical methods.

Gerardo Cebrián-Torrejón

Gerardo Cebrián-Torrejón studied Pharmacy and Biochemistry at the Universities of Valencia and Leeds and obtained his PhD at the University Paris 11. Currently, he is postdoctoral researcher at the University of São Paulo. His research interests focus on natural products, in particular total synthesis, pharmaceutical chemistry and more recently electrochemistry.

Acknowledgments

Financial support from the Spanish MEC Project CTQ2011-28079-CO3-02, which is also supported with ERDF funds, is gratefully acknowledged. The authors also wish to acknowledge fellowships given by the Brazilian foundation CNPq.

References

Abbar, J. C.; Nandibewoor, S. T. Voltammetric oxidation and determination of atorvastatin based on the enhancement effect of cetyltrimethyl ammonium bromide at a carbon paste electrode. Colloid Surface B 2013, 106, 158–164.Search in Google Scholar

Abbaspour, R.; Mirzajani, R. Electrochemical monitoring of piroxicam in different pharmaceutical forms with multi-walled carbon nanotubes paste electrode. J. Pharm. Biomed. Anal. 2007, 44, 41–48.Search in Google Scholar

Abbaspour, A.; Dehghani, E.; Noori, A. Cyclodextrin host-guest recognition approach for simultaneous quantification and voltammetric studies of levodopa and carbidopa in pharmaceutical products. Electroanal. 2011, 3, 2878–2887.Search in Google Scholar

Abdel Ghani, N. T.; El-Reis, M. A.; El-Shall, M. A. Validated polarographic methods for the determination of certain antibacterial drugs. Anal. Sci. 2007, 23, 1053–1058.Search in Google Scholar

Abdellaoui, S.; Bekhouche, M.; Noiriel, A.; Henkens, R.; Bonaventura, C.; Blum, L. J.; Doumèche, B. Rapid electrochemical screening of NAD-dependent dehydrogenases in a 96-well format. Chem. Commun. 2013, 49, 5781–5783.Search in Google Scholar

Abo El-Maali, N.; Osman, A. H.; Aly, A. A. M.; Al-Hazmi, G. A. A. Voltammetric analysis of Cu (II), Cd (II) and Zn (II) complexes and their cyclic voltammetry with several cephalosporin antibiotics. Bioelectrochem. 2005, 65, 95–104.Search in Google Scholar

Adams, R. N. Carbon paste electrodes. Anal. Chem. 1958, 30, 1576.Search in Google Scholar

Adhoum, N.; Manser, L.; Toumi, M.; Boujlel, K. Determination of naproxen in pharmaceuticals by differential pulse voltammetry at a platinum electrode. Anal. Chim. Acta. 2003, 495, 69–75.Search in Google Scholar

Ağin, F.; Karadaş, N.; Uslu, B.; Özkan, S. A. Voltammetric and RP-LC assay for the antidepressant drug mirtazapine: a validated method for the pharmaceutical dosage form. Maced. J. Chem. Chem. En. 2013, 32, 41–55.Search in Google Scholar

Aki, C.; Yilmaz, S.; Dilgin, Y.; Yagmur, S.; Suren, E. Electrochemical study of natamycin – analytical application to pharmaceutical dosage forms by differential pulse voltammetry. Pharmazie 2005, 60, 747–750.Search in Google Scholar

Alarfaj, N. A. Square-wave adsorptive stripping voltammetric determination of antihypertensive agent telmisartan in tablets and its application to human plasma. J. Anal. Chem. 2013, 68, 335–340.Search in Google Scholar

Aleksic, M.; Milovanovic, L.; Kapetanovic, V. Adsorptive stripping voltammetric determination of cefetamet in human urine. J. Pharm. Biomed. Anal. 2003, 32, 957–966.Search in Google Scholar

Aleksic, M.; Ilic, M.; Kapetanovic, V. Adsorptive properties of cefpodoxime proxetil as a tool for a new method of its determination in urine. J. Pharm. Biomed. Anal. 2004, 36, 899–903.Search in Google Scholar

Al-Ghamdi, A. F. A study of adsorptive stripping voltammetric behavior of ofloxacine antibiotic in the presence of Fe(III) and its determination in tablets and biological fluids. J. Saudi Chem. Soc. 2009, 13, 235–241.Search in Google Scholar

Al-Ghamdi, A. H.; Al-Shadokhy, M. A.; Al-Warthan, A. A. Electrochemical determination of Cephalothin antibiotic by adsorptive stripping voltammetric technique. J. Pharm. Biomed. Anal. 2004, 35, 1001–1009.Search in Google Scholar

Al-Ghamdi, A. H.; Al-Ghamdi, A. F.; Al-Omar, M. A. Electrochemical studies and square-wave adsorptive stripping voltammetry of spironolactone drug. Anal. Lett. 2008, 41, 90–103.Search in Google Scholar

Al-Ghamdi, A.H.; Al-Ghamdi, A.F.; Alomar, M. A. A study of stripping voltammetric behaviour of cefadroxil antibiotic in the presence of Cu (II) and its determination in pharmaceutical formulation. Portugaliae Electrochim. Acta. 2009, 27, 645–655.Search in Google Scholar

Ali, A. M. M.; Farghaly, O. A.; Ghandour, M. A. Determination of thiopentone sodium in aqueous and biological media by cathodic stripping voltammetry. Anal. Chim. Acta. 2000, 412, 99–110.Search in Google Scholar

Al-Majed, A. A.; Bela, F.; Abadi, A.; Al Obaid, A. M. The voltammetric study and determination of ramipril in dosage forms and biological fluids. Farmaco 2000, 55, 233–238.Search in Google Scholar

Alonso, M. A.; Sanlorente, S.; Sarabia, L. A.; Arcos, M. J. Optimization of the experimental parameters in the determination of rifamycin SV by adsorptive stripping voltammetry. Anal. Chim. Acta. 2000, 405, 123–133.Search in Google Scholar

Alonso Lomillo, M. A.; Dominguez Renedo, O.; Arcos Martinez, M. J. Optimization of the experimental parameters in the determination of rifampicin by adsorptive stripping voltammetry. Electroanal. 2002, 14, 634–637.Search in Google Scholar

Altiokka, G. Voltammetric determination of doxazosin in tablets using rotating platinum electrode. J. Pharm. Biomed. Anal. 2001, 25, 387–391.Search in Google Scholar

Altinoz, S.; Nemutlu, E. Polarographic behaviour of meloxicam and its determination in tablet preparations and spiked plasma. Farmaco 2002, 57, 463–468.10.1016/S0014-827X(02)01239-9Search in Google Scholar

Altun, Y.; Dogan, B.; Ozkan, S. A.; Uslu, B. Development and validation of voltammetric techniques for nabumetone in pharmaceutical dosage form, human serum and urine. Acta Chim. Slov. 2007, 54, 287–294.Search in Google Scholar

Altunöz-Erdoğan, D.; Erk, N.; Kılıç, E. Voltammetric methods of reboxetine analysis and the mechanism of its electrode reactions. Cent. Eur. J. Chem. 2013, 11, 706–716.Search in Google Scholar

Amiri, M.; Pakdel, Z.; Bezaatpour, A.; Shahrokhian, S. Electrocatalytic determination of sumatriptan on the surface of carbon-paste electrode modified with a composite of cobalt/Schiff-base complex and carbon nanotube. Bioelectrochem. 2011, 81, 81–85.Search in Google Scholar

Ammida, N. H. S.; Volpe, G.; Draisci, R.; Deli Qnadri, F.; Palleshi, L.; Palleshi, G. Analysis of erythromycin and tylosin in bovine muscle using disposable screen printed electrodes. Analyst 2004, 129, 15–19.Search in Google Scholar

Andlauer, W.; Héritier, J. Rapid electrochemical screening of antioxidant capacity (RESAC). Food Chem. 2011, 125, 1517–1520.Search in Google Scholar

Andrade, L. S.; Rocha-Filho, R. C.; Cass, Q. B.; Fatibello-Filho, O. Simultaneous differential pulse voltammetric determination of sulfamethoxazole and trimethoprim on a boron-doped diamond electrode. Electroanal. 2009, 21, 1475–1480.Search in Google Scholar

Ardelean, M.; Manea, F.; Pode, R. Electrochemical detection of fluoxetine using a boron-doped diamond electrode. Int. J. Pharm. Pharm. Sci. 2013, 5, 318–322.Search in Google Scholar

Arguelho, M. L.; Zanoni, M. V. B.; Stradiotto, N. R. Electrochemical oxidation and voltammetric determination of the antimalaria drug primaquine. Anal. Lett. 2005, 38, 1415–1425.Search in Google Scholar

Arguelho, M. L. M. P.; Andrade, J. F.; Stradiotto, N. R. Electrochemical study of hydroxychloroquine and its determination in plaquenil by differential pulse voltammetry. J. Pharm. Biomed. Anal. 2003, 32, 269–275.Search in Google Scholar

Armijo, F.; Torres, I.; Tapia, R.; Molero, L.; Antilén, M.; Del Rñio, R.; Del Valle, M. A.; Ramírez, G. Captopril electrochemical oxidation on fluorine-doped SnO2 electrodes and their determination in pharmaceutical preparations. Electroanal. 2010, 22, 2269–2276.Search in Google Scholar

Arranz, A.; Moreda, J. M.; Arranz, J. F. Anodic stripping voltammetric assay for the determination of prazosin at carbon paste electrode. Quim. Anal. 2000a, 19, 31–37.Search in Google Scholar

Arranz, A.; Moreda, J. F.; Arranz, J. F. Preconcentration and voltammetric determination of the antihypertensive doxazosin on a C8 modified carbon paste electrode. Microchim. Acta. 2000b, 134, 69–73.Search in Google Scholar

Arranz, P.; Arranz, A.; Moreda, J. M.; Cid, A.; Arranz, J. F. Stripping voltammetric and polarographic techniques for the determination of anti-fungal ketoconazole on the mercury electrode. J. Pharm. Biomed. Anal. 2003, 33, 589–596.Search in Google Scholar

Arvand, M.; Fallahi, P. Voltammetric determination of rivastigmine in pharmaceutical and biological samples using molecularly imprinted polymer modified carbon paste electrode. Sensor Actuat. B 2013, 188, 797–806.10.1016/j.snb.2013.07.092Search in Google Scholar

Arvand, M.; Gholizadeh, T. M. Simultaneous voltammetric determination of tyrosine and paracetamol using a carbon nanotube-graphene nanosheet nanocomposite modified electrode in human blood serum and pharmaceuticals. Colloid Surf. B 2013, 103, 84–93.10.1016/j.colsurfb.2012.10.024Search in Google Scholar PubMed

Arvand, M.; Vaziri, M.; Vejdani, M. Electrochemical study of atenolol at a carbon paste electrode modified with mordenite type zeolite. Mat. Sci. Eng. C 2010, 30, 709–714.Search in Google Scholar

Arvand, M.; Ansari, R.; Heydari, L. Electrocatalytic oxidation and differential pulse voltammetric determination of sulfamethoxazole using carbon nanotube paste electrode. Mat. Sci. Eng. C 2011, 31, 1819–1825.Search in Google Scholar

Arvand, M.; Gholizadeh, T. M.; Zanjanchi, M. A. MWCNTs/Cu(OH)2 nanoparticles/IL nanocomposite modified glassy carbon electrode as a voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac. Mat. Sci. Eng. C 2012, 32, 1682–1689.Search in Google Scholar

Atta, N. F.; El-Kady, M. F. Poly (3-methylthiophene)/palladium sub-micro-modified sensor electrode. Part II: voltammetric and EIS studies, and analysis of catecholamine neurotransmitters, ascorbic acid and acetaminophen. Talanta 2009, 79, 6393–647.Search in Google Scholar

Atta, N. F.; Galal, A.; Azab, S. M. Determination of morphine at gold nanoparticles/Nafion® carbon paste modified sensor electrode. Analyst. 2011a, 136, 4682–4691.Search in Google Scholar

Atta, N. F.; Galal, A.; AZab, S. M. Electrochemical determination of paracetamol using gold nanoparticles – application in tablets and human fluids. Int. J. Electrochem. Sci. 2011b, 6, 5082–5096.Search in Google Scholar

Attia, A. K. Determination of antihypertensive drug moexipril hydrochloride based on the enhancement effect of sodium dodecyl sulfate at carbon paste electrode. Talanta 2010, 81, 25–29.10.1016/j.talanta.2009.11.031Search in Google Scholar PubMed

Attia, A. K.; Saber, R. A. Differential pulse voltammetric assay of antibacterial drug Doxycycline hyclate. Anal. Bioanal. Electrochem. 2011, 3, 291–301.Search in Google Scholar

Babael, A.; Garrett, D. J.; Downard, A. J. Selective simultaneous determination of paracetamol and uric acid using a glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite. Electroanal. 2011, 23, 417–423.Search in Google Scholar

Badawy, W. A.; El-Ries, M. A.; Inas M.; Mahdi, I. M. Electrochemical determination of some antidiabetic drugs for type 2 diabetic patients. Talanta 2010, 82, 106–112.Search in Google Scholar

Balaji, K.; Reddy, G. V. R.; Reddy, T. M.; Reddy, S. J. Determination of prednisolone, dexamethasone and hydrocortisone in pharmaceutical formulations and biological fluid samples by voltammetric techniques using β-cyclodextrin modified carbon paste electrode. Afr. J. Pharm. Pharmacol. 2008, 2, 157–166.Search in Google Scholar

Baranowska, I.; Koper, M. The preliminary studies of electrochemical behavior of paracetamol and its metabolites on glassy carbon electrode by voltammetric methods. Electroanal. 2009, 21, 1194–1199.Search in Google Scholar

Barbosa, J. A. M.; Trindade, G. M. A.; Ferreira, V. S. Cathodic stripping voltammetry determination of Ceftiofur antibiotic in formulations and bovine serum. Anal. Lett. 2006, 39, 1143–1158.Search in Google Scholar

Behpour, M.; Honarmand, E.; Ghoreishi, S. M. Nanogold-modified carbon paste electrode for the determination of atenolol in pharmaceutical formulations and urine by voltammetric methods. Bull. Kor. Chem. Soc. 2010, 31, 845–849.Search in Google Scholar

Belal, F.; Abdine, H.; Zoman, N. Voltammetric determination of nilvadipine in dosage forms and spiked human urine. J. Pharm. Biomed. Anal. 2001a, 26, 585–592.Search in Google Scholar

Belal, F.; Al-Ashry, S. M.; El-Kerdawy, M. M.; El-Wasseef, D. R. Voltametric Determination of vancomycin in dosage forms through treatment with nitrous acid. Arzneimittel-Forsch. 2001b, 51, 763–772.Search in Google Scholar

Belal, F.; Al-Mejed, A.; Brahim, K. E. E.; Khalil, N. Y. Voltammetric determination of josamycin (a macrolide antibiotic) in dosage forms and spiked human urine. J. Pharm. Biomed. Anal. 2002a, 30, 705–713.Search in Google Scholar

Belal, F.; Abdine, H.; Zoman, N. Anodic polarographic determination of nilvadipine in dosage forms and spiked human urine. Mikrochim. Acta. 2002b, 140, 21–27.Search in Google Scholar

Belal, F.; Al-Majed, A.; Julkhuf, S. Voltammetric determination of isradipine in dosage forms and spiked human plasma and urine. J. Pharm. Biomed. Anal. 2003, 31, 989–998.Search in Google Scholar

Beltagi, A. M. Determination of the antibiotic drug pefloxacin in bulk form, tablets and human serum using square wave cathodic adsorptive stripping voltammetry. J. Pharm. Biomed. Anal. 2003, 31, 1079–1088.Search in Google Scholar

Beltagi, A. M. Utilization of a montmorillonite-Ca-modified carbon paste electrode for the stripping voltammetric determination of diflunisal in its pharmaceutical formulations and human blood. J. Appl. Electrochem. 2009, 39, 2375–2384.Search in Google Scholar

Beltagi, A. M.; Ghoneim, M. M.; Radi, A. Electrochemical reduction of meloxicam at mercury electrode and its determination in tablets. J. Pharm. Biomed. Anal. 2002, 27, 795–801.Search in Google Scholar

Beltagi, A. M. R.; El-Attar, M. A.; Ghoneim, E. M. Adsorptive stripping voltammetric determination of the anti-inflammatory drug tolmetin in bulk form, pharmaceutical formulation and human serum. Cent. Eur. J. Chem. 2007a, 5, 835–845.Search in Google Scholar

Beltagi, A. M.; Abdallah, O. M.; Ghoneim, M. M. Determination of piroxicam in pharmaceutical formulations and human serum by square-wave stripping voltammetry. Chem. Anal.-Warsaw 2007b, 52, 387–398.Search in Google Scholar

Bergamini, M. F.; Teixeira, M. F. S.; Dockal, E. R.; Bocchi, N.; Cavalheiro, T. G. E. Evaluation of different voltammetric techniques in the determination of amoxicillin using a carbon paste electrode modified with [N, N′ –ethylenebis(salicylideneaminato)] oxovanadium(IV). J. Electrochem. Soc. 2006, 153, E94–E98.Search in Google Scholar

Bergamini, M. F.; Santos, A. L.; Stradiotto, N. R.; Zanoni, M. V. B. Flow injection amperometric determination of procaine in pharmaceutical formulation using a screen-printed carbon electrode. J. Pharm. Biomed. Anal. 2007, 43, 315–319.Search in Google Scholar

Bergamini, M. F.; Santos, D. P.; Zanoni, M. V. B. Determination of isoniazid in human urine using screen-printed carbon electrode modified with poly-l-histidine. Bioelectrochem. 2010, 77, 133–138.Search in Google Scholar

Berzas, J. J.; Rodriguez, J.; Castaneda, G.; Villasenor, M. J. Voltammetric behavior of sildenafil citrate (Viagra) using square wave and adsorptive stripping square wave techniques: determination in pharmaceutical products. Anal. Chim. Acta. 2000, 417, 143–148.Search in Google Scholar

Billova, S.; Kizek, R.; Jelen, F.; Novotna, P. Square-wave voltammetric determination of cefoperazone in a bacterial culture, pharmaceutical drug, milk, and urine. Anal. Bioanal. Chem. 2003, 377, 362–369.Search in Google Scholar

Bonanni, A.; del Valle, M. Use of nanomaterials for impedimetric DNA sensors: A review. Anal. Chim. Acta 2010, 678, 7–17.10.1016/j.aca.2010.08.022Search in Google Scholar PubMed

Borowiec, J., Wei, L., Zhu, L., Zhang, J. Multi-walled carbon nanotubes modified glassy carbon electrode for sensitive determination of ketoconazole. Anal. Methods 2012, 4, 444–448.10.1039/c2ay05615aSearch in Google Scholar

Brahman, P. K.; Dar, R. A.; Pitre, K. S. Conducting polymer film based electrochemical sensor for the determination of amoxicillin in micellar media. Sensor Actuat. B 2013, 176, 307–314.Search in Google Scholar

Bui, M.-P. N.; Li, C. A.; Han, K. N.; Pham, X.-H.; Seong, G. H. Determination of acetaminophen by electrochemical co-deposition of glutamic acid and gold nanoparticles. Sensor Actuat. B 2012, 174, 318–324.Search in Google Scholar

Carapuca, H. M.; Cabral, D. J.; Rocha, L. S. Adsorptive stripping voltammetry of trimethoprim: mechanistic studies and application to the fast determination in pharmaceutical suspensions. J. Pharm. Biomed. Anal. 2005, 38, 364–369.Search in Google Scholar

Cardoso, C. E.; Faria, P. A. M.; Martins, R. O. R.; Aucelio, E. Q. Square-wave and differential-pulse adsorptive stripping voltammetry for ultra-trace determination of the anti-angiogenic drug thalidomide in the presence of concomitant drugs. Anal. Lett. 2005, 38, 1259–1274.Search in Google Scholar

Catarino, R. I. L.; Garcia, M. B. Q.; Lapa, R. A. S.; Lima, J. L. F. C.; Barrado, E. Sequential determination of salicylic and acetylsalicylic acids by amperometric multisite detection flow injection analysis. J. AOAC Int. 2002, 85, 1253–1259.Search in Google Scholar

Cervini, P.; Ramos, L.A.; Cavalheiro, E.T.G. Determination of atenolol at a graphite-polyurethane composite electrode. Talanta 2007, 72, 206–209.Search in Google Scholar

Cervini, P.; Cavalheiro, E. T. G. Determination of paracetamol at a graphite-polyurethane composite electrode as an amperometric flow detector. J. Braz. Chem. Soc. 2008a, 19, 836–841.Search in Google Scholar

Cervini, P.; Cavalheiro, E. T. G. Graphite-polyurethane composite electrode as an amperometric flow detector in the determination of atenolol. Anal. Lett. 2008b, 41, 1867–1877.Search in Google Scholar

Charoenraks, T.; Palaharn, S.; Grudpan, K.; Siangproh, W.; Chailapakul, O. Flow injection analysis of doxycycline or chlortetracycline in pharmaceutical formulations with pulsed amperometric detection. Talanta 2004, 64, 1247–1252.Search in Google Scholar

Cheemalapati, S.; Palanisamy, E.; Chen, S-M. A simple and sensitive electroanalytical determination of anxiolytic buspirone hydrochloride drug based on multiwalled carbon nanotubes modified electrode. J. Appl. Electrochem. 2013, DOI 10.1007/s10800-013-0637-z.10.1007/s10800-013-0637-zSearch in Google Scholar

Chen, W.-C.; Unnikrishnan, B.; Chen, S.-M. Electrochemical oxidation and amperometric determination of isoniazid at functionalized multiwalled carbon nanotube modified electrode. Int. J. Electrochem. Sci. 2012, 7, 9138–9149.Search in Google Scholar

Clutton-Brock, T. H.; Green, D.; Hiraiwa-Hasegawa, M.; Albon, S. D. Passing the buck: resource defense, lek breeding and mate choice in fallow deer. Behav. Ecol. Sociobiol. 1988, 23, 281–296.Search in Google Scholar

Codognoto, L.; Winter, E.; Doretto, M. K.; Monteiro, G. B.; Rath, S. Electroanalytical performance of self-assembled monolayer gold electrode for chloramphenicol determination. Microchim. Acta 2010, 169, 345–351.Search in Google Scholar

Coruh, O.; Ozkan, S. A. Determination of the antihyperlipidemic simvastatin by various voltammetric techniques in tablets and serum samples. Pharmazie 2006, 61, 285–290.Search in Google Scholar

Da Silva, R. A. B.; Gimenes, D. T.; Tormin, T. F.; Munoz, R. A. A.; Richter, E. M. Batch injection analysis with amperometric detection: application for simultaneous analysis using a single working electrode. Anal. Methods 2011, 3, 2804–2808.Search in Google Scholar

Daneshgar, P.; Norouzi, P.; Dousty, F.; Ganjali, M. R.; Moosavi-Movahedi, A. A. Dysprosium hydroxide nanowires modified electrode for determination of rifampicin drug in human urine and capsules by adsorptive square wave voltammetry. Curr. Pharm. Anal. 2009a, 5, 246–255.Search in Google Scholar

Daneshgar, P.; Norouzi, P.; Ganjali, M. R. adsorptive square-wave voltammetry. Sensor Actuat. B 2009b, 136, 66–72.10.1016/j.snb.2008.10.009Search in Google Scholar

Dantas, A. N. S.; De Souza, D.; Lima, J. E. S.; Lima-Neto, P.; Correia, A. N. Voltammetric determination of ketoconazole using a polished silver solid amalgam electrode. Electrochim. Acta. 2010, 55, 9083–9089.Search in Google Scholar

De Abreu, F.; Ferraz, P. A. de L.; Goulart, M. O. F. Some applications of electrochemistry in biomedical chemistry. emphasis on the correlation of electrochemical and bioactive properties. J. Braz. Chem. Soc. 2002, 13, 19–35.Search in Google Scholar

De Carvalho, L. M.; Do Nascimento, P. C.; Bohrer, D.; Correia, D.; De Bairros, A. V.; Pomblum, V. J.; Pomblum, S. G. Voltammetric behavior of amfepramone (diethylpropion) at the hanging mercury drop electrode and its analytical determination in pharmaceutical formulations. J. Braz. Chem. Soc. 2007, 18, 789–796.Search in Google Scholar

De Carvalho, L. M.; Hilgemann, M.; Spengler, C.; do Nascimento, P. C.; Bohrer, D. Voltammetry of immobilized microparticles: fundamentals and analytical applications. Quím. Nova 2010a, 33, 1765–1772.10.1590/S0100-40422010000800025Search in Google Scholar

De Carvalho, L. M.; Martini, M.; Moreira, A. P.; Garcia, S. G.; do Nascimento, P. C.; Bohrer, D. Determination of synthetic pharmaceuticals in phytotherapeutics by capillary zone electrophoresis with contactless conductivity detection (CZE-C4D). Microchem. J. 2010b, 96, 114–119.Search in Google Scholar

De Carvalho, L. M.; Correia, D.; Garcia, S. C.; De Bairros, A. V.; Do Nascimento, P. C.; Bohrer, D. A new method for the simultaneous determination of 1,4-benzodiazepines and amfepramone as adulterants in phytotherapeutic formulations by voltammetry. Forensic Sci. Int. 2010c, 202, 75–81.Search in Google Scholar

De Carvalho, L. M.; Viana, C.; Moreira, A. P. L.; do Nascimento, P. C.; Bohrer, D.; Motta, M. J.; da Silveira, G. D. Pulsed amperometric detection (PAD) of diuretic drugs in herbal formulations using a gold electrode following ion-pair chromatographic separation. J. Solid State Electrochem. 2013, 17, 1601–1608.Search in Google Scholar

De Lima-Neto, P.; Correia, A. N.; Portela, R. R.; Juliao, M. S.; Linhares-Junior, G. F.; De Lima, J. E. S. Square wave voltammetric determination of nitrofurantoin in pharmaceutical formulations on highly boron-doped diamond electrodes at different boron-doping contents. Talanta 2010, 80, 1730–1736.Search in Google Scholar

De Souza Gil, E.; Rodrigues de Melo, G. Electrochemical biosensors in pharmaceutical analysis. Braz. J. Pharm. Sci. 2010, 46, 375–391.Search in Google Scholar

De Toledo, R. A.; Santos, M. C.; Honório, K. M.; Da Silva, A. B. F.; Cavalheiro, E. T. G.; Mazo, L. H. Use of graphite polyurethane composite electrode for imipramine oxidation – mechanism proposal and electroanalytical determination. Anal. Lett. 2006, 39, 507–520.Search in Google Scholar

Dejmkova, H.; Vokalova, V.; Zima, J.; Barek, J. Determination of benzocaine using HPLC and FIA with amperometric detection on a carbon paste electrode. Electroanal. 2011, 23, 662–666.Search in Google Scholar

Dejmkova, H.; Mikes, M.; Barek, J.; Zima, J. Determination of sulfamethizole using voltammetry and amperometry on carbon paste. Electrode. Electroanal. 2013, 25, 189–194.Search in Google Scholar

Demircigil, B. T.; Uslu, B.; Ozkan, Y.; Ozkan, S. A.; Senturk, Z. Voltammetric oxidation of ambroxol and application to its determination in pharmaceuticals and in drug dissolution studies. Electroanal. 2003, 15, 230–234.Search in Google Scholar

Desimoni, E.; Brunetti, B. Glassy carbon electrodes film-modified with acidic functionalities. A review. Electroanal. 2012, 24, 1481–1500.Search in Google Scholar

Dogan, B.; Ozkan, S. A. Electrochemical behavior of carvedilol and its adsorptive stripping determination in dosage forms and biological fluids. Electroanal. 2005, 17, 2074–2083.Search in Google Scholar

Dogan, B.; Uslu, B.; Ozkan, S. A. Anodic adsorptive stripping voltammetry of the antihypertensive drug candesartan cilexetil at a glassy carbon electrode. Pharmazie 2004, 59, 840–844.Search in Google Scholar

Dogan, B.; Uslu, B.; Suzen, S.; Ozkan, S. A. Electrochemical evaluation of nucleoside analogue lamivudine in pharmaceutical dosage forms and human serum. Electroanal. 2005, 17, 1886–1894.Search in Google Scholar

Dogan, B.; Canbaz, D.; Ozkan, S. A.; Uslu, B. Electrochemical methods for determination of the protease inhibitor indinavir sulfate in pharmaceuticals and human serum. Pharmazie 2006, 61, 409–413.Search in Google Scholar

Dogan, B.; Tuncel, S.; Uslu, B.; Ozkan, S. A. Selective electrochemical behavior of highly conductive boron-doped diamond electrodes for fluvastatin sodium oxidation. Diam. Relat. Mater. 2007, 16, 1695–1704.Search in Google Scholar

Dogan, B.; Uslu, B.; Ozkan, S. A.; Zuman, P. Electrochemical determination of HIV drug abacavir based on its reduction. Anal. Chem. 2008, 80, 209–216.Search in Google Scholar

Dogan, B.; Golcu, A.; Dolaz, M.; Ozkan, S. A. Electrochemical behaviour of the bactericidal cefoperazone and its selective voltammetric determination in pharmaceutical dosage forms and human serum. Curr. Pharm. Anal. 2009a, 5, 179–189.Search in Google Scholar

Dogan, B.; Golcu, A.; Dolaz, M.; Ozkan, S. A. Anodic oxidation of antibacterial drug cefotaxime sodium and its square wave and differential pulse voltammetric determination in pharmaceuticals and human serum. Curr. Pharm. Anal. 2009b, 5, 197–207.Search in Google Scholar

Dogan-Topal, B. Electrooxidative behavior and determination of trifluoperazine at multiwalled carbon nanotube-modified glassy carbon electrode. J. Solid State Electrochem. 2013, 17, 1059–1063.Search in Google Scholar

Dogan-Topal, B.; Uslu, B.; Ozkan, S. A. Investigation of electrochemical behavior of lipid lowering agent atorvastatin calcium in aqueous media and its determination from pharmaceutical dosage forms and biological fluids using boron-doped diamond and glassy carbon electrodes. Comb. Chem. High T. Scr. 2007, 10, 571–582.Search in Google Scholar

Dogan-Topal, B.; Bozal, B.; Demircigil, B. T.; Uslu, B.; Ozkan, S. A. Electroanalytical studies and simultaneous determination of amlodipine besylate and atorvastatine calcium in binary mixtures using first derivative of the ratio-voltammetric methods. Electroanal. 2009a, 21, 2427–2439.Search in Google Scholar

Dogan-Topal, B.; Uslu, B.; Ozkan, S. A. Voltammetric studies on the HIV-1 inhibitory drug Efavirenz: the interaction between dsDNA and drug using electrochemical DNA biosensor and adsorptive stripping voltammetric determination on disposable pencil graphite electrode. Biosens. Bioelectron. 2009b, 24, 2358–2364.Search in Google Scholar

Dogan-Topal, B.; Bozal-Palabıyık, B.; Uslu, B.; Ozkan, S. A. Multi-walled carbon nanotube modified glassy carbon electrode as a voltammetric nanosensor for the sensitive determination of anti-viral drug valganciclovir in pharmaceuticals. Sensor Actuat. B 2013, 177, 841–847.Search in Google Scholar

Doménech-Carbó, A. Electrochemistry of Porous Materials; Taylor & Francis: Boca Raton, 2010.10.1201/9781439806340Search in Google Scholar

Doménech-Carbó, A.; Labuda, J.; Scholz, F. Electroanalytical chemistry for the analysis of solids: characterization and classification (IUPAC Technical Report). Pure Appl. Chem. 2013a, 85, 609–631.Search in Google Scholar

Doménech-Carbó, A.; Martini, M.; de Carvalho, L. M.; Doménech-Carbó, M. T.; Silva, M. Screening of pharmacologic adulterant classes in herbal formulations using voltammetry of microparticles. J. Pharm. Biomed. Anal. 2013b, 74, 194–204.Search in Google Scholar

Doménech-Carbó, A.; Martini, M.; de Carvalho, L. M.; Viana, C.; Doménech-Carbó, M. T.; Silva, M. Standard additions-dilution method for absolute quantification in voltammetry of microparticles. Application for determining psychoactive 1,4-benzodiazepine and antidepressants drugs as adulterants in phytotherapeutic formulations. J. Pharm. Biomed. Anal. 2013c, 80,159–163.Search in Google Scholar

Doménech-Carbó, A.; Maciuk, A.; Figadère, B.; Poupon, E.; Cebrián-Torrejón, G. Solid state electrochemical assay of heme-binding molecules for screening of drugs with antimalarial potential. Anal. Chem. 2013d, 85, 4014–4021.Search in Google Scholar

Doménech-Carbó, A.; Cebrián-Torrejón, G.; De Miguel, L.; Tordera, V.; Rodrigues, D.; Assad-Kahn, S.; Fournet, A.; Figadère, B.; Vázquez, R.; Poupon, E. dsDNA, ssDNA, G-quadruplex DNA, and nucleosomal DNA electrochemical screening using canthin-6-one alkaloid-modified electrodes. Electrochim. Acta 2014, 115, 546–552.Search in Google Scholar

Dos Santos, M. M. C.; Familo, V.; Gonçalves, M. L. S. Square-wave voltammetric techniques for determination of psychoactive 1,4-benzodiazepine drugs. Anal. Bioanal. Chem. 2002, 374, 1074–1081.Search in Google Scholar

Dos Santos, W. T. P.; De Almeida, E. G. N.; Ferreira, H. E. A.; Gimenes, D. T.; Richter, E. M. Simultaneous flow injection analysis of paracetamol and ascorbic acid with multiple pulse amperometric detection. Electroanal. 2008, 20, 1878–1883.Search in Google Scholar

Dos Santos, W. T. P.; Gimenes, D. T.; De Almeida, E. G. N.; Eiras, S. P.; Albuquerque, Y. D. T.; Richter, E. M. Simple flow injection amperometric system for simultaneous determination of dipyrone and paracetamol in pharmaceutical formulations. J. Braz. Chem. Soc. 2009, 20, 1249–1255.Search in Google Scholar

Dumitrescu, V.; David, V.; Pavel, A. Determinarea polarografica a nifedipinului cloramfenicolului. Rev. Chim. 2001, 52, 317–320.Search in Google Scholar

Durst, R. A.; Baumner, A. J.; Murray, R. W.; Buck, R. P.; Andrieux, C. P. Chemically modified electrodes: recommended terminology and definitions (IUPAC Recommendations 1997). Pure Appl. Chem. 1997, 69, 1317–1324.Search in Google Scholar

El-Desoky, H. S. A validated voltammetric procedure for quantification of the antifungal drug griseofulvin in bulk form, tablets, and biological fluids at a mercury electrode. Anal. Lett. 2005, 38, 1783–1789.Search in Google Scholar

El-Desoky, H. S. Stability indicating square-wave stripping voltammetric method for determination of gatifloxacin in pharmaceutical formulation and human blood. J. Braz. Chem. Soc. 2009, 20, 1790–1799.Search in Google Scholar

El-Desoky, H. S.; Ghoneim, E. M.; Ghoneim, M. M. Voltammetric behavior and assay of the antibiotic drug cefazolin sodium in bulk form and pharmaceutical formulation at a mercury electrode. J. Pharm. Biomed. Anal. 2005, 39, 1051–1056.Search in Google Scholar

El-Desoky, H. S.; Ghoneim, M. M.; Habazy, A. D. Voltammetry of irbesartan drug in pharmaceutical formulations and human blood: quantification and pharmacokinetic studies. J. Braz. Chem. Soc. 2011, 22, 239–247.Search in Google Scholar

El-Enany, N.; Bela, F.; Rizk, M. Voltammetric analysis of trazodone HCl in pharmaceuticals and biological fluids. J. Pharm. Biomed. Anal. 2002, 30, 219–226.Search in Google Scholar

El-Enamy, N. M.; Al-Ghanam, S.; Belal, F. Polarographic behaviour and determination of benzydamine in pharmaceutical dosage forms. Pharm. Ind. 2003, 65, 76–81.Search in Google Scholar

Eleotério, I. C.; Balbino, M. A.; De Oliveira, M. F. Voltammetric determination of captopril employing platinum electrode modified with Iron (III) hexacyanoferrate (II) film. ECS Transactions 2012, 43, 345–351.Search in Google Scholar

El-Hefnawy, G. B.; El-Hallag, I. S.; Ghoneim, E. M.; Ghoneim, M. M. Square-wave adsorptive cathodic stripping voltammetric determination of anti-inflammatory indomethacin drug in tablets and human serum at a mercury electrode. Anal. Bioanal. Chem. 2003, 376, 220–225.Search in Google Scholar

El-Hefnawy, G. B.; El-Hallag, I. S.; Ghoneim, E. M.; Ghoneim, M. M. Voltammetric behavior and quantification of the sedative-hypnotic drug chlordiazepoxide in bulk form, pharmaceutical formulation and human serum at a mercury electrode. J. Pharm. Biomed. Anal. 2004a, 34, 75–86.Search in Google Scholar

El-Hefnawy, G. B.; El-Hallag, I. S.; Ghoneim, E. M. Ghoneim, M. M. Electrochemical behavior and determination of amiloride drug in bulk form and pharmaceutical formulation at mercury electrodes. J. Pharm. Biomed. Anal. 2004b, 34, 899–907.Search in Google Scholar

El-Maali, N. A. Voltammetric analysis of ceftazidime after preconcentration at various mercury and carbon electrodes: application to sub-ppb level determination in urine samples. Talanta 2000, 51, 957–968.10.1016/S0039-9140(00)00280-0Search in Google Scholar

El-Ries, M. A.; Abou-Sekkina, M. M.; Wassel, A. A. Polarographic determination of propranolol in pharmaceutical formulation. J. Pharm. Biomed. Anal. 2002, 30, 837–841.Search in Google Scholar

El-Ries, M. A. N.; Mohamed, G. G.; Attia, A. K. Electrochemical determination of the antidiabetic drug repaglinide. J. Pharm. Soc. Japan. 2008, 128, 171–177.Search in Google Scholar

El-Sayed, G. O.; Yasin, S. A.; El Ries, M. A.; El-Badawy, A. A. Adsorptive voltammetric determination of nimesulide at glassy carbon electrode. Lat. Am. J. Pharm. 2009, 28, 741–746.Search in Google Scholar

Endo, A.; Doi, T. Multiple copulations and post-copula- tory guarding in a free-living population of sika deer (Cervus nippon). Ethology 2002, 108, 739–747.10.1046/j.1439-0310.2002.00803.xSearch in Google Scholar

Ensafi, A. A.; Allafchian, A. R. Multiwall carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles, a new catalyst for voltammetric determination of cefixime. Colloid Surf. B 2013, 102, 687–693.Search in Google Scholar

Ensafi, A. A.; Arabzadeh, A. A new sensor for electrochemical determination of captopril using chlorpromazine as a mediator at a glassy carbon electrode. J. Anal. Chem. 2012, 67, 486–496.Search in Google Scholar

Ensafi, A. A.; Hajian, R. Simultaneous determination of captopril and thioguanine in pharmaceutical compounds and blood using cathodic adsorptive stripping voltammetry. J. Braz. Chem. Soc. 2008a, 19, 405–412.Search in Google Scholar

Ensafi, A. A.; Hajian, R. Determination of losartan and triamterene in pharmaceutical compounds and urine using cathodic adsorptive stripping voltammetry. Anal Sci. 2008b, 24, 1449–1454.Search in Google Scholar

Ensafi, A. A.; Karimi-Maleh, H.; Mallakpour, S.; Rezaei, B. Highly sensitive voltammetric sensor based on catechol-derivative-multiwall carbon nanotubes for the catalytic determination of captopril in patient human urine samples. Colloid Surf. B 2011, 87, 480–488.Search in Google Scholar

Ensafi, A. A.; Monsef, M.; Rezaei, B.; Karimi-Maleh, H. Electrocatalytic oxidation of captopril on a vinylferrocene modified carbon nanotubes paste electrode. Anal. Methods 2012a, 4, 1332–1338.10.1039/c2ay05815dSearch in Google Scholar

Ensafi, A. A.; Allafchian, A. R.; Rezaei, B. Multiwall carbon nanotubes decorated with FeCr2O4, a new selective electrochemical sensor for amoxicillin determination. J. Nanopart. Res. 2012b, 14, 1–11.Search in Google Scholar

Ensafi, A. A.; Allafchian, A. R.; Rezaei, B. A sensitive and selective voltammetric sensor based on multiwall carbon nanotubes decorated with MgCr2O4 for the determination of azithromycin. Colloid Surf. B 2013a, 103, 468–474.10.1016/j.colsurfb.2012.11.021Search in Google Scholar PubMed

Ensafi, A. A.; Khoddami, E.; Rezaei, B. A combined liquid three-phase micro-extraction and differential pulse voltammetric method for preconcentration and detection of ultra-trace amounts of buprenorphine using a modified pencil electrode. Talanta 2013b, 116, 1113–1120.10.1016/j.talanta.2013.08.016Search in Google Scholar PubMed

Erdogan, D. A.; Taşdemir, I. H.; Erk, N.; Kiliç, E. Electrochemical behavior of Moclobemide at mercury and glassy carbon electrodes and voltammetric methods for its determination. Collec. Czech. Chem. C 2011, 76, 423–442.Search in Google Scholar

Eskiköy, D.; Durmus, Z.; Kiliç, E. Electrochemical oxidation of atorvastatin and its adsorptive stripping determination in pharmaceutical dosage forms and biological fluids. Collec. Czech. Chem. C 2011, 76, 1633–1649.Search in Google Scholar

Fan, Y.; Liu, J. H.; Lu, H. T.; Zhang, Q. Electrochemical behavior and voltammetric determination of paracetamol on Nafion/TiO2-graphene modified glassy carbon electrode. Colloid Surf. B 2011, 85, 289–292.Search in Google Scholar

Fanjul-Bolado, P.; Lamas-Ardisana, P. J.; Hernández-Santos, D.; Costa-García, A. Electrochemical study and flow injection analysis of paracetamol in pharmaceutical formulations based on screen-printed electrodes and carbon nanotubes. Anal. Chim. Acta 2009, 638, 133–138.Search in Google Scholar

Farghaly, O. A. E. M.; Mohamed, N. A. L. Voltammetric determination of azithromycin at the carbon paste electrode. Talanta 2004, 62, 531–538.Search in Google Scholar

Farhadi, K.; Karimpour, A. Electrochemical determination of meloxicam in pharmaceutical preparation and biological fluids using oxidized glassy carbon electrodes. Chem. Pharm. Bull. 2007, 55, 638–642.Search in Google Scholar

Felix, F. S.; Brett, C. M. A.; Angnes, L. Carbon film resistor electrode for amperometric determination of acetaminophen in pharmaceutical formulations. J. Pharm. Biomed. Anal. 2007, 43, 1622–1627.Search in Google Scholar

Ferancova, A.; Kargova, B.; Miko, R.; Labuda, J. Determination of tricyclic antidepressants using a carbon paste electrode modified with β-cyclodextrin. J. Electroanal. Chem. 2000, 492, 74–77.Search in Google Scholar

Fernandez Torres, R.; Callejon Mochon, M.; Jimenez Sanchez, J. C.; Bello Lopez, M. A.; Guiraum Perez, A. Electrochemical behaviour and determination of acrivastine in pharmaceuticals and human urine. J. Pharm. Biomed. Anal. 2002, 30, 1215–1222.Search in Google Scholar

Fernandez-Torres, R.; Villar Navarro, M.; Bello Lopes, M. A.; Callejon Mochon, M.; Jimenes Sanches, J. C. Urea as new stabilizing agent for imipenem determination. Electrochemical study and determination of imipenem and its primary metabolite in human urine. Talanta 2008, 77, 241–248.Search in Google Scholar

Filik, H.; Cetintas, G.; Avan, A. A.; Koç, S. N.; Boz, I. Electrochemical sensing of acetaminophen on electrochemically reduced graphene oxide-nafion composite film modified electrode. Int. J. Electrochem. Sci. 2013, 8, 5724–5737.Search in Google Scholar

Fotouhi, L.; Alahyari, M. Electrochemical behavior and analytical application of ciprofloxacin using a multi-walled nanotube composite film-glassy carbon electrode. Colloid Surf. B 2010, 81, 110–114.10.1016/j.colsurfb.2010.06.030Search in Google Scholar PubMed

Fouladgar, M.; Hadjmohammadi, M. R.; Khalilzadeh, M. A.; Biparva, P.; Teymoori, N.; Beitollah, H. Voltammetric determination of amoxicillin at the electrochemical sensor ferrocenedicarboxylic acid multi wall carbon nanotubes paste electrode. Int. J. Electrochem. Sci. 2011, 6, 1355–1366.Search in Google Scholar

Gaber, A. A. A.; Ahmed, S. A.; Rahim, A. M. A. Cathodic adsorptive stripping voltammetric determination of Ribavirin in pharmaceutical dosage form, urine and serum. Arab. J. Chem. 2013, doi.org/10.1016/j.arabjc.2013.07.051.Search in Google Scholar

Gajdzik, J.; Lenz, J.; Natter, H.; Walcarius, A.; Kohring, G. W.; Giffhorn, F.; Göllü, M.; Demir, A. S.; Hempelmann, R. Electrochemical screening of redox mediators for electrochemical regeneration of NADH. J. Electrochem. Soc. 2012, 159, F10–F16.Search in Google Scholar

Garcia-Fernandez, M. A.; Fernandez-Abedul, M. T.; Costa-Garcia, A. Determination of buprenorphine in pharmaceuticals and human urine by adsorptive stripping voltammetry in batch and flow systems. Electroanal. 2000, 12, 483–489.Search in Google Scholar

Garrido, J. M. P. J.; Lima, J. L. F. C.; Matos, C. D. Flow injection determination of acetylsalicylic acid in pharmaceutical preparations with an amperometric detector. Collect. Czech. Chem. C 2000, 65, 954–962.Search in Google Scholar

Garrido, J. M. P. J.; Delerue-Matos, C.; Borges, F.; Macedo, T. R. A.; Oliveira-Brett, A. M. Electroanalytical determination of codeine in pharmaceutical preparations. Anal. Lett. 2002, 35, 2487–2498.Search in Google Scholar

Garrido, E.M.P.J.; Garrido, J.M.P.J.; Borges, F.; Delerue-Matos, C. Development of electrochemical methods for determination of tramadol – Analytical application to pharmaceutical dosage forms. J. Pharm. Biomed. Anal. 2003a, 32, 975–981.Search in Google Scholar

Garrido, J. M. P. J.; Delerue-Matos, C.; Borges, F.; Macedo, T. R. A.; Oliveira-Brett, A. M. Electrochemical determination of dihydrocodeine in pharmaceuticals. Anal. Lett. 2003b, 36, 577–590.Search in Google Scholar

Garrido, E. M. P. J.; Garrido, J. M. P. J.; Esteves, M.; Santos-Silva, A.; Marques, M. P. M.; Borges, F. Voltammetric and DFT studies on viloxazine: analytical application to pharmaceuticals and biological fluids. Electroanal. 2008, 20, 1454–1462.Search in Google Scholar

Gazy, A. A. K. Determination of amlodipine besylate by adsorptive square-wave anodic stripping voltammetry on glassy carbon electrode in tablets and biological fluids. Talanta 2004, 62, 575–582.10.1016/j.talanta.2003.08.025Search in Google Scholar PubMed

Ghadimi, H.; Tehrani, R. M. A.; Ali, A. S. M.; Mohamed, N.; Ghani, S. A. Sensitive voltammetric determination of paracetamol by poly (4-vinylpyridine)/multiwalled carbon nanotubes modified glassy carbon electrode. Anal. Chim. Acta 2013, 765, 70–76.Search in Google Scholar

Ghandour, M. A.; Aboul Kasim, E.; Ali, A. M. M.; El-Haty, M. T.; Ahmed, M. M. Adsorptive stripping voltammetric determination of antihypertensive agent: diltiazem. J. Pharm. Biomed. Anal. 2001, 25, 443–451.Search in Google Scholar

Ghandour, M. A.; Kasim, E. A.; El-Haty, M. T.; Ahmed, M. M. Cathodic stripping voltammetry of the antihypertensive drug captopril in both aqueous and biological media. Anal. Lett. 2002, 35, 239–256.Search in Google Scholar

Ghasemi, J.; Niazi, A.; Ghorbani, R. Determination of trace amounts of lorazepam by adsorptive cathodic differential pulse stripping method in pharmaceutical formulations and biological fluids. Anal. Lett. 2006, 39, 1159–1169.Search in Google Scholar

Ghavami, R.; Navaee, A. Determination of nimesulide in human serum using a glassy carbon electrode modified with SiC nanoparticles. Microchim. Acta 2012, 176, 493–499.10.1007/s00604-011-0710-4Search in Google Scholar

Gholivand, M. B.; Mohammadi-Behzad, L. Differential pulse voltammetric determination of metformin using copper-loaded activated charcoal modified electrode. Anal. Biochem. 2013, 438, 53–60.Search in Google Scholar

Ghoneim, M. M.; Beltagi, A. M. Adsorptive stripping voltammetric determination of the anti-inflammatory drug celecoxib in pharmaceutical formulation and human serum. Talanta 2003, 60, 911–921.Search in Google Scholar

Ghoneim, M. M.; El-Attar, M. A. Adsorptive stripping voltammetric determination of antibiotic drug clarithromycin in bulk form, pharmaceutical formulation and human urine. Chem. Anal.-Warsaw. 2008, 53, 689–703.Search in Google Scholar

Ghoneim, M. M.; Tawfik, A. Voltammetric studies and assay of the anti-inflammatory drug ketoprofen in pharmaceutical formulation and human plasma at a mercury electrode. Can. J. Chem. 2003a, 81, 889–896.Search in Google Scholar

Ghoneim, M. M.; Tawfik, A. Cathodic adsorptive stripping square-wave voltammetric determination of nifedipine drug in bulk, pharmaceutical formulation and human serum. Anal. Bional. Chem. 2003b, 375, 369–375.Search in Google Scholar

Ghoneim, M. M.; Radi, A.; Beltagi, A. M. Determination of Norfloxacin by square-wave adsorptive voltammetry on a glassy carbon electrode. J. Pharm. Biomed. Anal. 2001, 25, 205–210.Search in Google Scholar

Ghoneim, M. M.; El-Baradie, K. Y.; Tawfik, A. Electrochemical behavior of the antituberculosis drug isoniazid and its square-wave adsorptive stripping voltammetric estimation in bulk form, tablets and biological fluids at a mercury electrode. J. Pharm. Biomed. Anal. 2003, 33, 673–685.Search in Google Scholar

Ghoneim, M. M.; El-Reis, M. A.; Hammam, E.; Beltagi, A. M. A validated stripping voltammetric procedure for quantification of the anti-hypertensive and benign prostatic hyperplasia drug terazosin in tablets and human serum. Talanta 2004, 64, 703–710.Search in Google Scholar

Ghoneim, E. M.; El-Attar, M. A.; Hammam, E.; Khashaba, P. Y. Stripping voltammetric quantification of the anti-diabetic drug glipizide in bulk form and pharmaceutical formulation. J. Pharm. Biomed. Anal. 2007, 43, 1465–1469.Search in Google Scholar

Ghoneim, M. M.; El-Desoky, H. S.; El-Ries, M. A.; Abd-Elaziz, A. M. Electrochemical determination of muscle relaxant drug tetrazepam in bulk form, pharmaceutical formulation, and human serum. Chem. Paper. 2008, 62, 127–134.Search in Google Scholar

Ghoneim, M. M.; El-Desoky, H. S.; Abdel-Galeil, M. M. Electrochemistry of the antibacterial and antifungal drug nitroxoline and its determination in bulk form, pharmaceutical formulation and human blood. Bioelectrochem. 2011, 80, 162–168.Search in Google Scholar

Ghorbani-Bidkorbeh, F.; Shahrokhian, S.; Mohammadi, A.; Dinarvand, R. Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode. Electrochim. Acta 2010, 55, 2752–2759.Search in Google Scholar

Gimenes, D. T.; De Freitas, J. M.; Munoz, R. A. A.; Richter, E. M. Flow-injection amperometric method for determination of diclofenac in pharmaceutical formulations using a boron-doped diamond electrode. Electroanal. 2011, 23, 2521–2525.Search in Google Scholar

Gimenes, D. T.; Cunha, R. R.; Ribeiro, M. M. A. C.; Pereira, P. F.; Muñoz, R. A. A.; Richter, E. M. Two new electrochemical methods for fast and simultaneous determination of codeine and diclofenac. Talanta 2013, 116, 1026–1032.Search in Google Scholar

Go, J.-Y.; Pyun, S.-I. A review of anomalous diffusion phenomena at fractal interface for diffusion-controlled and non-diffusion-controlled transfer processes. J. Solid State Electrochem. 2007, 11, 323–334.Search in Google Scholar

Golcu, A.; Dogan, B.; Ozkan, S. A. Anodic voltammetric behavior and determination of cefixime in pharmaceutical dosage forms and biological fluids. Talanta 2005, 67, 703–712.Search in Google Scholar

Gong, F.-C.; Zhang, X.-B.; Guo, C.-C.; Shen, G.-L.; Yu, R.-Q. Amperometric metronidazole sensor based on the supermolecular recognition by metalloporphyrin incorporated in carbon paste electrode. Sensors 2003, 3, 91–100.Search in Google Scholar

Gopu, G.; Muralidharan, B.; Vedhi, C.; Manisankar, P. Determination of three analgesics in pharmaceutical and urine sample on nano poly (3, 4-ethylenedioxythiophene) modified electrode. Ionics 2012, 18, 231–239.Search in Google Scholar

Goyal, R. N.; Bishnoi, S. Simultaneous voltammetric determination of prednisone and prednisolone in human body fluids. Talanta 2009, 79, 768–774.Search in Google Scholar

Goyal, R. N.; Bishnoi, S. Effect of single walled carbon nanotube-cetyltrimethyl ammonium bromide nanocomposite film modified pyrolytic graphite on the determination of betamethasone in human urine. Sensor Actuat. B 2010a, 77, 200–205.10.1016/j.colsurfb.2010.01.024Search in Google Scholar PubMed

Goyal, R. N.; Bishnoi, S. Voltammetric determination of amlodipine besylate in human urine and pharmaceuticals. Bioelectrochem. 2010b, 79, 234–240.Search in Google Scholar

Goyal, R. N.; Singh, S. P. Voltammetric determination of atenolol at C60-modified glassy carbon electrodes. Talanta 2006, 69, 932–937.Search in Google Scholar

Goyal, R. N.; Singh, S. P. Voltammetric determination of paracetamol at C60-modified glassy carbon electrode. Electrochim. Acta 2010, 51, 3008–3012.Search in Google Scholar

Goyal, R. N.; Gupta, V. K.; Oyama, M.; Bachheti, N. Differential pulse voltammetric determination of paracetamol at nanogold modified indium tin oxide electrode. Electrochem. Comum. 2005, 7, 803–807.Search in Google Scholar

Goyal, R. N.; Gupta, V. K.; Oyama, M.; Bachheti, N. Differential pulse voltammetric determination of atenolol in pharmaceutical formulations and urine using nanogold modified indium tin oxide electrode. Electrochem. Comum. 2006, 8, 65–70.Search in Google Scholar

Goyal, R. N.; Tyagi, A.; Bachheti, N.; Bishna, S. Voltammetric determination of bisoprolol fumarate in pharmaceutical formulations and urine using single-wall carbon nanotubes modified glassy carbon electrode. Electrochim. Acta 2008, 53, 2802–2808.Search in Google Scholar

Goyal, R. N.; Bishnoi, S.; Rana, A. R. S. A sensitive voltammetric sensor for detecting betamethasone in biological fluids. Comb. Chem. High T. Scr. 2010a, 13, 610–618.Search in Google Scholar

Goyal, R. N.; Chatterjee, S.; Rana, A. R. S. Effect of cetyltrimethyl ammonium bromide on electrochemical determination of dexamethasone. Electroanal. 2010b, 22, 2330–2338.Search in Google Scholar

Goyal, R. N.; Chatterjee, S.; Rana, A. R. S. A comparison of edge- and basal-plane pyrolytic graphite electrodes towards the sensitive determination of hydrocortisone. Talanta 2010c, 83, 149–155.10.1016/j.talanta.2010.08.054Search in Google Scholar PubMed

Goyal, R. N.; Chatterjee, S.; Agrawal, B. Electrochemical investigations of diclofenac at edge plane pyrolytic graphite electrode and its determination in human urine. Sensor Actuat. B 2010d, 145, 743–748.10.1016/j.snb.2010.01.038Search in Google Scholar

Goyal, R. N.; Gupta, V. K.; Chatterjee, S. Voltammetric biosensors for the determination of paracetamol at carbon nanotube modified pyrolytic graphite electrode. Sensor Actuat. B 2010e, 149, 252–258.10.1016/j.snb.2010.05.019Search in Google Scholar

Gu, H. Y. Trace determination of shiomarin using a hanging copper/amalgam drop electrode. J. Pharm. Biomed. Anal. 2002, 29, 341–346.Search in Google Scholar

Gualandi, I.; Scavetta, E.; Zappoli, S.; Tonelli, D. Electrocatalytic oxidation of salicylic acid by a cobalt hydrotalcite-like compound modified Pt electrode. Biosens. Bioelectron. 2011, 26, 3200–3206.Search in Google Scholar

Guo, W.; Geng, M.; Zhou, L.; Chao, S.; Yang, R.; An, H.; Liu, H.; Cui, C. Multi-walled carbon nanotube modified electrode for sensitive determination of an anesthetic drug: tetracaine hydrochloride. Int. J. Electrochem. Sci. 2013, 8, 5369–5381.Search in Google Scholar

Gupta, V. K.; Rajeev Jain, P.; Agarwal, S.; Mishra, R.; Dwivedi, A. Electrochemical determination of antihypertensive drug irbesartan in pharmaceuticals. Anal. Biochem. 2011, 410, 266–271.Search in Google Scholar

Gupta, V. K.; Jain, A. K.; Shoora, S. K. Multiwall carbon nanotube modified glassy carbon electrode as voltammetric sensor for the simultaneous determination of ascorbic acid and caffeine. Electrochim. Acta 2013a, 93, 248–253.10.1016/j.electacta.2013.01.065Search in Google Scholar

Gupta, V. K.; Sadeghi, R.; Karimi, F. A novel electrochemical sensor based on ZnO nanoparticle and ionic liquid binder for square wave voltammetric determination of droxidopa in pharmaceutical and urine samples. Sensor Actuat. B 2013b, 183, 603–609.10.1016/j.snb.2013.06.048Search in Google Scholar

Gürler, B.; Ozkorucuklu, S. P.; Kir, E. Voltammetric behavior and determination of doxycycline in pharmaceuticals at molecularly imprinted and non-imprinted overoxidized polypyrrole electrodes. J. Pharm. Biomed. Anal. 2013, 84, 263–268.Search in Google Scholar

Gutierrez-Fernandez, S.; Blonco-Lopez, M. C.; Lobo-Castañon, M. J.; Miranda-Ordieres, A. J.; Tuñon-Blanco, P. Adsorptive stripping voltammetry of rifamycins at unmodified and surfactant-modified carbon paste electrodes. Electroanal. 2004, 16, 1660–1666.Search in Google Scholar

Habib, I. H. I.; Weshahy, S. A.; Toubar, S.; El-Alamin, M. M. A. Cathodic stripping voltammetric determination of losartan in bulk and pharmaceutical products. Portugaliae Electrochim. Acta 2008, 26, 315–324.Search in Google Scholar

Habibi, B.; Jahanbakhshi, M.; Pournaghi-Azar, M. H. Differential pulse voltammetric simultaneous determination of acetaminophen and ascorbic acid using single-walled carbon nanotube-modified carbon-ceramic electrode. Anal. Biochem. 2011, 411, 167–175.Search in Google Scholar

Hammam, E. Determination of nitrofurantoin drug in pharmaceutical formulation and biological fluids by square-wave cathodic adsorptive stripping voltammetry. J. Pharm. Biomed. Anal. 2002, 30, 651–659.Search in Google Scholar

Hammam, E. Behavior and quantification studies of amiloride drug using cyclic and square-wave adsorptive stripping voltammetry at a mercury electrode. J. Pharm. Biomed. Anal. 2004, 34, 1109–1116.Search in Google Scholar

Hammam, E. Determination of triamcinolone acetonide in pharmaceutical formulation and human serum by adsorptive cathodic stripping voltammetry. Chem. Anal.-Warsaw. 2007, 52, 43–53.Search in Google Scholar

Hammam, E.; Beltagi, A. M.; Ghoneim, M. M. Voltammetric assay of rifampicin and isoniazid drugs, separately and combined in bulk, pharmaceutical formulations and human serum at a carbon paste electrode. Microchem. J. 2004, 77, 53–62.Search in Google Scholar

Hammam, E.; El-Attar, M. A.; Beltagi, A. M. Voltammetric studies on the antibiotic drug cefoperazone. Quantification and pharmacokinetic studies. J. Pharm. Biomed. Anal. 2006, 42, 523–527.Search in Google Scholar

Hasanzadeh, M.; Shadjou, N.; Saghatforoush, L.; Dolatabadi, J. E. N. Preparation of a new electrochemical sensor based on iron (III) complexes modified carbon paste electrode for simultaneous determination of mefenamic acid and indomethacin. Colloid Surf. B 2012, 92, 91–97.Search in Google Scholar

Hegde, R. N.; Shetti, N. P.; Nandibewoor, S. T. Electro-oxidation and determination of trazodone at multi-walled carbon nanotube-modified glassy carbon electrode. Talanta 2009, 79, 361–368.Search in Google Scholar

Heli, H.; Jabbari, A.; Majdi, S.; Mahjoub, M.; Moosavi-Movahedi, A. A.; Sheibani, Sh. Electrooxidation and determination of some non-steroidal anti-inflammatory drugs on nanoparticles of Ni-curcumin-complex-modified electrode. J. Solid State Electrochem. 2009, 13, 1951–1958.Search in Google Scholar

Heli, H.; Faramarzi, F.; Sattarahmady, N. Oxidation and determination of Gabapentin on nanotubes of nickel oxide-modified carbon paste electrode. J. Solid State Electrochem. 2012, 16, 45–52.Search in Google Scholar

Hilali, A.; Jimenez, J. C.; Callejon, M.; Bello, M. A.; Guirafim, A. Electrochemical reduction of cefminox at the mercury electrode and its voltammetric determination in urine. Talanta 2003, 59, 137–146.Search in Google Scholar

Huang, K. J.; Xu, C. X.; Xie, W. Z. Electrochemical behavior of norfloxacin and its determination at poly(methyl red) film coated glassy carbon electrode. Bull. Kor. Chem. Soc. 2008, 29, 988–992.Search in Google Scholar

Ibrahim, F.; El-Enany, N. Anodic polarographic determination of ciclopirox olamine in pure and certain pharmaceutical preparations. J. Pharm. Biomed. Anal. 2003, 32, 353–359.Search in Google Scholar

Ibrahim, M. S.; Shehatta, I. S.; Sultan, M. R. Cathodic adsorptive stripping voltammetric determination of nalidixic acid in pharmaceuticals, human urine and serum. Talanta 2002, 56, 471–479.Search in Google Scholar

Ioannides, X.; Economou, A.; Voulgaropoulos, A. A study of the determination of the hypertensive drug captopril by square wave cathodic adsorptive stripping voltammetry. J. Pharm. Biomed. Anal. 2003, 309–316.10.1016/S0731-7085(03)00262-0Search in Google Scholar

Jacobs, C. B.; Peairs, M. J.; Venton, B. J. Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 2010, 662, 105–127.Search in Google Scholar

Jain, R.; Radhapyari, K. Cathodic adsorptive stripping voltammetric behavior and determination of tricyclic antidepressant drug nortriptyline hydrochloride in bulk form and pharmaceutical formulation. ECS Transactions 2008, 13, 21–46.10.1149/1.3010727Search in Google Scholar

Jain, R.; Vikas. Voltammetric determination of cefpirome at multiwalled carbon nanotube modified glassy carbon sensor based electrode in bulk form and pharmaceutical formulation. Colloid Surf. B 2011a, 87, 423–426.10.1016/j.colsurfb.2011.06.001Search in Google Scholar PubMed

Jain, R.; Vikas. Voltammetric behaviour of antimalarial drug artesunate in solubilized systems. Colloid Surf. B 2011b, 88, 729–733.10.1016/j.colsurfb.2011.08.008Search in Google Scholar PubMed

Jain, R.; Radhapyari, K.; Jadon, N. Electrochemical evaluation and determination of cefdinir in dosage form and biological fluid at mercury electrode. Electrochem. Soc. 2007a, 154, 199–204.Search in Google Scholar

Jain, R.; Jadon, N.; Radhapyari, K. Cathodic adsorptive stripping voltammetric studies on lamivudine: an antiretroviral drug. J. Colloid Interf. Sci. 2007b, 313, 254–266.Search in Google Scholar

Jain, R.; Dwivedi, A.; Mishra, R. Voltammetric behaviour of cefdinir in solubilized system. J. Colloid Interf. Sci. 2008, 318, 296–301.10.1016/j.jcis.2007.10.037Search in Google Scholar PubMed

Jain, R.; Mishra, R.; Dwivedi, A. Voltammetric behaviour of nitrazepam in solubilized systems. J. Sci. Ind. Res. 2009a, 68, 540–547.Search in Google Scholar

Jain, R.; Dwivedi, A.; Mishra, R. Stripping voltammetric behaviour of toxic drug nitrofurantoin. J. Hazard. Mater. 2009b, 169, 667–672.Search in Google Scholar

Jain, R.; Gupta, V. K.; Jadon, N.; Radhapyari, K. Voltammetric determination of cefixime in pharmaceuticals and biological fluids. Anal. Biochem. 2010, 407, 79–88.Search in Google Scholar

Jain, R.; Rather, J. A.; Dwivedi, A. Voltammetric behaviour of nitroxazepine in solubilized system and biological fluids. Mat. Sci. Eng. C 2011a, 31, 230–237.10.1016/j.msec.2010.09.001Search in Google Scholar

Jain, R.; Rather, J. A. Voltammetric determination of antibacterial drug gemifloxacin in solubilized systems at multi-walled carbon nanotubes modified glassy carbon electrode. Colloid Surf. B 2011b, 83, 340–346.10.1016/j.colsurfb.2010.12.003Search in Google Scholar

Jalali, F.; Ahmadi, E.; Roushani, M.; Bahrami, Gh.; Shamsipur, M. Amperometric determination of cholesterol-reducing drug, ezetimibe, using glassy carbon electrode modified with multiwalled carbon nanotubes and sodium dodecylsulfate. Anal. Lett. 2010, 43, 1481–1490.Search in Google Scholar

Jara-Ulloa, P.; Salgado-Figueroa, P.; YaÇez, C.; NfflÇez-Vergara, L. J.; Squella, J. A. Voltammetric determination of nifedipine on carbon nanotubes-modified glassy carbon electrode: a new application to dissolution test studies. Electroanal. 2012, 24, 1751–1757.Search in Google Scholar

Jimenez Palacios, F. J.; Callejon Machon, M.; Jimenez Sanchez, J. C.; Herrera Coarranza, J. Adsorptive stripping voltammetric determination of cefepime at the mercury electrode in human urine and cerebrospinal fluid, and differential pulse polarographic determination in serum. J. Pharm. Sci. 2003, 92, 1854–1859.Search in Google Scholar

Júnior, A. C. V. L.; Luz, R. C. S.; Damos, F. S.; Dos Santos, A. S.; Franco, D. L.; Dos Santos, W. T. P. Determination of sildenafil citrate (Viagra®) in various pharmaceutical formulations by flow injection analysis with multiple pulse amperometric detection.J. Braz. Chem. Soc. 2012, 23, 1800–1806.Search in Google Scholar

Kalimuthu, P.; John, S. A. Selective electrochemical determination of paracetamol using nanostructured film of functionalized thiadiazole modified electrode. Electroanal. 2010, 22, 303–309.Search in Google Scholar

Kan, X.; Liu, T.; Liu, C.; Zhou, H.; Xing, Z.; Zhu, A. A novel electrochemical sensor based on molecularly imprinted polymers for caffeine recognition and detection. J. Solid State Electrochem. 2012, 16, 3207–3213.Search in Google Scholar

Kang, X.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 2010, 81, 754–759.Search in Google Scholar

Kapetanovic, V.; Milovanovic, L.; Aleksic, M.; Ignjatovic, L. Voltammetric methods for analytical determination of fleroxacin in Quinodis (R) tablets. J. Pharm. Biomed. Anal. 2000a, 22, 925–932.Search in Google Scholar

Kapetanovic, V.; Aleksic, M.; Erceg, M.; Veselinovic, D. Electrochemical study of cefetamet-Na and its polarographic determination. Farmaco 2000b, 55, 13–20.10.1016/S0014-827X(99)00105-6Search in Google Scholar

Karimi-Maleh, H.; Ensafi, A. A.; Ensafi, H. R.; Ferrocenedicarboxylic acid modified carbon paste electrode: a sensor for electrocatalytic determination of hydrochlorothiazide. J. Braz. Chem. Soc. 2009, 20, 880–887.Search in Google Scholar

Karimi-Maleh, H.; Ensafi, A. A.; Allafchian, A. R. Fast and sensitive determination of captopril by voltammetric method using ferrocenedicarboxylic acid modified carbon paste electrode. J. Solid State Electrochem. 2010, 14, 9–15.Search in Google Scholar

Karimi-Maleh, H.; Khalilzadeh, M. A.; Ranjbarha, Z.; Beitollahi, H.; Ensafi, A. A.; Zareyee, D. p-Chloranil modified carbon nanotubes paste electrode as a voltammetric sensor for the simultaneous determination of methyldopa and uric acid. Anal. Methods 2012, 4, 2088–2094,.10.1039/c2ay05865kSearch in Google Scholar

Kashefi-Kheyrabadi, L.; Mehrgardi, M. A design and construction of a label free aptasensor for electrochemical detection of sodium diclofenac. Biosens. Bioelectron. 2012, 33, 184–189.Search in Google Scholar

Kasim, E. A. Voltammetric behavior of the anti-inflammatory alkaloid colchicine at a glassy carbon electrode and a hanging mercury electrode and its determination at ppb levels. Anal. Lett. 2002, 35, 1987–2004.Search in Google Scholar

Kasim, E. A.; Ghandour, M. A.; El-Haty, M. T.; Ahmed, M. M. Determination of verapamil by adsorptive stripping voltammetry in urine and pharmaceutical formulations. J. Pharm. Biomed. Anal. 2002, 30, 921–929.Search in Google Scholar

Katarzyna Tyszczuk, K.; Korolczuk, M. Voltammetric method for the determination of sildenafil citrate (Viagra) in pure form and in pharmaceutical formulations. Bioelectrochem. 2010, 78, 113–117.Search in Google Scholar

Kazemipour, M.; Ansari, M.; Mohammadi, A.; Beitollahi, H.; Ahmadi, R. Use of adsorptive square-wave anodic stripping voltammetry at carbon paste electrode for the determination of amlodipine besylate in pharmaceutical preparations. J. Anal. Chem. 2009, 64, 65–70.Search in Google Scholar

Khalilzadeh, M. A.; Gholami, F.; Karimi-Maleh, H. Electrocatalytic determination of ampicillin using carbon-paste electrode modified with ferrocendicarboxylic acid. Anal. Lett. 2009, 42, 584–599.Search in Google Scholar

Khaskheli, A. R.; Fischer, J.; Barek, J.; Vyskŏcill, V.; Sirajuddin, Bhanger, M. I. Differential pulse voltammetric determination of paracetamol in tablet and urine samples at a micro-crystalline natural graphite–polystyrene composite film modified electrode. Electrochim. Acta 2012, 101, 238–242.Search in Google Scholar

Komorsky-Lovrić, Š.; Nigović, B. Identification of 5-aminosalicylic acid, ciprofloxacin and azithromycin by abrasive stripping voltammetry. J. Pharm. Biomed. Anal. 2004, 36, 81–89.Search in Google Scholar

Komorsky-Lovrić, Š.; Nigović, B. Electrochemical characterization of simvastatin by abrasive stripping and square-wave voltammetry. J. Electroanal. Chem. 2006, 593, 125–130.Search in Google Scholar

Komorsky-Lovrić, Š.; Novak, I. Estimation of antioxidative properties of tea leaves by abrasive stripping electrochemistry using paraffin-impregnated graphite electrode. Collect. Czech. Chem. C 2009, 74, 1467–1475.10.1135/cccc2009062Search in Google Scholar

Komorsky-Lovrić, Š.; Novak, I. Abrasive stripping square-wave voltammetry of blackberry, raspberry, strawberry, pomegranate, and sweet and blue potatoes. J. Food Sci. 2011, 76, C916–C920.Search in Google Scholar

Komorsky-Lovrić S, Galic I, Penovski R. Voltammetric determination of cocaine microparticles. Electroanal. 1999, 11, 120–123.Search in Google Scholar

Komorsky-Lovrić, Š.; Vukašinović, N.; Penovski, R. Voltammetric determination of microparticles of some local anesthetics and antithusics immobilized on the graphite electrode. Electroanal. 2003, 15, 544–547.Search in Google Scholar

Korany, M. A.; Hewela, I. I.; Abdel-Hay, K. M. Determination of etofibrate, fenofibrate, and atorvastatin in pharmaceutical preparations and plasma using differential pulse polarographic and square wave voltammetric techniques. J. AOAC Int. 2008, 91, 1051–1058.Search in Google Scholar

Korolczuk, M.; Tyszczuk, K. Adsorptive stripping voltammetry of trimethoprim at an in situ plated lead film electrode. Chem. Anal.-Warsaw 2007, 52, 1015–1024.Search in Google Scholar

Kumar, K. G.; John, S.; Poduval, R.; Augustine, P. Electrochemical determination of terazosin in pure form and in dosage forms. Chinese Pharm. J. 2005, 57, 29–36.Search in Google Scholar

Kumar, K. G.; Augustine, P.; Poduval, R.; John, S. Voltammetric studies of sparfloxacin and application to its determination in pharmaceuticals. Pharmazie 2006, 61, 291–292.Search in Google Scholar

Labuda, J.; Oliveira-Brett, A. M.; Evtugyn, G.; Fojta, M.; Mascini, M.; Ozsoz, M.; Palchetti, I.; Palecek, E.; Wang, J. Electrochemical nucleic acid-based biosensors: concepts, terms, and methodology (IUPAC Technical Report). Pure Appl. Chem. 2010, 82, 1161–1187.Search in Google Scholar

Lakshmi, A.; Vedhi, C. Synthesis and Characterization of Poly (3-hexylthiophene) and used as modified electrode for determination of antidepressants in pharmaceutical formulations and urine samples. J. Electrochem. Soc. 2013, 160, H252–H257.Search in Google Scholar

Leandro, K. C.; Moreira, J. C.; Farias, P. A. M. Determination of zidovudine in pharmaceuticals by differential pulse voltammetry. Anal. Lett. 2010, 43, 1951–1957.Search in Google Scholar

Lencastre, R. P.; Matos, C. D.; Garrido, J.; Borges, F.; Garrido, E. M. Voltammetric quantification of fluoxetine: application to quality control and quality assurance processes. J. Food Drug Anal. 2006, 14, 242–246.Search in Google Scholar

Li, N.; Duan, J.; Chen, G. Determination of trace procaine hydrochloride by differential pulse anodic stripping voltammetry with nafion modified glassy carbon electrode. Anal. Sci. 2003, 19, 1587–1592.Search in Google Scholar

Li, S.-J.; Deng, D.-H.; Pang, H.; Liu, L.; Xing, Y.; Liu, S.-R. Preparation of electrochemically reduced graphene oxide-modified electrode and its application for determination of p-aminophenol. J. Solid State Electrochem. 2012, 16, 2883–2889.Search in Google Scholar

Li, J.; Liu, J.; Tan, G.; Jiang, J.; Peng, S.; Deng, M.; Qian, D.; Fenbg, Y.; Liu, Y. High-sensitivity paracetamol sensor based on Pd/graphene oxide nanocomposite as an enhanced electrochemical sensing platform. Biosens. Bioelectron. 2014, 54, 468–475.Search in Google Scholar

Lian, W.; Liu, S.; Yu, J.; Xing, X.; Li, J.; Cui, M.; Huang, J. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan–platinum nanoparticles/graphene–gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Biosens. Bioelectron. 2012, 38, 163–169.Search in Google Scholar

Lima, A. S.; Meloni, G. M.; Bertotti, M. Determination of paracetamol in presence of ascorbic acid in pharmaceutical products by scanning electrochemical microscopy. Electroanal. 2013, 25, 1395–1399.Search in Google Scholar

Liu, A.-L.; Wang, J.-D.; Chen, W.; Xia, X.-H.; Chen, Y.-Z.; Lin, X.-H. Simultaneous and sensitive determination of procaine and its metabolite for pharmaceutical quality control and pharmacokinetic research by using a graphite paste electrode. J. Solid State Electrochem. 2012, 16, 1343–1351.Search in Google Scholar

Liu, J.; Zhang, W.; Li, Y.; Yang, L.; Ye, B. A highly sensitive sensor for synephrine detection based on multi-walled carbon nanotubes modified glass carbon electrodes. Anal. Methods 2013, 5, 5317–5323.Search in Google Scholar

Lomillo, M. A. A.; Renedo, O. D.; Martínez, M. J. A. Optimization of a cyclodextrin-based sensor for rifampicin monitoring. Electrochim. Acta 2005, 50, 1807–1811.Search in Google Scholar

Lourenção, B. C.; Medeiros, R. A.; Rocha-Filho, R. C.; Mazo, L. H.; Fatibello-Filho, O. Simultaneous voltammetric determination of paracetamol and caffeine in pharmaceutical formulations using a boron-doped diamond electrode. Talanta 2009, 78, 748–752.Search in Google Scholar

Lozeno-Chaves, M. E.; Palacios-Santonder, J. M.; Cubillana-Aguilera, L. M.; Navaro-Rodrugnez, I.; Hidalgo-Hidalgo de Cisneros, J. L. Modified carbon-paste electrodes as sensors for the determination of 1,4-benzodiazepines: application to the determination of diazepam and oxazepam in biological fluids. Sensor Actuat. B 2006, 115, 575–583.Search in Google Scholar

Lu, T.-L.; Tsai, Y.-C. Electrocatalytic oxidation of acetylsalicylic acid at multiwalled carbon nanotube-alumina-coated silica nanocomposite modified glassy carbon electrodes. Sensor Actuat. B 2010, 148, 590–594.Search in Google Scholar

Lu, T.-L.; Tsai, Y.-C. Sensitive electrochemical determination of acetaminophen in pharmaceutical formulations at multiwalled carbon nanotube-alumina-coated silica nanocomposite modified electrode. Sensor Actuat. B 2011, 153, 439–444.Search in Google Scholar

Madhusudana Reddy, T.; Jayarama Reddy, S. Differential pulse adsorptive stripping voltammetric determination of nifedipine and nimodipine in pharmaceutical formulations, urine, and serum samples by using a clay-modified carbon-paste electrode. Anal. Lett. 2004, 37, 2079–2098.Search in Google Scholar

Malhotra, B. D.; Chaubey, A.; Singh, S. P. Prospects of conducting polymers in biosensors. Anal. Chim. Acta 2006, 578, 59–74.Search in Google Scholar

Malode, S. J.; Nandibewoor, S. T. Electro-oxidation of nimesulide at gold electrode and its determination in pharmaceutical dosage form and human biological fluid. Asian J. Pharm. Clin. Res. 2013a, 6, 71–76.Search in Google Scholar

Malode, S. J.; Nandibewoor, S. T. Electrochemical oxidation and determination of nimesulide using a carbon paste electrode. Z. Phys. Chem. 2013b, 227, 73–87.Search in Google Scholar

Malode, S. J.; Abbar, J. C.; Shetti, N. P.; Nandibewoor, S. T. Voltammetric oxidation and determination of loop diuretic furosemide at a multi-walled carbon nanotubes paste electrode. Electrochim. Acta. 2012, 60, 95–101.Search in Google Scholar

Manisankar, P.; Sarpudeen, A.; Viswanathan, S. Electroanalysis of dapsone, an anti-leprotic drug. J. Pharm. Biomed. Anal. 2001, 26, 873–881.Search in Google Scholar

Marco, J. P.; Borges, K. B.; Tarley, C. R. T.; Ribeiro, E. S.; Pereira, A. C. Development and application of an electrochemical biosensor based on carbon paste and silica modified with niobium oxide, alumina and DNA (SiO2/Al2O3/Nb2O5/DNA) for amitriptyline determination. J. Electroanal. Chem. 2013, 704, 159–168.Search in Google Scholar

Marcolino-Júnior, L. H.; Bergamini, M. F.; Teixeira, M. F. S.; Cavalheiro, E. T. G.; Fatibello-Filho, O. Flow injection amperometric determination of dipyrone in pharmaceutical formulations using a carbon paste electrode. Farmaco 2003, 58, 999–1004.Search in Google Scholar

Marcolino, Jr., L. H.; Bonifácio, V. G.; Vicentini, F. C.; Janegitz, B. C.; Fatibello-Filho, O. Amperometric determination of captopril using a carbon paste electrode in flow analysis. Can. J. Anal. Sci. Spect. 2009, 54, 45–51.Search in Google Scholar

Masawat, P.; Slater, J. M. The determination of tetracycline residues in food using a disposable screen-printed gold electrode (SPGE). Sensor Actuat. B 2007, 124, 127–132.10.1016/j.snb.2006.12.010Search in Google Scholar

Mashhadizadeh, M. H.; Akbarian, M. Voltammetric determination of some anti-malarial drugs using a carbon paste electrode modified with Cu(OH)2 nano-wire. Talanta 2009, 78, 1440–1445.Search in Google Scholar

Merli, D.; Dondi, D.; Pessavento, M.; Profumo, A. Electrochemistry of olanzepine and risperidone at carbon nanotubes modified gold electrode through classical and DFT approaches. J. Electroanal. Chem. 2012, 683, 103–111.Search in Google Scholar

Merli, D.; Dondi, D.; Ravelli, D.; Tacchini, D.; Profumo, A. Electrochemistry and electrochemical determination of aripirazole and octoclothepin at glassy carbon electrode. J. Electroanal. Chem. 2013, 711, 1–7.Search in Google Scholar

Mersal, G. A. M. Experimental and computational studies on the electrochemical oxidation of caffeine at pseudo carbon paste electrode and its voltammetric determination in different real samples. Food Anal. Methods 2012, 5, 520–529.10.1007/s12161-011-9269-2Search in Google Scholar

Miranda, J. A. T.; Cunha, R. R.; Gimenes, D. T.; Munoz, R. A. A.; Richter, E. M. Simultaneous determination of ascorbic acid and acetylsalicylic acid using flow injection analysis with multiple pulse amperometric detection. Quim. Nova, 2012, 35, 1459–1463.Search in Google Scholar

Mohammadi, A.; Moghaddam, A. B.; Eilkhanizadeh, K.; Alikhani, E.; Mozaffari, S.; Yavari, T. Electro-oxidation and simultaneous determination of amlodipine and atorvastatin in commercial tablets using carbon nanotube modified electrode. Micro Nano Lett. 2013, 8, 413–417.Search in Google Scholar

Morais, S.; Ryckaert, C. P. M. C. A.; Delerue-Matos, C. Adsorptive stripping voltammetric determination of venlafaxine in urine with a mercury film microelectrode. Anal. Lett. 2003, 36, 2515–2526.Search in Google Scholar

Moreira, A.P.L.; Martini, M.; De Carvalho L.M. Capillary Electrophoretic Methods for the Screening and Determination of Pharmacological Adulterants in Herbal-based Pharmaceutical Formulations. Electroanal. 2014. DOI: 10.1002/elps.201400059.10.1002/elps.201400059Search in Google Scholar PubMed

Mousty, C. Sensors and biosensors based on clay-modified electrodes-new trends. Appl. Clay Sci. 2004, 27,159–177.Search in Google Scholar

Mozo, J. D.; Carbajo, J.; Sturm, J.C.; Núñez-Vargara, L.J.; Salgado, P.; Squella, J. A. Determination of nifuroxazide by flow injection linear adsorptive stripping voltammetry on a screen-printed carbon nanofiber modified electrode. Electroanal. 2012, 24, 676–682.Search in Google Scholar

Msagati, T. A. M.; Ngila, J. C. Voltammetric detection of sulfonamides at a poly(3-methylthiophene) electrode. Talanta 2002, 58, 605–610.Search in Google Scholar

Muralidharan, B.; Gopu, G.; Vedhi, C.; Manisankar, P. Determination of analgesics in pharmaceutical formulations and urine samples using nano polypyrrole modified glassy carbon electrode. J. Appl. Electrochem. 2009, 39, 1177–1184.Search in Google Scholar

Nagaraj, V. J.; Jacobs, M.; Mohan Vattipalli, K.; Praveen Annam, V.; Prasad, S. Nanochannel-based electrochemical sensor for the detection of pharmaceutical contaminants in water. Envir. Sci. Proc. Impacts 2014. DOI: 10.1039/C3EM00406F.10.1039/C3EM00406FSearch in Google Scholar

Naggar, A. H.; ElKaoutit, M.; Naranjo-Rodriguez, I.; El-Sayed, A. E-A. Y.; De Cisneros, J. L. H-H. Use of a sonogel-carbon electrode modified with bentonite for the determination of diazepam and chlordiazepoxide hydrochloride in tablets and their metabolite oxazepam in urine. Talanta 2012, 89, 448–454.Search in Google Scholar

Nair, S. S.; John, S. A.; Sagara, T. Simultaneous determination of paracetamol and ascorbic acid using tetraoctylammonium bromide capped gold nanoparticles immobilized on 1,6-hexanedithiol modified Au electrode. Electrochim. Acta 2009, 54, 6837–6843.Search in Google Scholar

Navalón, A.; Blanc, R.; Reyes, L.; Navas, N.; Vilchez, J. L. Determination of the antibacterial enrofloxacin by differential-pulse adsorptive stripping voltammetry. Anal. Chim. Acta. 2002, 454, 83–91.Search in Google Scholar

Nevado, J. J. B.; Flores, J. R.; Penalvo, G. C. Voltammetric behavior of fluvoxamine using square-wave and adsorptive stripping square-wave techniques. Determination in pharmaceutical products. Electroanal. 2000, 12, 1059–1063.Search in Google Scholar

Neves, M. M. P. S.; Nouws, H. P. A.; Delerue-Matos, C. Direct electroanalytical determination of fluvastatin in a pharmaceutical dosage form: batch and flow analysis. Anal. Lett. 2008, 41, 2794–2804.Search in Google Scholar

Ni, Y.; Wang, Y.; Kokot, S. Differential pulse stripping voltammetric determination of paracetamol and phenobarbital in pharmaceuticals assisted by chemometrics. Anal. Lett. 2004, 37, 3219–3235.Search in Google Scholar

Ni, Y.; Li, S.; Kokot, S. Simultaneous voltammetric analysis of tetracycline antibiotics in foods. Food Chem. 2011, 124, 1157–1163.Search in Google Scholar

Niazi, A.; Yazdanipour, A. Determination of trace amounts of morphine in human plasma by anodic adsorptive stripping differential pulse voltammetry. Chinese Chem. Lett. 2008, 19, 465–468.Search in Google Scholar

Nigovic, B. Adsorptive stripping voltammetric determination of azithromycin at a glassy carbon electrode modified by electrochemical oxidation. Anal. Sci. 2004, 20, 639–643.Search in Google Scholar

Nigovic, B. Electrochemical properties and square-wave voltammetric determination of pravastatin. Anal. Bioanal. Chem. 2006, 384, 431–437.Search in Google Scholar

Nigovic, B.; Pavkovi. I. Preconcentration of the lipid-lowering drug lovastatin at a hanging mercury drop electrode surface. J. Anal. Chem. 2009, 64, 304–309.Search in Google Scholar

Nigovic, B.; Simunic, B. Voltametric assay of azithromycin in pharmaceutical dosage forms. J. Pharm. Biomed. Anal. 2003, 32, 197–202.Search in Google Scholar

Nigovic, B.; Komorsky-Lowric, S.; Devcic, D. Rapid voltammetric identification and determination of simvastatin at trace levels in pharmaceuticals and biological fluid. Croat. Chem. Acta. 2008, 81, 453–459.Search in Google Scholar

Nikolelis, D. P.; Mitrokotsa, M. Rapid electrochemical detection of propranolol and metoprolol in pharmaceutical preparations using stabilized lipid films. Electroanal. 2004, 16, 741–747.Search in Google Scholar

Norouzi, P.; Ganjali, M. R.; Alizadeh, T.; Daneshgar, P. Fast fourier continuous cyclic voltammetry at gold ultramicroelectrode in flowing solution for determination of ultra trace amounts of penicillin G. Electroanal. 2006a, 18, 947–954.Search in Google Scholar

Norouzi, P.; Ganjali, M. R.; Akbari-Adergani, B. Sub-second FFT continuous stripping cyclic voltammetric technique as a novel method for pico-level monitoring of imipramine at au microelectrode in flowing solutions. Acta. Chim. Slov. 2006b, 53, 499–505.Search in Google Scholar

Norouzi, P.; Ganjali, M. R.; Dinarvand, R.; Labbafi, S. Non-electroactive recognition: pico-level monitoring of flunixin by its sub-second adsorption at Au microelectrode by fast fourier transforms continuous cyclic voltammetric technique (FFTCCV). Acta Chim. Slov. 2007, 54, 840–848.Search in Google Scholar

Norouzi, P.; Ganjali, M. R.; Larijani, B.; Karamdoust, S. A fast stripping continuous cyclic voltammetry method for determination of ultra trace amounts of nalidixic acid. Croat. Chem. Acta. 2008, 81, 423–430.Search in Google Scholar

Nouws, H. P. A.; Delerue-Matos, C.; Barros, A. A.; Rodrigues, J. A. Electroanalytical study of the antidepressant sertraline. J. Pharm. Biomed. Anal. 2005a, 39, 290–293.Search in Google Scholar

Nouws, H. P. A.; Delereu-Matos, C.; Barros, A. A.; Rodrigues, J. A.; Santos-Silva, A. Electroanalytical study of fluvoxamine. Anal. Bioanal. Chem. 2005b, 382, 1662–1668.Search in Google Scholar

Nouws, H.; Delerue-Matos, C.; Barros, A. A. Electrochemical determination of citalopram byadsorptive stripping voltammetry–determination in pharmaceutical products. Anal. Lett. 2006a, 39, 1907–1915.Search in Google Scholar

Nouws, H. P. A.; Delerue-Matos, C.; Barros, A. A.; Rodrigues, J. A. Electroanalytical determination of paroxetine in Pharmaceuticals. J. Pharm. Biomed. Anal. 2006b, 42, 341–346.Search in Google Scholar

Nouws, H.; Matos, C. D.; Barros, A. A.; Rodrigues, J. A. Square-wave adsorptive-stripping voltammetric detection in the quality control of fluoxetine. Anal. Lett. 2007, 40, 1131–1146.Search in Google Scholar

Nouws, H. P. A.; Delerue-Matos, C.; Barros, A. A.; Maesen, E.; Moreira, S. C. P. A.; Neves, M. M. P. S. Static and hydrodynamic monitoring of citalopram based on its electro-oxidation behavior at a glassy-carbon surface. Anal. Lett. 2008, 41, 2171–2185.Search in Google Scholar

Oliveira, R. T. S.; Salazar-Banda, G. R.; Ferreira, V. S.; Oliveira, S. C.; Avaca, L. A. Electroanalytical determination of lidocaine in pharmaceutical preparations using boron-doped diamond electrodes. Eletroanal. 2007, 19, 1189–1194.Search in Google Scholar

Ortuño, J. A.; Sánchez-Pedreño, C.; Gil, A. Flow-injection pulse amperometric detection based on ion transfer across a water-plasticized polymeric membrane interface for the determination of verapamil. Anal. Chim. Acta 2005, 554, 172–176.Search in Google Scholar

Oyama, M. Recent nanoarchitectures in metal nanoparticle-modified electrodes for electroanalysis. Anal. Sci. 2010, 26, 1–12.Search in Google Scholar

Ozkan, S. A. Determination of the antihypertensive drug lacidipine in pharmaceuticals by differential pulse and square wave voltammetry. Pharmazie 2002, 57, 503–505.Search in Google Scholar

Ozkan, S. A. Present applications of analytical methods: prospects for high throughput screening of pharmaceutically active compounds. Comb. Chem. High T. Scr. 2010, 8, 665.Search in Google Scholar

Ozkan, S. A. Electroanalytical Methods in Pharmaceutical Analysis and Their Validation; HNB Publishing, 2012.Search in Google Scholar

Ozcan, A.; Sahin, Y. A novel approach for the determination of paracetamol based on the reduction of N-acetyl-p-benzoquinoneimine formed on the electrochemically treated pencil graphite electrode. Anal. Chim. Acta 2011, 685, 9–14.10.1016/j.aca.2010.11.004Search in Google Scholar PubMed

Ozkan, S. A.; Uslu, B. Electrochemical study of fluvastatin sodium – analytical application to pharmaceutical dosage forms, human serum, and simulated gastric juice. Anal. Bioanal. Chem. 2002, 372, 582–586.Search in Google Scholar

Ozkan, S. A.; Erk, N.; Uslu, B.; Yilmaz, N.; Biryol, I. Study on electrooxidation of cefadroxil monohydrate and its determination by differential pulse voltammetry. J. Pharm. Biomed. Anal. 2000, 23, 263–273.Search in Google Scholar

Ozaltin, N.; Yardimci, C.; Suslu, I. Determination of nifedipine in human plasma by square wave adsorptive stripping voltammetry. J. Pharm. Biomed. Anal. 2002, 30, 573–582.Search in Google Scholar

Ozkan, S. A.; Uslu, B.; Zuman, P. Electrochemical oxidation of sildenafil citrate (viagra) on carbon electrodes. Anal. Chim. Acta. 2004, 501, 227–233.Search in Google Scholar

Öztürk, F.; Taşdemir, I. H.; Erdoğan, D. A.; Erk, N.; Kiliç, E. A new voltammetric method for the determination of lercanidipine in biological samples. Acta Chim. Slov. 2011, 58, 830–839.Search in Google Scholar

Özden, D. S.; Durmuş, Z.; Dinç, E. Application of copper solid amalgam electrode for determination of fungicide tebuconazole. Res. Chem. Intermed. 2013, 8, 1–16.Search in Google Scholar

Palacios, F. J. J.; Mochon, M. C.; Sanchez, J. C. J.; Carranza, J. H. Electrochemical reduction of cefepime at the mercury electrode. Electroanal. 2000, 12, 296–300.Search in Google Scholar

Palaharm, S.; Charoenraks, T.; Wangfuengkanagul, N.; Grudpan, K.; Chailapakul, O. Flow injection analysis of tetracycline in pharmaceutical formulation with pulsed amperometric detection. Anal. Chim. Acta 2003, 499, 191–197.Search in Google Scholar

Palomeque, M. E.; Ortíz, P. I. New automatized method with amperometric detection for the determination of azithromycin. Talanta 2007, 72, 101–105.Search in Google Scholar

Parham, H.; Zargar, B. Square-wave voltammetric (SWV) determination of captopril in reconstituted serum and pharmaceutical formulations. Talanta 2005, 65, 776–780.10.1016/j.talanta.2004.08.005Search in Google Scholar PubMed

Patil, R. H.; Hegde, R. N.; Nandibewoor, S. T. Voltammetric oxidation and determination of atenolol using a carbon paste electrode. Ind. Eng. Chem. Res. 2009, 48, 10206–10210.Search in Google Scholar

Pecková, K.; Navrátil, P.; Yosypchuk, P.; Costa Moreira, J.; Leandro, K. C.; Barek, J. Voltammetric determination of azidothymidine using silver solid amalgam electrodes. Electroanal. 2009, 21, 1750–1757.Search in Google Scholar

Pedrosa, V. A.; Lowinsohn, D.; Bertotti, M. FIA Determination of paracetamol in pharmaceutical drugs by using gold electrodes modified with a 3-Mercaptopropionic acid monolayer. Electroanal. 2006, 18, 931–934.Search in Google Scholar

Peng, J. Y.; Hou, C. T.; Liu, X. X.; Li, H. B.; Hu, X. Y. Electrochemical behavior of azithromycin at graphene and ionic liquid composite film modified electrode. Talanta 2011, 86, 227–232.Search in Google Scholar

Perantoni, C. B.; Carbogim, L. G. S.; Semaan, F. S.; Matos, R. C.; Lowinsohn, D. Flow Injection analysis of ethambutol in antituberculosis drugs using a graphite-paraffin electrode as amperometric detector. Electroanal. 2011, 23, 2582–2585.Search in Google Scholar

Pfaffen, V.; Faudone, S. N.; Sperandeo, N. R.; Cuffini, S. L.; Ortiz, P. I. Determination of azithromycin by an alternative FIA amperometric method for different pharmaceutical application. Ind. Eng. Chem. Res. 2013, 52, 4973–4977.Search in Google Scholar

Pinkzewska, A.; Sosna, M.; Bloodworth, S.; Kilburn, J. D.; Bartlett, P. N. High-throughput synthesis and electrochemical screening of a library of modified electrodes for NADH oxidation. J. Am. Chem. Soc. 2012, 134, 18022–18033.Search in Google Scholar

Pires Eisele, A. P.; Nóbile Clausen, D.; Teixeira Tarley, C. R.; Dall’Antonia, R. H.; Romao Sartori, E. Simultaneous square-wave voltammetric determination of paracetamol, caffeine and orphenadrine in pharmaceutical formulations using a cathodically pretreated boron-doped diamond electrode. Electroanal. 2013, 25, 1734–1741.Search in Google Scholar

Pournaghi-Azar, M. H.; Kheradmandi, S.; Saadatirad, A. Simultaneous voltammetry of paracetamol, ascorbic acid, and codeine on a palladium-plated aluminum electrode: oxidation pathway and kinetics. J. Solid State Electrochem. 2010, 14, 1689–1695.Search in Google Scholar

Prasad, B. B.; Gupta, S. Indirect measurement of cephalosporins and penicillins by differential pulse adsorptive stripping voltammetry at mercury electrode. Acta Pharm. 2000, 50, 83–92.Search in Google Scholar

Prieto, J. A.; Jimenez, R. M.; Alonso, R. M. Square wave voltammetric determination of the angiotensin-converting enzyme inhibitors cilazapril, quinapril and ramipril in pharmaceutical formulations. Farmaco 2003, 58, 343–350.Search in Google Scholar

Proudfoot, J.; Nosjean, O.; Blanchard, J.; Wang, J.; Besson, D.; Crankshaw, D.; Gauglitz, G.; Hertzberg, R.; Homon, C.; Llewellyn, L.; Neubig, R.; Walker, L.; Villa, P. Glossary of terms used in biomolecular screening (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 1129–1158.Search in Google Scholar

Pumera, M.; Sánchez, S.; Ichinose, I.; Tang, J. Electrochemical nanobiosensors. Sensor Actuat. B 2007, 123, 1195–1205.10.1016/j.snb.2006.11.016Search in Google Scholar

Quintino, M. S. M.; Araki, K.; Toma, H. E.; Angnes, L. Batch injection analysis utilizing modified electrodes with tetraruthenated porphyrin films for acetaminophen quantification. Electroanal. 2002a, 14, 1629–1634.Search in Google Scholar

Quintino, M. S. M.; Corbo, D.; Bertotti, M.; Angnes, L. Amperometric determination of acetylsalicylic acid in drugs by batch injection analysis at a copper electrode in alkaline solutions. Talanta 2002b, 58, 943–949.10.1016/S0039-9140(02)00433-2Search in Google Scholar

Radi, A. Stripping voltammetric determination of indapamide in serum at castor oil-based carbon paste electrodes. J. Pharm. Biomed. Anal. 2001, 24, 413–419.Search in Google Scholar

Radi, A. Adsorptive stripping square-wave voltammetric behavior of rofecoxib. Microchem. J. 2002, 72, 35–41.Search in Google Scholar

Radi, A. Accumulation and trace measurement of chloroquine drug at DNAmodified carbon paste electrode. Talanta 2005, 65, 271–275.10.1016/j.talanta.2004.05.024Search in Google Scholar

Radi, A.-E. M., Eissa, S. H. Electrochemical study of glimepiride and its complexation with β-cyclodextrin. Collect. Czech. Chem. C 2011, 76, 13–25.10.1135/cccc2010091Search in Google Scholar

Radi, A.; El-Sherif, Z. Determination of levofloxacin in human urine by adsorptive square-wave anodic stripping voltammetry on a glassy carbon electrode. Talanta 2002, 58, 319–324.10.1016/S0039-9140(02)00245-XSearch in Google Scholar

Radi, A.; Elmogy, T. Differential pulse voltammetric determination of carvedilol in tablets dosage form using glassy carbon electrode. Farmaco 2005, 60, 43–46.10.1016/j.farmac.2004.07.016Search in Google Scholar PubMed

Radi, A.; Beltagi, A. M.; Ghoneim, M. M. Determination of ketorolac in human serum by square wave adsorptive stripping voltammetry. Talanta 2001, 54, 283–289.Search in Google Scholar

Radi, A.; Wahdan, T.; El-Ghany, N. A. Determination of cefonicid in human urine 802 by adsorptive square-wave stripping voltammetry. J. Pharm. Biomed. Anal. 2003, 31, 1041–1047.Search in Google Scholar

Radi, A.; Wassel, A. A.; El-Reis, M. A. Adsorptive behaviour and voltammetric analysis of propranolol at carbon paste electrode. Chem. Anal.-Warsaw. 2004a, 49, 51–58.Search in Google Scholar

Radi, A.; Wahdan, T.; Abd El-Ghany, N. Electrochemical oxidation of the hypoglycaemic drug glipizide on carbon paste electrode and its determination in tablet dosage form. Chem. Anal.-Warsaw 2004b, 49, 627–634.Search in Google Scholar

Radi, A.; El Reis, M. A.; Kandil, S. Spectroscopic and voltammetric studies of pefloxacin bound to calfthymus double-stranded DNA. Anal. Bioanal. Chem. 2005, 381, 451–455.Search in Google Scholar

Radovan, C.; Cofan, C.; Cinghita, D. Determination of acetaminophen and ascorbic acid at an unmodified boron-doped diamond electrode by differential pulse voltammetry in buffered media. Electroanal. 2008, 20, 1346–1353.Search in Google Scholar

Raoof, J. B.; Chekin, F.; Ojani, R.; Barari, S.; Anbia, M.; Mandegarzad, S. Synthesis and characterization of ordered mesoporous carbon as electrocatalyst for simultaneous determination of epinephrine and acetaminophen. J. Solid State Electrochem. 2012, 16, 3753–3760.Search in Google Scholar

Rauf, S.; Gooding, J. J.; Akhtar, K.; Ghauri, M. A.; Rahman, M.; Anwar, M. A.; Khalid, A. M. Electrochemical approach of anticancer drugs – DNA interaction. J. Pharm. Biomed. Anal. 2005, 23, 205–217.Search in Google Scholar

Ravi Shankaran, D.; Sriman Narayanan, S. Studies on copper hexacyanoferrate modified electrode and its application for the determination of cysteine. Bull. Electrochem. 1998, 14, 267–270.Search in Google Scholar

Razak, O. A. Electrochemical study of hydrochlorothiazide and its determination in urine and tablets. J. Pharm. Biomed. Anal. 2004, 34, 433–436.Search in Google Scholar

Razak, O. A.; Bela, S. F.; Bedair, M. M.; Haggag, R. S. The utilization of copper(II) phosphate for the anodic stripping voltammetric assay of alendronate sodium, desferrioxamine mesylate and lisinopril. Talanta 2003, 59, 1061–1069.Search in Google Scholar

Razmi, H.; Harasi, M. Rapid and accurate amperometric determination of acetaminophen in pharmaceutical preparations and spiked human blood serum samples at cadmium pentacyanonitrosylferrate modified glassy carbon electrode. J. Iran. Chem. Soc. 2008, 5, 296–305.Search in Google Scholar

Reddy, S. J.; Hermes, M.; Scholz, F. The application of abrasive stripping voltammetry for a simple and rapid screening of pesticides. Electroanal. 1996, 8, 955–958.Search in Google Scholar

Reddy, T. M.; Sreedhar, M. S. T. Electrochemical determination of sparfloxacin in pharmaceutical formulations and urine samples using a β-cyclodextrin modified carbon paste electrode. Anal. Lett. 2003, 36, 1365–1379.Search in Google Scholar

Richardson, D. R.; Sharpe, P. C.; Lovejoy, D. B.; Senaratne, D.; Kalinowski, D. S.; Islam, M.; Bernhardt, P. V. Dipyridyl thiosemicarbazone chelators with potent and selective antitumor activity form iron complexes with redox activity, J. Med. Chem. 2006, 49, 6510–6521.Search in Google Scholar

Ries, M. A.; Wassel, A. A.; Ghani, N. T. A.; El-Shall, M. A. Electrochemical adsorptive behavior of some fluoroquinolones at carbon paste electrode. Anal. Sci. 2005, 21, 1249–1254.Search in Google Scholar

Rizk, M.; Bela, F.; Ibrahim, F.; Ahmed, S.; El-Enany, N. M. Voltammetric analysis of certain 4-quinolones in pharmaceuticals and biological fluids. J. Pharm. Biomed. Anal. 2000, 24, 211–218.Search in Google Scholar

Rodriguez, J.; Berzas, J. J.; Castenada, G.; Rodriguez, N. Determination of sildenafil citrate (viagra) and its metabolite (UK-103,320) by square-wave and adsorptive stripping square-wave voltammetry. Total determination in biological samples. Talanta 2004, 62, 427–432.Search in Google Scholar

Rodríguez, J. A.; Barrado, E.; Castrillejo, Y.; Santos, J. R.; Lima, J. L. F. C. Validation of a tubular bismuth film amperometric detector: determination of diclofenac sodium by multisyringe flow injection analysis. J. Pharm. Biomed. Anal. 2007, 45, 47–53.Search in Google Scholar

Sabry, S. M. Polarographic and voltammetric assays of sulfonamides as α-Oxo-γ-Butyrolactone Arylalhydrazone. Anal. Lett. 2007, 40, 233–256.Search in Google Scholar

Sabry, S. M.; Barary, M. H.; Abdel-Hay, M. H.; Bela, T. S. Adsorptive stripping voltammetric behaviour of azomethine group in pyrimidine-containing drugs. J. Pharm. Biomed. Anal. 2004, 34, 509–516.Search in Google Scholar

Samadi-Maybodi, A.; Nejad-Darzi, S. K. H.; Ilkhani, H. A new sensor for determination of paracetamol, phenylephrine hydrochloride and chlorpheniramine maleate in pharmaceutical samples using nickel phosphate nanoparticles modified carbon paste electrode. Anal. Bioanal. Electrochem. 2011, 3,134–145.Search in Google Scholar

Sanghavi, B. J.; Srivastava, A. K. Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim. Acta 2010, 55, 8638–8648.Search in Google Scholar

Sanghavi, B. J.; Srivastava, A. K. Adsorptive stripping differential pulse voltammetric determination of venlafaxine and desvenlafaxine employing Nafion–carbon nanotube composite glassy carbon electrode. Electrochim. Acta. 2011a, 56, 4188–4196.Search in Google Scholar

Sanghavi, B. J.; Srivastava, A. K. Simultaneous voltammetric determination of acetaminophen and tramadol using Dowex50wx2 and gold nanoparticles modified glassy carbon paste electrode. Anal. Chim. Acta 2011b, 706, 246–254.10.1016/j.aca.2011.08.040Search in Google Scholar PubMed

Santhosh, P.; Kumar, N. S.; Renukadevi, M.; Gopalon, A. Y.; Vasudevan, T.; Lee, K. P. Enhanced electrochemical detection of ketorolac tromethamine at polypyrrole modified glassy carbon electrode. Anal. Sci. 2007, 23, 475–480.Search in Google Scholar

Saraswathyamma, B.; Grzybowska, I.; Radecki, J.; Dehaen, W.; Kumar, K. G.; Radecka, H. Electroactive dipyrromethene-Cu(II) monolayers deposited onto gold electrodes for voltammetric determination of paracetamol. Electroanal. 2008, 20, 2317–2323.Search in Google Scholar

Sartori, E. R.; Medeiros, R. A.; Rocha-Filho, R. C. Fatibello-Filho, O. Square-wave voltammetric determination of acetylsalicylic acid in pharmaceutical formulations using a boron-doped diamond electrode without the need of previous alkaline hydrolysis step. J. Braz. Chem. Soc. 2009, 20, 360–366.Search in Google Scholar

Sartori, E. R.; Medeiros, R. A.; Rocha-Filho, R. C.; Fatibello-Filho, O. Square-wave voltammetric determination of propranolol and atenolol in pharmaceuticals using a boron-doped diamond electrode. Talanta 2010, 81, 1418–1424.Search in Google Scholar

Sayin, F.; Kir, S. Analysis of diflunisal by electrochemical methods. J. Pharm. Biomed. Anal. 2001, 25, 153–163.Search in Google Scholar

Schultz, F.A.; Kuwana, T. Electrochemical studies of organic compounds disolved in carbón-paste electrodes. J. Electroanal. Chem. 1965, 10, 95–103.Search in Google Scholar

Scholz, F.; Meyer, B. Voltammetry of solid microparticles immobilized on electrode surfaces. Electroanal. Chem. A 1998, 20, 1–86.Search in Google Scholar

Scholz, F.; Nitschke, L.; Henrion, G. A new procedure for fast electrochemical analysis of solid materials. Naturwiss. 1989a, 76, 71–72.Search in Google Scholar

Scholz, F.; Nitschke, L.; Henrion G.; Damaschun, F. A new technique to study the electrochemistry of minerals. Naturwis. 1989b, 76, 167–168.Search in Google Scholar

Scholz, F.; Schröder, U.; Gulabowski, R. Electrochemistry of Immobilized Particles and Droplets; Berlin-Heidelberg: Springer, 2005.Search in Google Scholar

Schultz, F. A.; Kuwana, T. Electrochemical studies of organic compounds dissolved in carbon-paste electrodes. J. Electroanal. Chem. 1965, 10, 95–103.Search in Google Scholar

Seman, F. S.; Pinto, E. M.; Cavalheiro, E. T. G.; Brett, C. M. A. A graphite-polyurethane composite electrode for the analysis of furosemide. Electroanal. 2008, 20, 2287–2293.Search in Google Scholar

Shahrokhian, S.; Amiri, M. Multi-walled carbon nanotube paste electrode for selective voltammetric detection of isoniazid. Microchim. Acta. 2007, 157, 149–158.Search in Google Scholar

Shahrokhian, S.; Asadian, E. Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode. Electrochim. Acta 2010, 55, 666–672.10.1016/j.electacta.2009.08.065Search in Google Scholar

Shahrokhian, S.; Karimi, M.; Khajehsharifi, H. Carbon-paste electrode modified with cobalt-5-nitrolsalophen as a sensitive voltammetric sensor for detection of captopril. Sensor Actuat. B 2005, 109, 278–284.Search in Google Scholar

Shahrokhian, S.; Jokar, E.; Ghalkhani, M. Electrochemical determination of piroxicam on the surface of pyrolytic graphite electrode modified with a film of carbon nanoparticle-chitosan. Microchim. Acta 2010, 170, 141–146.Search in Google Scholar

Shamsipur, M.; Farhadi, K. Electrochemical behavior and determination of ketoconazole from pharmaceutical preparations. Electroanal. 2000, 12, 429–433.Search in Google Scholar

Shamsipur, M.; Farhadi, K. Electrooxidation of ketoconazole in acetonitrile and its determination in pharmaceutical preparations. Chem. Anal.-Warsaw 2001, 46, 387–395.Search in Google Scholar

Shao, Y.; Wang, J.; Wu, H.; Liu, J.; Aksay, I. A.; Lin, Y. Graphene Based electrochemical sensors and biosensors: a review. Electroanal. 2010, 22, 1027–1036.Search in Google Scholar

Shetti, N. P.; Malode, S. J.; Nandibewoor, S. T. Electrochemical behavior of an antiviral drug acyclovir at fullerene-C60-modified glassy carbon electrode. Bioelectrochem. 2012, 88, 76–83.Search in Google Scholar

Shih, Y.; Zen, J. M.; Yang, H. H. Determination of codeine in urine and drug formulations using a clay-modified screen-printed carbon electrode. J. Pharm. Biomed. Anal. 2002, 29, 827–833.Search in Google Scholar

Siangproh, W.; Dungchai, W.; Rattanarat, P.; Chailapkul, O. Nanoparticle-based electrochemical detection in conventional and miniaturized systems and their bioanalytical applications: a review. Anal. Chim. Acta. 2011, 690, 10–25.Search in Google Scholar

Silva, M. L. S.; Garcia, M. B. Q.; Lima, J. L. F. C.; Barrado, E. Determination of piroxicam in pharmaceutical formulations combining amperometry and multicommutation. Electroanal. 2007, 19, 1362–1367.Search in Google Scholar

Silva, W. C.; Pereira, P. F.; Marra, M. C.; Gimenes, D. T.; Cunha, R. R.; Da Silva, R. A. B.; Munoz, R. A. A.; Richter, E. M. A simple strategy for simultaneous determination of paracetamol and caffeine using flow injection analysis with multiple pulse amperometric detection. Electroanal. 2011, 23, 2764–2770.Search in Google Scholar

Skrzypek, S.; Nosal-Wiercińska, A.; Ciesielski, W. Electrochemical studies of ganciclovir as the adsorbed catalyst on mercury electrode. Collect. Czech. Chem. C 2009, 74, 1455–1466.Search in Google Scholar

Solangi, A. R.; Khuhawar, M. Y.; Bhanger, M. I. Adsorptive stripping voltammetric determination of fluoroquinolones in pharmaceuticals. J. Food Drug Anal. 2005, 13, 201–204.Search in Google Scholar

Souza, M. R. S.; Aragão, D. M.; Santos, R. H. T.; Garcia, C. A. B.; Alves, J. P. H.; Arguelho, M. L. P. M. Electrochemical behavior of the antibiotic minocycline and its voltammetric determination in pharmaceutical formulations at carbon paste electrode. ECS Transactions 2012, 43, 289–296.Search in Google Scholar

Sreedhar, N. Y.; Sujatha, K. R. S. D.; Thriveni, T. Voltammetry of mitomycin C and its quantitative assay in pharmaceutical formulations, urine and serum samples. Bull. Electrochem. 2001, 17, 513–518.Search in Google Scholar

Stefano, J. S.; De Lima, A. P.; Montes, R. H. O.; Richter, E. M.; Muñoz, R. A. A. Fast determination of naproxen in pharmaceutical formulations by batch injection analysis with pulsed amperometric detection. J. Braz. Chem. Soc. 2012, 23, 1834–1838.Search in Google Scholar

Stefan-van Staden, R. I.; van Staden, J. F.; Aboul-Enein, H. Y. Diamond paste-based electrodes for the determination of sildenafil citrate (Viagra). J. Solid State Electrochem. 2010, 14, 997–1000.Search in Google Scholar

Stoiljković, Z. Z.; Avramov Ivić, M. L.; Petrović, S. D.; Mijin, D. Z.; Stevanović, S. I.; Lačnjevac, U. C.; Marinković, A. D. Voltammetric and square-wave anodic stripping determination of amlodipine besylate on gold electrode. Int. J. Electrochem. Sci. 2012, 7, 2288–2303.Search in Google Scholar

Sun, N.; Mo, W. M.; Shen, Z. L.; Hu, B. X. Adsorptive stripping voltammetric technique for the rapid determination of tobramycin on the hanging mercury electrode. J. Pharm. Biomed. Anal. 2005, 38, 256–262.Search in Google Scholar

Suryanaron, V.; Zhang, Y.; Yoshihara, S.; Shirakashi, T. Voltammetric assay of naproxen in pharmaceutical formulations using boron-doped diamond electrode. Electroanal. 2005, 17, 925–932.Search in Google Scholar

Suslu, I.; Altinoz, S. Electrochemical behavior of quinapril and its determination in pharmaceutical formulations by square-wave voltammetry at a mercury electrode. Pharmazie 2008, 63, 428–433.Search in Google Scholar

Suslu, I.; Ozaltin, N.; Altinoz, S. Square-wave adsorptive stripping voltammetric determination of candesartan cilexetil in pharmaceutical formulations. J. Appl. Electrochem. 2009, 39, 1535–1543.Search in Google Scholar

Svancara, I.; Vytras, K.; Kalcher, K.; Walcarius, A.; Wang, J. Carbon paste electrodes in facts, numbers, and notes: a review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanal. 2009, 21, 7–28.Search in Google Scholar

Švorc, L.; Sochr, J.; Tomčik, P.; Rievaj, M.; Bustin, D. Simultaneous determination of paracetamol and penicillin V by square-wave voltammetry at a bare boron-doped diamond electrode. Electrochim. Acta 2012a, 68, 227–234.10.1016/j.electacta.2012.02.071Search in Google Scholar

Švorc, L.; Sochr, J.; Rievaj, M.; Tomčík, P.; Bustin, D. Voltammetric determination of penicillin V in pharmaceutical formulations and human urine using a boron-doped diamond electrode. Bioelectrochem. 2012b, 88, 36–41.Search in Google Scholar

Švorc, L.; Sochr, J.; Svitkova, J.; Rievaj, M.; Bustin, D. Rapid and sensitive electrochemical determination of codeine in pharmaceutical formulations and human urine using a boron-doped diamond film electrode. Electrochim. Acta. 2013, 87, 503–510.Search in Google Scholar

Tamer, U.; Ozcicek, N.P.; Atay, O.; Yildiz, A. Voltammetric determination of cilazapril in pharmaceutical formulations. J. Pharm. Biomed. Anal. 2002, 29, 43–50.Search in Google Scholar

Teixeira, M. F. S.; Dadamos, T. R. L. An electrochemical sensor for dipyrone determination based on nickel-salen film modified electrode. Procedia Chem. 2009, 1, 297–300.Search in Google Scholar

Teixeira, M. F. S.; Marcolino-Junior, L. H.; Fatibello-Filho, O.; Dockal, E. R.; Cavallheiro, E. T. G. Voltammetric determination of dipyrone using a N,N’-ethylenebis(salicylideneaminato)oxovanadium(IV) modified carbon-paste electrode. J. Braz. Chem. Soc. 2004, 15, 803–808.Search in Google Scholar

Temsamani, K. R.; Fahmi, T.; Bouchta, D.; Kaifer, A. E. Cyclic voltammetric studies of the antipsychotic chlorpromazine using an alkylthiol/phospholipid-modified gold electrode. J. Solid State Electrochem. 1997, 1, 143–147.Search in Google Scholar

Thomas, T.; Mascarenhas, R. J.; Cotta, F.; Guha, K. S.; B. E.; Swamy, K.; Martis, P.; Mekhalif, Z. Poly(Patton and Reeder’s reagent) modified carbon paste electrode for the sensitive detection of acetaminophen in biological fluid and pharmaceutical formulations. Colloid Surf. B 2013, 101, 91–96.Search in Google Scholar

Tian, X.-J.; Song, J.-F. Catalytic action of copper (II) ion on electrochemical oxidation of metformine and voltammetric determination of metformine in pharmaceuticals. J. Pharm. Biomed. Anal. 2007, 44, 1192–1196.Search in Google Scholar

Tiwari, D. C.; Jain, R.; Sharma, S. Development of polymer composite electrode to analyze metformin hydrochloride drug in pharmaceutical formulation with higher current response. Asian J. Chem. 2012, 24,1747–1750.Search in Google Scholar

Toral, M. I.; Paine, M.; Leyton, P.; Richter, P. Determination of attapulgite and nifuroxazide in pharmaceutical formulations by sequential digital derivative spectrophotometry. J. AOAC Int. 2004, 87, 1323–1328.Search in Google Scholar

Torres, A. C.; Barsan, M. M.; Brett, C. M. A. Simple electrochemical sensor for caffeine based on carbon and Nafion-modified carbon electrodes. Food Chem., 2014, 149, 215–220.Search in Google Scholar

Torriero, A. A. J.; Ruiz-Diaz, J. J. T.; Salinas, E.; Marceusky, E. J.; Soha, M. I.; Raba, J. Enzymatic rotating biosensor for ciprofloxacin determination. Talanta 2006, 69, 691–699.Search in Google Scholar

Tsierkezos, N. G.; Othman, S. H.; Ritter, U. Nitrogen-doped carbon nanotubes modified with gold nanoparticles for simultaneous analysis of N-acetylcysteine and acetaminophen. J. Solid State Electrochem. 2014. 18, 629–637.Search in Google Scholar

Turhan, E.; Uslu, B. Electroanalytical determination of opipramol in pharmaceutical preparations and biological fluids. Anal. Lett. 2008, 41, 2013–2032.Search in Google Scholar

Tyszczuk, K. Application of an in situ plated lead film electrode to the analysis of testosterone by adsorptive stripping voltammetry. Anal. Bioanal. Chem. 2008, 390, 1951–1956.Search in Google Scholar

Tyszczuk, K. Sensitive voltammetric determination of rutin at an in situ plated lead film electrode. J. Pharm. Biomed. Anal. 2009, 49, 558–561.Search in Google Scholar

Tyszczuk, K. Determination of diazepam, temazepam and oxazepam at the lead film electrode by adsorptive cathodic stripping voltammetry. Electroanal. 2010, 22, 1975–1984.Search in Google Scholar

Tyszczuk, K.; Korolczuk, M. New protocol for determination of rifampicine by adsorptive stripping voltammetry. Electroanal. 2009a, 21, 101–106.Search in Google Scholar

Tyszczuk, K.; Korolczuk, M. In-situ plated lead film electrode for determination of glipizide in pharmaceutical formulation and human urine. Chem. Anal.-Warsaw 2009b, 54, 31–41.Search in Google Scholar

Tyszczuk, K.; Korolczuk, M. Analysis of organic compounds using and in situ plated lead film electrode. Comb. Chem. High Throughput Screen. 2010, 13, 753–757.Search in Google Scholar

Uliana, C. V.; Yamanaka, H.; Garbellini, G. S.; Salazar-Banda, G. R. Determination of 5-aminosalicylic acid in pharmaceutical formulations by square wave voltammetry at pencil graphite electrodes. Quím. Nova. 2010, 33, 964–967.Search in Google Scholar

Uslu, B.; Ozkan, S. A. Electrochemical characterisation of nefazodone hydrochloride and voltammetric determination of the drug in pharmaceuticals and human serum. Anal. Chim. Acta. 2002, 462, 49–57.Search in Google Scholar

Uslu, B.; Ozkan, S. A. Anodic voltammetry of abacavir and its determination in pharmaceuticals and biological fluids. Electrochim. Acta. 2004, 49, 4321–4329.Search in Google Scholar

Uslu, B.; Ozkan, S. A. Electroanalytical methods for the determination of pharmaceuticals: a review of recent trends and developments. Anal. Lett. 2011, 44, 2644–2702.Search in Google Scholar

Uslu, B.; Yilmaz, S.; Ozkan, S. A. Determination of olsalazine sodium in pharmaceuticals by different pulse voltammetry. Pharmazie 2001, 56, 629–632.Search in Google Scholar

Uslu, B.; Dogan, B.; Ozkan, S. A.; Aboul-Enein, H. Y. Voltammetric investigation and determination of mefloquine. Electroanal. 2005a, 17, 1563–1570.Search in Google Scholar

Uslu, B.; Dogan, B.; Ozkan, S. A. Electrochemical studies of ganciclovir at glassy carbon electrodes and its direct determination in serum and pharmaceutics by square wave and differential pulse voltammetry. Anal. Chim. Acta. 2005b, 537, 307–313.Search in Google Scholar

Uslu, B.; Dogan, B.; Ozkan, S. A.; Aboul-Enein, H. Y. Electrochemical behavior of vardenafil on glassy carbon electrode: determination in tablets and human serum. Anal. Chim. Acta. 2005c, 552, 127–134.Search in Google Scholar

Uslu, B.; Ozkan, S. A.; Senturk, Z. Electrooxidation of the antiviral drug valacyclovir and its square wave and differential pulse voltammetric determination in pharmaceuticals and human biological fluids. Anal. Chim. Acta. 2006, 555, 341–347.Search in Google Scholar

Uslu, B.; Topal, B.; Ozkan, S. A. Electroanalytical investigation and determination of pefloxacin in pharmaceuticals and serum at boron-doped diamond and glassy carbon electrodes. Talanta 2008, 74, 1191–1200.Search in Google Scholar

Vacek, J.; Andrysik, Z.; Trnkova, L.; Kizek, R. Determination of azidothymidine-an antiproliferative and virostatic drug by square-wave voltammetry. Electroanal. 2004, 16, 224–230.Search in Google Scholar

Vela, M. H.; Quinaz Garcia, M. B.; Montenegro, M. C. B. S. M. Electrochemical behaviour of sertraline at a hanging mercury drop electrode and its determination in pharmaceutical products. Anal. Bioanal. Chem. 2001, 369, 563–566.Search in Google Scholar

Vilchez, J. L.; Araujo, L.; Prieto, A.; Navalon, A. Differential-pulse adsorptive stripping voltammetric determination of the antibacterial lomefloxacin. J. Pharm. Biomed. Anal. 2001, 26, 23–29.Search in Google Scholar

Vilchez, J. L.; Taoufiji, J.; Araujo, L.; Navalon, A. Determination of the antibacterial trovafloxacin by differential-pulse adsorptive stripping voltammetry. J. Pharm. Biomed. Anal. 2003, 31, 465–471.Search in Google Scholar

Wahdan, T. Voltammetric methods for the simultaneous determination of rifampicin and isoniazid in pharmaceutical formulations. Chem. Anal.-Warsaw. 2005, 50, 457–464.Search in Google Scholar

Wan, Q.; Wang, X.; Yu, F.; Wang, X.; Yang, N. Poly(taurine)/MWNT-modified glassy carbon electrodes for the detection of acetaminophen. J. Appl. Electrochem. 2009a, 39, 785–790.Search in Google Scholar

Wan, Q.; Wang, X.; Yu, F.; Wang, X.; Yang, N. Effects of capacitance and resistance of MWNT-film coated electrodes on voltammetric detection of acetaminophen. J. Appl. Electrochem. 2009b, 39, 1145–1151.Search in Google Scholar

Wan, H.; Zhao, F.; Zeng, B. Direct electrochemistry and voltammetric determination of midecamycin at a multi-walled carbon nanotube coated gold electrode. Colloid Surf. B 2011, 86, 247–250.Search in Google Scholar

Wang, H.; Zhang, A.; Cui, H.; Liu, D.; Liu, R. Adsorptive stripping voltammetric determination of erythromycin at a pretreated glassy carbon electrode. Microchem. J. 2000, 64, 67–71.Search in Google Scholar

Wang, C.; Shao, X.; Liu, Q.; Qu, Q.; Yang, G.; Hu, X. J. Differential pulse voltammetric determination of nimesulide in pharmaceutical formulation and human serum at glassy carbon electrode modified by cysteic acid/CNTs based on electrochemical oxidation of l-cysteine. J. Pharm. Biomed. Anal. 2006, 42, 237–244.Search in Google Scholar

Wangfuengkanagul, N.; Chailapakul, O. Electrochemical analysis of acetaminophen using a boron-doped diamond thin film electrode applied to flow injection system. J. Pharm. Biomed. Anal. 2002, 28, 841–847.Search in Google Scholar

Wangfuengkanagul, N.; Siangproh, W.; Chailapakul, O. A flow injection method for the analysis of tetracycline antibiotics in pharmaceutical formulations using electrochemical detection at anodized boron-doped diamond thin film electrode. Talanta 2004, 64, 1183–1188.Search in Google Scholar

Webster, G. K.; Craig, R. A.; Pommerening, C. A.; Acworth, I. N. Selection of Pharmaceutical antioxidants by hydrodynamic voltammetry. Electroanal. 2012, 24, 1394–1400.Search in Google Scholar

Wolfart, F.; Maciel, A.; Nagata, N.; Vidotti, M. Electrocatalytical properties presented by Cu/Ni alloy modified electrodes toward the oxidation of glucose. J. Solid State Electrochem. 2013, 17, 1333–1338.Search in Google Scholar

Won, S.-Y.; Chandra, P.; Hee, T. S.; Shim, Y.-B. Simultaneous detection of antibacterial sulfonamides in a microfluidic device with amperometry. Biosens. Bioelectron. 2013, 39, 204–209.Search in Google Scholar

Wu, S.; He, Q.; Tan, C.; Wang, Y.; Zhang, H. Graphene-based electrochemical sensors. Small 2013, 22, 1162–1170.Search in Google Scholar

Xu, M.; Song, J. Polarographic determination of lovastatin in the presence of H2O2 in pharmaceuticals, human urine and serum. Microchim. Acta. 2004, 148, 183–189.Search in Google Scholar

Yang, G.; Wang, C.; Zhang, R.; Wang, C.; Qu, Q.; Hu, X. Poly(amidosulfonic acid) modified glassy carbon electrode for determination of isoniazid in pharmaceuticals. Bioelectrochem. 2008, 73, 37–42.Search in Google Scholar

Yang, G.; Wang, L.; Jia, J.; Zhou, D.; Li, D. Chemically modified glassy carbon electrode for electrochemical sensing paracetamol in acidic solution. J. Solid State Electrochem. 2012a, 16, 2967–2977.Search in Google Scholar

Yang, G.; Yu, L.; Jia, J.; Zhao, Z. 4-Aminobenzoic acid covalently modified glassy carbon electrode for sensing paracetamol at different temperatures. J. Solid State Electrochem. 2012b, 16, 1363–1368.Search in Google Scholar

Yardimci, C.; Ozaltin, N. Electrochemical studies and square-wave voltammetric determination of fenofibrate in pharmaceutical formulations. Anal. Bioanal. Chem. 2004, 378, 495–498.Search in Google Scholar

Ye, D.; Xu, Y.; Luo, L.; Ding, Y.; Wang, Y.; Liu, X. LaNi0.5Ti0.5O3/CoFe2O4-based sensor for sensitive determination of paracetamol. J. Solid State Electrochem. 2012, 16, 1635–1642.Search in Google Scholar

Yilmaz, S.; Uslu, B.; Ozkan, S. A. Anodic oxidation of etodolac and its square wave and differential pulse voltammetric determination in pharmaceuticals and human serum. Talanta 2001, 54, 351–360.Search in Google Scholar

Yin, H.; Ma, Q.; Zhou, Y.; Ai, S.; Zhu, L. Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene–chitosan composite film modified glassy carbon electrode. Electrochim. Acta 2010, 55, 7102–7108.Search in Google Scholar

Yin, H.; Zhou, Y.; Liu, T.; Tang, T.; Ai, S.; Zhu, L. Determination aminopyrine in pharmaceutical formulations based on APTS-Fe3O4 nanoparticles modified glassy carbon electrode. J. Solid State Electrochem. 2012, 16, 731–738.Search in Google Scholar

Youssef, R. M.; Maher, H. M. Electrochemical study of spiramycin and its determination in pharmaceutical preparation. Drug Test Anal. 2010, 2, 392–396.Search in Google Scholar

Zayed, S. I. M. Cathodic adsorptive stripping voltammetric determination of prednisolone in pharmaceutical preparation and human urine. Acta Chim. Slov. 2011, 58, 75–80.Search in Google Scholar

Zhao, L.; Schenkman, J. B.; Rusling, J. F. Screening for reactive metabolites using electro-optical arrays featuring human liver cytosol and microsomal enzyme sources and DNA. Chem. Commun. 2009, 5386–5388.10.1039/b909372aSearch in Google Scholar PubMed PubMed Central

Zidan, M.; Tee, T. W.; Abdullah, A. H.; Zainal, Z.; Kheng, G. J. Electrochemical oxidation of paracetamol mediated by nanoparticles bismuth oxide modified glassy carbon electrode. Int. J. Electrocehm. Sci. 2011, 6, 279–288.Search in Google Scholar

Ziyatdinova, G. K.; Budnikov, G. K.; Pogoreltsev, V. I. Determination of captopril 828 in pharmaceutical forms by stripping voltammetry. J. Anal. Chem. 2006, 61, 798–800.Search in Google Scholar

Ziyatdinova, G.; Ziganshina, E.; Budnikov, H. Surfactant media for constant-current coulometry. Application for the determination of antioxidants in pharmaceuticals. Anal. Chim. Acta 2012, 744, 23–28.Search in Google Scholar

Ziyatdinova, G.; Ziganshina, E.; Budnikov, H. Electrochemical reduction and quantification of menadione in sodium dodecyl sulfate micellar media. J. Solid State Electrochem. 2013, 17, 2679–2685.Search in Google Scholar

Received: 2013-12-21
Accepted: 2014-7-13
Published Online: 2014-8-28
Published in Print: 2014-10-1

©2014 by De Gruyter

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revac-2013-0027/html
Scroll to top button