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Abstract: Permeability is broadly defined as the ability of a material to allow the
transportation of liquids, gases, or vapors through it. Although numerous references
can be found in the literature giving the permeability values of polymers, there is no
standard unit of gas or vapor transport, making comparisons difficult. This review
summarizes the permeability of single polymer films used in book and paper
conservation, specifically addressing the permeability of storage materials and
processes such as encapsulation. In particular, the permeability of the polymer films
to oxygen, nitrogen, hydrogen sulfide, water vapor, and acetic acid is summarized.
The permeability was found to differ by over 7 orders ofmagnitude when comparing
different gases and vapors diffusing through the polymer films. The permeability is
dependent on themolecular size of the diffusing gas or vapor, with smallermolecules
diffusing faster than larger molecules. In addition, the chemistry of the film plays a
role. Hydrophilic polymers have a much greater permeability of polar diffusants
such as water vapor than hydrophobic polymers. In addition, the permeation
increases significantly with temperature. The review provides data of the perme-
ability properties of the films used by conservators and will enable them to make an
informed decision of the best material for their application.
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Zusammenfassung: Die Permeabilität ist allgemein definiert als die Fähigkeit eines
Materials, den Transport von Flüssigkeiten, Gasen oder Dämpfen durch das Material
zu ermöglichen. Obwohl in der Literatur zahlreiche Angaben für die Permeabili-
tätswerte von Polymeren zu finden sind, gibt es keine Standardeinheit für den
Gas- oder Dampftransport, was einen Vergleich erschwert. Diese Übersicht
fasst die Permeabilität einzelner Polymerfolien zusammen, die in der Buch- und
Papierrestaurierung verwendet werden, und befasst sich mit der Permeabilität von
Materialien, die bei Verpackung, (Langzeit)aufbewahrung oder zur Stabilisierung
eingesetzt werden. Insbesondere wird die Durchlässigkeit der Folien für Sauerstoff,
Stickstoff, Schwefelwasserstoff, Wasserdampf und Essigsäure zusammengefasst. Beim
Vergleich verschiedener Gase und Dämpfe, die durch die Polymerfolien diffundieren,
wurde festgestellt, dass sich die Durchlässigkeit um mehr als 7 Größenordnungen
unterscheidet. Die Durchlässigkeit hängt von der Molekülgröße des diffundierenden
Gases oder Dampfes ab, wobei kleinere Moleküle schneller diffundieren als größere
Moleküle. Darüber hinaus spielt auch die chemische Zusammensetzung der Folie eine
Rolle. Hydrophile Polymere haben eine viel größere Durchlässigkeit für polare
Diffusionsmittel wie Wasserdampf als hydrophobe Polymere. Darüber hinaus nimmt
die Permeation mit der Temperatur deutlich zu. Die Übersicht liefert Daten zu den
Durchlässigkeitseigenschaften von in der Restaurierung verwendeter Folien und
liefert eine fundierte Entscheidungshilfe bei der Auswahl von Folienmaterial.

Schlüsselwörter: Permeabilität; Polymere; Polyethylenterephthalat; Gas; Dämpfe

1 Introduction

Polymer films and coatings are used in many areas of conservation (Chu et al. 2023;
Taylor 1985; “The Conservation and Art Materials Encyclopedia Online (Cameo)”
2024). For example, polymers are used for the repair and protection of artwork and to
separate two materials that might otherwise corrode or react when in contact. In
book and paper conservation, polymer films are used in encapsulation (McGath et al.
2017; Minter 1983; Polyester Film Encapsulation 1980), lamination (McGath 2017;
McGath, Hall, andMcGuiggan 2017), as consolidants and adhesives (Phelan, Baer, and
Indictor 1971), and as an interleaf. Often, polymer films are used to give support and
mechanical strength to a material and may be used to protect or isolate the material
from the environment.

Some polymer films provide a barrier to the transport of specific gases
through the film, others are semi-permeable to gases while others are permeable.
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Permeability is broadly defined as the ability of a material to allow the transport of
liquids, gases, or vapors through it. It is important in various science and technology
applications includinggeology, gas separation, foodand electronic packaging, coatings,
and biomedical devices (Oreski et al. 2017; Robertson 1993). Because of its industrial
importance, many references on the permeation of polymers can be found in the
literature (Extrand 2008; Keller and Kouzes 2017; Kjeldsen 1993;McKeen 2017b; Norton
1957; Pauly 1999; Rogers 1985). Permeation occurs in most materials. For example,
although glass is impermeable to liquids and most gases, helium can travel through
glass because of its small atomic size (Norton 1953, 1957). Helium also diffuses through
many polymer films and this is readily apparent in helium balloons which need to be
metalized to hold the helium and still slowly deflate due to the helium diffusing out of
the balloons (Mapes, Hseuh, and Jiang 1994; Murray et al. 2016).

Although there are numerous studies in the literature that give permeabilities of
various polymers to a number of different gases and vapors, often these are takenwith
different measuring techniques and the results are published with different units,
making a comparison difficult (Huglin and Zakaria 1983; Metz et al. 2005). One study
found 29 different unitswere used to definepermeability (HuglinandZakaria 1983). For
gases, the permeation is generally reported in terms of volume flux multiplied by the
film thickness divided by the partial pressure difference while for vapors it is generally
given in terms ofmassflux times thefilm thickness. Therefore, vapor permeabilities do
not always contain a pressure differential, whereas gas permeabilitymeasurements do
(Massey 2003). In addition, permeability is often described by various terminologies
including gas transmission rate, gas permeance, and the gas permeability coefficient.
For water vapor, moisture vapor transmission rate, MVTR, is often given for perme-
ability.Many references canbe foundwith tables to allowconversionbetween the units
(Keller and Kouzes 2017; Pauly 1999) and an online calculator (Abbott 2023) has also
been published. However, conversions problems arise if no pressure is given or if the
conditions of the test, i.e., relative humidity and temperature, are not given.

Therefore, this study was undertaken to summarize the permeability properties
of many of the polymer films used in conservation using standard units to enable a
direct comparison. Specifically, the permeability of various uncoated single polymer
films to oxygen, nitrogen, hydrogen sulfide, and water vapor is summarized. A few
polymer films not typically used in conservation are also included for comparison.
The intention of this paper is to summarize the permeability of single polymer films
used in conservation. With this information, conservators will be able to choose the
best polymer film for their specific needs.

2 Encapsulation

In paper conservation, onemethod used to protect documents from the environment
as well as to mechanically support brittle or damaged documents is to encapsulate
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the document by placing the document in a plastic envelope (“Care, Handling, and
Storage of Works on Paper” 2024; Shahani andWilson 1987; “The Physical Protection
of Brittle and Deteriorating Documents by Polyester Encasement” 1975). Encapsu-
lation mechanically stabilizes the document and also protects it from exposure to
liquids, fingerprint grease, insects, or other environmental hazards.

Encapsulation is one of the preferredmethods used to protect documents since it
is easily reversible and does not involve bonding with the material (McGath et al.
2017; Minter 1983; Polyester Film Encapsulation 1980). Other conservation methods
such as silking (Marwick 1964), lining (Zihrul 2010), and lamination (Barrow 1939;
McGath et al. 2015; Poole 1976) involve chemical and physical attachment of the
polymer film to the document. In encapsulation, the two opposing films weakly
adhere and this keeps thin or light objects from shifting within the envelope, thereby
protecting the document from damage due to friction (Preservation Office Research
Services 1980).

Although the purpose of a barrier film is to protect the material from physical
and chemical damage from the environment, even in typical environments,
materials degrade over time. For example, paper degrades due to oxidation and
hydrolysis of the cellulose fibers within the paper as well as possible degradation
reactions of the additives and sizing in the paper affecting the cellulose (Hubbe et al.
2017; Łojewska et al. 2005; Shahani and Harrison 2002; Zou, Uesaka, and Gurnagul
1996). The degradation of cellulose leads to the production of volatile acidic com-
pounds such as formic and acetic acid which can further catalyze degradation
reactions within the document (Fenech et al. 2010; Jablonsky et al. 2012; Olivier et al.
2009; Shahani and Harrison 2002; Smedemark et al. 2020; Tétreault et al. 2013).
Because of these reactions, it is desirable to remove or isolate volatile degradation
products from the environment of the paper. However, if the paper is encapsulated,
the gases formed during cellulose degradation might become trapped within the
encapsulate, causing further damage to the paper. The degradation of the cellulose
fibers leads to the paper becoming brittle and is one of the leading causes that books
are removed from general use in libraries and archives.

Although a variety of polymer films are used by hobbyists and conservators,
many are not considered archival and even archival films should not be usedwith all
materials. For example, encapsulation is not recommended for photographs and
chalk or charcoal drawings (Reilly et al. 1989). One reason is the electrostatic charge
on the film can attract dust which might scratch the material or the friction and
electrostatics between the polymer film and thematerial can lift off flaking or friable
media, causing damage to the document (Polyester Film Encapsulation 1980).

The specificfilm selected to protect amaterial is dictated by the desired chemical
and physical properties of the polymer film. Biaxially oriented poly(ethylene tere-
phthalate) (PET) is the polymer film recommended for encapsulation (Polyester Film
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Encapsulation 1980). PET was chosen since it has good clarity, mechanical strength,
and is chemically stable. PET is also used as a barrier material to separate two
contacting surfaces. This interleaf minimizes transfer of compounds from one
surface to another (Tétreault 2017).

Other polymeric materials are also used for storage of paper based materials,
including polyethylene and polypropylene bags and sleeves specificallymade to hold
photographs, baseball cards, and single paper sheets (Reilly et al. 1989). Various other
polymer films that are or have been used in conservation include cellulose based
polymers: cellophane, nitrocellulose, cellulose acetate, glassine, and ethyl cellulose
and oil-based polymers: nylon and polytetrafluorethylene (Teflon®). In particular,
glassine is often used for the short-term storage of stamps and negatives. Nylon Film
(Nylon 6/6) is used as awrap for art, a transparent dust cover, and lining for paintings
(“Masterpak.” n.d.). Note that some of these polymer films are not considered
archival, but nonetheless are sometimes used as short-term storage materials for
paper-based materials.

In determining the archival nature of a polymer film, the mechanical, optical,
aging, and off-gassing properties of the polymer films are carefully considered
(Reilly et al. 1989). However, because the film may also be used as a gas barrier to
protect the document from the environment, the ability of the film to limit or allow
the transport of gases and vapors needs to be considered. It should be noted that
Cameo, The Conservation and Art Materials Online Encyclopedia lists the oxygen
and water vapor transmission of many polymer materials, highlighting the need of
this data for conservators (“The Conservation and Art Materials Encyclopedia
Online (Cameo)” 2024).

3 Permeation

Permeation is often described as a three-step process: adsorption of gas or vapor on
one side of the film, diffusion of the gas or vapor through the film, and evaporation of
the gas or vapor on the other side of the film (Doty, Aiken, andMark 1946). Generally,
diffusion is the slowest, rate-limiting step. In order for gas or vapor molecules to
diffuse through the polymer film, there must be some internal empty spaces, also
called polymer free volume, for the gas or vapor molecules to move into. The empty
spaces that are large enough for a gas or vapormolecule only occur in the amorphous
part of the polymer film. It is easier for the gas or vapor molecules to fit into larger
spaces, and therefore the diffusion will depend on the structure and available free
volume of the polymer film (McGonigle et al. 2002). At temperatures above the glass
transition temperature, Tg, these empty spaces within the polymer are generally
larger and transient as the polymer chains havemobility (Michaels, Vieth, and Barrie
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1963; Sha and Harrison 1992; Stannett 1978). The diffusion will act in the direction
from the higher partial pressure to the lower partial pressure for each specific gas.

The barrier properties of polymer films are dependent on the composition of the
film (polymer type, presence of plasticizers and additives) as well as the processing
conditions such as cooling rate and amount of drawing, that is, whether or not the
film is cast or stretched and oriented, as this affects the crystallinity and structure of
the film. Cast films generally have a greater permeability than drawn films since
drawing generally increases the crystallinity of the film (McGonigle et al. 2004; Pauly
1999). Besides permeability, processing conditions can alter the crystallinity and
density which affects tensile strength and clarity. In addition, permeability may also
be dependent on the relative humidity (RH), especially for hydrophilic polymers.

The permeability is also dependent on the molecular size and polarity of the
diffusing gas or vapor molecule. The kinetic diameter, σ, is an estimate of the
effective size of one diffusing molecule. The smaller the kinetic diameter, the easier
and faster the gas or vapor can diffuse through the material since it can fit into the
free volume within the polymer film (Stannett 1968). The kinetic diameters, σ, of the
diffusing gases studied are given in Table 1. Specifically, for H2O, O2, H2S, and N2, the
size of the gas or vapor molecule varies according to:

σH2O < σO2 < σH2S ≈ σN2

Gases such as O2 and N2 are considered to be non-reactive gases, will generally not
react with the polymer andwill generally diffuse as a single molecule. Reactive gases
and vapors such as H2O, H2S, and acetic acid are polar, have high chemical activity,
and have large absorption or solubility within polar polymers.

The transport of gases or vapors through a polymer film can be described as the
amount (mass) of the gas diffusing per area per time and can be mathematically
described as amassflux JMaccording to (Stannett and Szwarc 1955;Waack et al. 1955):

JM = mass of permeant( )

area( ) × time( ) = 1
A
dM
dt

(1)

where M is the mass of the diffusing gas or vapor, A is the area of the film where
permeation occurs, and t is the time.

The flux is also dependent upon the film thickness and the force driving the gas
or vapor through the film, i.e. the difference in partial pressure of the diffusing vapor
or gas. These variables combine to describe the permeability coefficient P given by
(Stannett and Szwarc 1955):

P = JM
x

(P2 − P1) = DS (2)

where x is the film thickness, P2 and P1 are the relative partial pressures on either
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side of the polymer film, D is the diffusion coefficient, and S is the solubility coeffi-
cient. A larger permeability coefficient means that more gas is transported through
the film. It should be noted that permeation can occur in either direction, either
into or out of an encapsulated material. The driving force (P2 – P1) in equation (2)
will dictate the direction of the flow. As shown in equation (2), the permeability
coefficient can be described in terms of a mass flux, JM, or in terms of the product of
the diffusion and solubility. Since smaller molecules diffuse faster than larger
molecules, the permeation is expected to decrease as the molecular size of the
diffusant increases. Equation (2) shows that the permeability coefficient P also
depends on the solubility, S. Since the polar gases and vapors such as H2S andH2O are
expected to be more soluble in polar, hydrophilic polymers, it is expected that the
permeability will be larger for these two molecules in hydrophilic polymers.
Therefore, the permeation depends on both the diffusivity and the solubility (Mulder
1996) of the diffusing molecule in the polymer. Generally, the diffusion coefficient is
assumed to be constantwith concentration of the diffusant. However, the value of the
diffusion coefficient for water vapor is known to be concentration dependent for
polar polymers, so sometimes the value is extrapolated to 0 concentration when the
diffusion constant or permeability is reported (Rouse 1940). The gases and vapors
with higher solubility might also swell the polymer or act as a plasticizer and
decrease the Tg of the polymer, again increasing the permeability.

4 Values of the Permeability Taken from the
Literature

The permeability coefficients P for a variety of uncoated single polymer films are
given in Table 1. The gases diffusing include O2, N2, and H2S. A range of permeability
values are given for each polymer as found in the literature. This variation in
reported permeability values is not surprising as the physical properties of the
films, e.g., crystallinity, amount of drawing, amounts of plasticizers, and humidity,
were likely different. Therefore, the values should be considered to be approxi-
mate. In addition, the permeability may be concentration dependent which is not
always stated in the literature and polar vapors may aggregate, i.e., forming di-
mers, slowing the diffusion and permeation which would lead to different
permeability values. Although Mylar® is a trade name for Dupont poly(ethylene
terephthalate), since the literature values specifically mention Mylar®, it is listed
separately from poly(ethylene terephthalate).
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The permeability values given in Table 1 show greatest variation for hydrophilic
polymers such as nylon and polyvinyl alcohol (PVOH) where the relative humidity
might swell the polymer film allowing faster permeation. Because the relative
humidity is not always reported, the values for hydrophilic polymers show large
variation.

The permeability of the polymer films to O2 and N2 gas are shown in Figures 1
and 2. In Figure 1, the data is shown by a bar chart. Note that the permeability values
are on a log scale, so the permeability of O2 in natural rubber is approximately 1,000
times more than the permeability in nylon 6,6. The permeability of O2 is generally
larger than the permeability of N2 as expected since the O2 molecule is smaller than
the N2 molecule. A least squares analysis of the average permeability values for each
of the films is calculated to be PN2 ≈ 0.34 PO2, showing that PN2 is approximately 1/3
that of PO2. PVOH, PET, Saran®, cellophane, PVC and Nylon 6 have low oxygen and
nitrogen permeabilities whereas natural rubber and ethyl cellulose have relatively
high oxygen and nitrogen permeabilities. HDPE and cellulose acetate have lower
oxygen permeability than PP and LDPE.

Figure 2 is a log-log plot of the average values of O2 andN2 permeability of each of
the polymer films given in Table 1. The name of the polymer film is positioned over
the average value of the permeability of that polymer film. This plot is modeled after
Material Property Charts or Ashby plots which aid in material selection (Ashby 2005)
and can be used to quickly identify a material suitable for a specific need. The inset
in Figure 2 shows a more traditional log-log plot of PO2 versus PN2.

Figure 1: Semi-log plot comparing the permeabilities of O2 and N2 for each of the polymer films. The
length of the bar represents the average of the permeability values given in Table 1. The black bars
represent PO2 whereas the gray bars represent PN2. The full polymer names are given in Table 1.
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Figures 1 and 2 show that the permeabilities of specific polymer types are not
clustered together, i.e., permeabilities of the non-polar hydrophobic polymers and
polar hydrophilic polymers are not clustered. This indicates that there is a similar
interaction and solubility of the gases with the polymer and the differences in the
permeation between specific polymers are due to the specific structure of each of the
polymers, notably the free volume, crystallinity, plasticizers, and the Tg.

The water vapor permeabilities and water vapor transmission rates are given
in Table 2. As expected based on the smaller size of the water molecule, the
permeability of water vapor is much larger than the permeability of N2 and O2

gases. For hydrophilic polymers, the higher solubility of water into the polymer
also influences the permeability. Hydrophilic polymers such as PVOH also show
large variation in permeability values. Most likely, this is due to differences in the
relative humidity which is not reported. Because of this large variation, two
ranges of the permeability of PVOH are given reflecting the different numbers
reported.

Plots of oxygen, hydrogen sulfide, and water vapor permeabilities are shown in
Figures 3, 4, and 5. The more hydrophilic polymers such as cellophane, PVOH, ethyl
cellulose, cellulose (glassine), polyvinyl acetate (PVAc), and cellulose acetate (CA)
have the highest water vapor permeabilities whereas the hydrophobic polymers
such as LPDE, PP, HDPE, andNylon 6,6 have the lowestwater vapor permeabilities. In
hydrophilic polymers, the concentration of water in a film is dependent on the

Figure 2: Log–log plot comparing the permeabilities of O2 and N2. The polymers listed are centered on
the average values of the permeability given in Table 1. The chemical names are listed in Table 1. The
inset shows a log–log plot of the average values of the permeabilities of each of the polymer films given
in Table 1.
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relative humidity, RH. A higher RH drives more water into the films, increasing the
water vapor solubility S in hydrophilic polymers. As shown in equation (2), if the
solubility S is greater and the diffusion constant D is constant, then the permeability
must increase. In addition, the absorbed water can swell the polymer which

Figure 4: Log–log plot comparing the permeabilities of O2 and H2O. The polymers listed are centered
on the average values of the permeability given in Table 2. The full polymer names are given in Table 2.

Figure 3: Semi-log plot comparing the permeabilities of O2, H2S and H2O. The length of the bar
represents the average of the permeability values given in Tables 1 and 2. The black bar, light gray bar
and dark gray bar represent PO2, PH2S, and PH2O, respectively. The full polymer names are given in
Table 2.
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increases the diffusion coefficient (Hubbell, Brandt, and Munir 1975). Therefore, the
analysis of the permeation of water vapor in hydrophilic films is problematic as
highlighted by the large variation in permeability values.

Plots of the permeabilities of H2O versus O2 and H2O versus H2S are given in
Figures 4 and 5. The plots look similar, except that the H2S permeability is greater
than the permeability of O2. Since the size of the H2Smolecule is larger than the size
of the O2 molecule, this is a bit surprising. However, since the H2S is considered a
reactive gas and it is polar, it likely has a higher solubility within the polymer film
giving a higher permeability than expected. The water vapor permeability is
generally much greater than the H2S permeability, as expected since the water
vapormolecule is much smaller than the H2Smolecule. As shown in Figures 4 and 5,
the non-polar polymer films, HDPE, LDPE, PTFE, PP, show low water vapor
permeability and high H2S and O2 permeability. For the hydrophilic polymers, the
H2O permeability is relatively large but the O2 and H2S permeability does not show
a strong dependence with the type of polymer.

Other vapors such as acetic and formic acid are formed during cellulose
degradation. If the paper is encapsulated, these might become trapped inside the
encapsulate further degrading the paper. Therefore, the permeation of volatile
organic compounds such as acetic acid and formic acid should be included in this
summary. Unfortunately, data of the permeability of acetic acid through single
polymer films is limited. However, a few references could be found which give not
only the permeability at one temperature, but at multiple temperatures. The

Figure 5: Log–log plot comparing the permeabilities of H2O and H2S. The polymers listed are centered
on the average values of the permeability given in Table 1. The full polymer names are given in Table 1.
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transmission rate of acetic acid vapor in four polymer films is given in Table 3. As a
comparison, the Water Vapor Transmission Rate for PET as given in Table 2 is
WVTR ≈ 0.5 (Bhadha 1999; Massey 2003; Tock 1983), which is approximately 20 times
greater than the transmission rate of acetic acid vapor. This is expected since the
kinetic diameters of the acetic acid and water molecules are 0.436 nm and 0.295 nm,
respectively (Bowen, Noble, and Falconer 2004). The transmission rate of O2, N2, H2O,
and acetic acid through LDPE and HDPE are similar, reflecting a similar diffusant
interaction.

The transmission rate of acetic acid vapor is much lower for PET films than for
either polyamide or polyethylene films. Specifically, the transmission rate of acetic
acid vapor through PET is 50 times slower than through low density polyethylene.
Therefore, if trapping of acetic acid is a concern for encapsulation due to aging and
off-gassing of materials, switching to polyamide or polyethylene would increase the
gas flow out of the enclosure.

The values in Tables 1 and 2 are measured at approximately 20 °C. The
permeability can increase significantly with temperature since the permeability
increases approximately 5 % per °C rise in temperature (Doty, Aiken, and Mark
1946; Keller and Kouzes 2017; Tock 1983). As shown in Table 3, the transmission rate
increases as least 10 times as the temperature increases from 21 to 74 °C. This
increased transmission rate has an impact when evaluating the results of artificial
aging of encapsulated materials. Since artificial aging is done at elevated tem-
peratures, gases and vapors will be transported through the films much faster at
higher temperatures than if they were done at room temperature. Therefore,
artificial aging of encapsulatedmaterials performed at elevated temperatures will
not reflect the true aging properties of the document within the encapsulate.

Table : Vapor transmission rate (TR) of acetic acid vapor through various polymer films. The perme-
ability increases with temperature. The kinetic diameter of an acetic acid molecule is . nm (Bowen,
Noble, and Falconer ). Chemical names for the polymer films are given in Tables  and . Note that
nylon is a polyamide, but the exact type was not given in the paper.

Polymer film
trade name

TR (gmm/m d) TR (g mm/m d) TR (g mm/m d)
T ≈  °C T ≈  °C T ≈  °C

LDPE (Rogers ) . . 

HDPE (Rogers ) . (T = . °C) . (T =  °C)
PET (McGuiggan et al. ; Oreski et al. ) <. . (T =  °C) . (T =  °C)
Polyamide (Oreski et al. )   (T =  °C)  (T =  °C)
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5 Discussion

Tables 1, 2, and 3 show a wide range of permeability coefficients and transmission
rates between different polymer films and a wide range of values for the same film
but for different gases and vapors. As previously stated, the permeability depends on
the type of polymer, specific crystallinity, and additives present in the polymer film
as well as the testing conditions such as temperature, humidity, and diffusant size,
polarity, and concentration. In addition, there are a variety of methods used to
measure the permeability coefficient (Giacinti Baschetti andMinelli 2020). Therefore,
Tables 1, 2 and 3 show a range of reported values, highlighting the variation in the
films measured, measuring conditions, and reported measurements. In spite of the
differences, generalizations about the data can be made.

Comparing the permeability of the non-reactive gases O2 and N2, Table 1 and
Figures 1 and 2 show that the permeability of N2 is slightly smaller than the
permeability of O2: PN2 is approximately 1/3 that of PO2 and this ratio holds consis-
tently for all the polymers investigated. It is expected that the permeability of N2 is
less than the permeability of O2 since O2 has a smallermolecular size thanN2. Besides
the small difference in the permeability due to the molecular size, it is likely that the
O2 and N2 molecules each interact with the polymers via van der Waals interactions.
Since there is little difference between the interaction of O2 and N2, the permeability
is likely determined by the free volume in the polymer.

The permeation properties of non-polar hydrocarbon polymers such as LDPE,
HDPE, and PP to water vapor is small. Hydrophilic polymer films have much higher
water vapor permeability than the hydrophobic polymers. In addition, the perme-
ation of hydrophilic polymers such as nylon, cellulose, and polyvinyl alcohol are
highly dependent on the humidity; the permeation of water vapor increases
dramatically with concentration of water in the film. The higher solubility of water
vapor in the film increases the amount of watermolecules diffusing through the film,
as given in equation (2). The absorbed water vapor can swell and plasticize the
polymer, allowing faster permeation (Hubbell, Brandt, and Munir 1975). Therefore,
the analysis of the permeation of water vapor in hydrophilic films is problematic.
Because of this, the relative humidity should be noted when the permeability is
tested.

Looking at the data of acetic acid vapor shown in Table 3, the permeability of
polyamide and polyethylenefilms ismuch greater than the permeability of PETfilms.
Therefore, polyamide and PE films might be considered as alternates to PET films if
acetic acid transport is to be maximized.

The ratio of the permeability of two specific gases for a single polymer film is
known as the selectivity of the film. For example, the ratio of the permeability of
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water and nitrogen in cellulose acetate (PH2O/PN2) is 24,000 (Metz et al. 2005). This
means that when a mixture of nitrogen and water vapor is on one side of a cellulose
acetate film, water permeates through cellulose acetate much faster than nitrogen,
effectively giving the ability of the polymer film to selectively separate the gases.
Conversely, the ratio of the permeabilities in polyethylene is not as selective since
PH2O/PN2 = 6 (Metz et al. 2005).

Besides single polymer films, countless other films are used by conservators.
Some of these include non-woven spunbound materials such as Hollytex® (a non-
woven spunbound polyester fabric) and Tyvek® (spunbound HDPE). Because the
pore size of a spunboundmaterial is much larger than the small free volume regions
within single cast or oriented polymer films, the permeability of spunbound films is
much larger than the permeability of cast or oriented polymer films. Goretex®, while
not spunbound, contains sub-microscopic pores due to a stretching process and
readily allows vapors and gases to flow through.

Polymer films can also be made by mixing two polymers thereby making a
polymer blend or by attaching two polymers on the same polymer chain, thereby
making a co-polymer. Examples of films include isobutyl methacrylate polymer
(Acryloid B-67) and poly(ethylene-co-vinyl acetate) (EVA) and BEVA® 371 which is
composedmainly of ethylene vinyl acetate. The permeability of the films will depend
on the ratio of each monomer (Marais et al. 2002) and, for blends, it will depend on
the phase behavior, i.e., whether they phase separate or are miscible (Kamal, Jinnah,
and Utracki 1984; Shirvani et al. 2019). Polymer blending is often used to tune the
selectivity of the film.

Single polymer films can be further modified by laminating two films together,
i.e., having a double layer of two different polymer films, or the film can be coated or
metalized. Laminated vapor barrier films used in conservation have been previously
described (Burke 1992). Single-layer films are permeable to most simple gases to some
extent, so added layers or coatings will decrease the transport of gases and vapors and
therefore improve the barrier strength. Beva Tex® is Hollytex® coated with ethylene
vinyl acetate, and Marvelseal®, an aluminized heat sealable polyethylene and nylon
barrier film. Conservators use a variety of films to limit oxygen transmission. Escal
Neo® and TECHBARRIER® are polymer laminates containing a layer of a silica con-
taining polymer to give high oxygen and moisture barrier films. For example, Escal
Neo® is coated with a ceramic polyvinyl alcohol film (polypropylene/silica deposited
PVOH/LDPE).

To obtain a material which limits the diffusion of gases, the film should have the
following properties:
(a) high glass transition temperature (Tg) leading to low polymer segment mobility,

less voids, and a more tortuous path for the gas moving through the polymer
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(b) higher film crystallinity since diffusion only occurs in the amorphous parts of
the polymer film

(c) inertness with the diffusant or environment, such as the RH. Moisture absorbed
by the polymer has a plasticizing effect and can lower the Tg of the polymer and
thus increase the permeability (Robertson 1993)

(d) small polymer free volume

In addition, the diffusant can swell the polymer, leading to a larger solubility and
larger permeability polymer. If high permeability is desired, then the opposite
properties are desired.

The goal of this workwas to review the permeation of some single polymer films
commonly used in conservation and compile the permeability using standard units
so that the permeability can be directly compared. Using the data in Tables 1, 2, and 3,
the polymer can be specifically chosen according to the need. The polymers given in
Tables 1, 2 and 3 show a wide range of values for the different gases and vapors. It is
important to note that there is not one best polymer for all applications. It will
depend on the specific use and environmental conditions. Since the gases or vapors
can permeate in either direction, the question to ask is what is the important gas in
the system that needs to be limited? If the environment has a large concentration of a
certain gas, such as H2S, then the polymerfilm should be chosen so as tominimize the
permeation of H2S from the environment. However, if degradation products of the
material need to be removed from the environment of the artifact, then high
permeability of gases and vapors is desired. Smaller molecules generally give the
larges permeability according to PH2O > PH2S > PO2 > PN2 > Pacetic acid. Specifically, for
encapsulation, polyamide and LDPE have a greater permeability to acetic acid vapor
than PET. Therefore, if acetic acid transport is desired, polyamide and LDPE appear
to be viable candidates based on permeability. Other properties such as mechanical
strength, clarity, presence of plasticizers, and off-gassing and stability need to be
evaluated to determine if these materials can be used as an alternative to PET.

6 Conclusions

Single polymer films used in conservation are breathable materials and allow the
flow of vapors and gases through them. This review summarizes the permeability of
single polymer films used in book and paper conservation using standard units for
easy comparison. The polymer films chosen to study represent single polymer films
generally used for storage materials and processes such as encapsulation. The
permeability was found to differ by over 7 orders of magnitude when comparing
different gases and vapors diffusing through the polymer films. The permeability is
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dependent on the molecular size σ of the diffusing gas, with
σH2O < σO2 < σH2S ≈ σN2 < σacetic acid . The smaller molecules diffuse faster than the
larger molecules. In addition, the chemistry and structure of the polymer film in-
fluence the permeability. Hydrophilic polymers have amuch greater permeability of
polar diffusants such as water vapor than hydrophobic polymers. The commonly
used polymer, poly(ethylene terephthalate) PET, shows a much slower transmission
of acetic acid than polyethylene. In addition, the permeation increases with tem-
perature. The review provides data of the permeability properties of the films used
by conservators and will enable them to make an informed decision of the best
material for their application.
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