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Abstract: This study presents a novel approach to sustain-
able construction by utilizing three types of seashell ashes,
namely, oyster shell ash (OSA), scallop shell ash (SSA), and
mussel shell ash (MSA), as partial replacements for cement
in lightweight foamed concrete (LFC). This novel applica-
tion of aquaculture waste as an additive enhances the
creation of more sustainable and resilient construction
materials for urban settings. The physicomechanical prop-
erties of LFC, such as compressive strength (CS), flexural
strength (FS), split tensile strength (STS), water absorption
(WA), and porosity (P), were assessed utilizing response
surface methodology (RSM) and artificial neural network
(ANN) with K-fold cross-validation. The research examines
the influence of additive type (OSA, SSA, MSA), curing dura-
tion (7–28 days), and additive concentration (0–30%) on the

characteristics of LFC. Analysis of variance indicated that
curing time exerted the most substantial effect on CS, FS,
and STS, but additive content had a more pronounced
impact on WA and P. The findings indicated favorable
enhancements in CS, FS, and STS with curing durations
of 28 days and additive concentrations between 4 and
20%. Replacing cement with OSA, SSA, and MSA showed
favorable benefits on LFC characteristics. The predictive
effectiveness of the DNN-IGWO, ANN, RSM, and Support
vector machine models was evaluated using several error
metrics, including mean absolute deviation, mean absolute
percentage error, root mean square error, and coefficient
of determination (R2). The results showed that the hybrid
DNN-IGWOmodel outperformed all other approaches, pro-
viding significantly higher accuracy across all attributes stu-
died. Moreover, the incorporation of evolutionary algorithms
utilizing DNN-IGWOmodels facilitated the discovery of optimal
solutions for themulti-objective optimization of LFC properties.
The optimization exposed intrinsic trade-offs between targets,
such as CS vs WA and CS vs P, underscoring the necessity for
meticulous equilibrium in the optimization process. This study
constitutes a notable advancement in sustainable development
goals in construction materials by improving concrete charac-
teristics through the incorporation of seashell ash and sophis-
ticated optimization methods.
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1 Introduction

Lightweight foamed concrete (LFC) is a cellular concrete
characterized by its lightweight nature, typically ranging
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in density from 400 to 1,850 kg·m−3 [1,2]. This material is
classified as lightweight concrete, characterized by the pre-
sence of random air voids that are evenly distributed
throughout the mixture due to the addition of foam agents
in the mortar. LFC exhibits high flowability due to the
presence of air voids, characterized by low cement content
and minimal aggregate usage [3–5]. This concrete, which is
classified into air-entrained and foam concrete based on
pore formation methods, employs distinct approaches to
introduce porosity (P) into the material [6,7]. Air-entrained
concrete utilizes gas-forming chemicals mixed into mortar,
where a chemical reaction during mixing generates gas
bubbles, yielding a porous structure; commonly employed
aerating agents include aluminum powder, calcium car-
bide, and hydrogen peroxide [6,8,9].

Foam concrete utilizes mechanical means to form pores,
either through a pre-foaming process where a foaming agent
is mixed with the water prior to incorporation into the
mortar or via a mixed foaming process where the foaming
agent is directly mixed with the mortar. These methods col-
lectively contribute to the lightweight and insulating charac-
teristics of aerated concrete [10–12].

The investigation of waste use, specifically waste binder
particles as replacements for cement in concrete, offers an alter-
native approach underpinned by multiple reasons. Employing
aquaculture waste as substitutes for cement presents consider-
able potential for improving the characteristics of cementitious
materials and promoting ecologically sustainable concreteman-
ufacturing [13,14]. Emerging aquaculture byproducts such as
seashells, including oyster shell ash (OSA), scallop shell ash
(SSA), and mussel shell ash (MSA), are promising as valuable
components in the construction industry, promoting the adop-
tion of more sustainable building practices. In this study, the
term “additive type” refers to the different seashell ashes used
as partial replacements for cement, namely, OSA, SSA, andMSA.
The “additive content” refers to the percentage of cement
replaced by these ashes, ranging from 0 to 30% [15–18].

Previous research extensively explored substituting
cement with seashell powder in concrete mixes, revealing
lengthened setting times, decreased compressive strength
(CS) and weakened flexural strength (FS) as notable out-
comes. Comparative analyses among seashell varieties,
including periwinkle shell ash (PSA), OSA, and snail shell
ash (SSA), exhibit differences in water consistency in
cement pastes [11,16,19].

Olutoge et al. [20] investigated the effects of incorpor-
ating PSA into concrete. They found that as the proportion
of PSA increased, the compaction factor improved while
the slump decreased. Furthermore, higher PSA percen-
tages resulted in longer initial and final setting times. In
addition, the specific gravity of PSA was lower than that of

ordinary Portland cement (OPC). Finally, the CS of concrete
specimens decreased with increasing proportions of PSA.

Hai-Yan et al. [21] delved into the utilization of crushed
oyster shell (COS) in marine concrete production, alongside
fly ash (FA) and blast furnace slag (BS). Their investigation
centered on evaluating the impact of different COS propor-
tions, in conjunction with FA and BS, on the strength and
durability of marine concrete. The findings elucidated that
incorporating an optimal quantity of COS yielded favorable
outcomes on these properties, thereby augmenting the effi-
cacy and sustainability of concrete.

Adeala and Olaoye [22] explored the utilization of SSA
as a partial substitute for cement in concrete. Their inves-
tigation revealed that when used at a 20% replacement
level, SSA-blended concrete exhibited favorable character-
istics, including low water absorption (WA) and high CS.
These findings imply that SSA concrete may be suitable for
structural applications, provided that the replacement
level does not surpass 20%.

Several techniques, including response surface meth-
odology (RSM) and artificial neural network (ANN), are
utilized to investigate and optimize the properties of
cement-based materials [23–25]. RSM, developed by Box
and Wilson in 1951, optimizes processes by adjusting factors
such as cement composition and curing time in concrete
engineering. It aims to enhance outcomes such as CS and
durability while minimizing resource usage. This systematic
approach reduces the number of experiments required and
identifies significant process parameters through analysis of
variance (ANOVA). Regression equations predict responses
based on given parameters, with response surface plots
illustrating their effects [25–27]. Ultimately, the desirability
approach is used to optimize process parameters, confirmed
through validation tests [28,29].

An ANN is a data processing system structured with
layers, including an input layer, one or more hidden layers,
and an output layer. Each layer consists of numerous inter-
connected processing units known as neurons [30–32]. The
input layer receives data, which are then processed through
the hidden layers. Within these layers, neurons perform
computations on the input data, passing it through
activation functions to introduce nonlinearity and generate
meaningful representations [24,33–35]. The output layer
then produces the final result based on the processed infor-
mation. This interconnected structure allows ANNs to learn
complex patterns and relationships within data, making
them effective tools for tasks such as classification, regres-
sion, and face recognition [30,35].

Rizalman and Lee [36] compared the performance of
ANN and RSM in predicting the CS of palm oil fuel ash
concrete and found that RSM outperformed ANN with a
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Table 1: Experimental results of CS, FS, STS, WA, and P of the studied LFC [16]

Sample
number

Additive Additive
type

Curing
time (days)

Additive
content (%)

CS (MPa) FS (MPa) STS (MPa) WA (%) P (%)

1 OSA 1 7 0 9.2 2.1 1.38 15.54 35.10
2 1 14 0 12.2 2.8 1.8 15.22 34.40
3 1 28 0 14.5 3.4 2.3 14.50 33.70
4 1 7 5 9.3 2 1.39 16.80 36.50
5 1 14 5 12.5 2.9 1.9 16.91 35.60
6 1 28 5 14.7 3.5 2.5 15.60 34.90
7 1 7 10 9.5 2.1 1.41 17.57 37.50
8 1 14 10 12.7 2.9 2.1 17.76 36.70
9 1 28 10 15.0 3.6 2.5 16.30 35.90
10 1 7 15 9.8 2.2 1.46 18.08 38.30
11 1 14 15 13.1 3 2.1 18.25 37.50
12 1 28 15 15.4 3.7 2.6 16.75 36.70
13 1 7 20 9.0 2 1.33 18.46 38.9
14 1 14 20 12.2 2.8 1.9 18.65 38.2
15 1 28 20 14.2 3.5 2.5 17.10 37.4
16 1 7 25 8.3 1.8 1.21 18.74 39.3
17 1 14 25 11 2.5 1.7 18.95 38.8
18 1 28 25 13.0 3.1 2.2 17.4 38.1
19 1 7 30 7.3 1.6 1.1 18.97 39.7
20 1 14 30 9.9 2.3 1.6 19.25 39.2
21 1 28 30 11.7 2.8 2 17.70 38.6
22 SSA 2 7 0 9.2 2.1 1.38 15.54 35.1
23 2 14 0 12.2 2.8 1.8 15.22 34.4
24 2 28 0 14.5 3.4 2.3 14.5 33.7
25 2 7 5 9.10 2 1.37 17.06 36.7
26 2 14 5 12.3 2.8 2 17.23 36.1
27 2 28 5 14.5 3.4 2.4 15.9 35.2
28 2 7 10 9.10 2 1.38 17.88 38.0
29 2 14 10 12.4 2.8 1.9 18.03 37.3
30 2 28 10 14.6 3.5 2.4 16.7 36.4
31 2 7 15 9.4 2.1 1.39 18.36 38.9
32 2 14 15 12.7 2.9 2 18.53 38.2
33 2 28 15 14.9 3.6 2.5 17.2 37.4
34 2 7 20 8.8 1.9 1.30 18.76 39.5
35 2 14 20 11.9 2.7 1.9 18.93 38.8
36 2 28 20 14.1 3.4 2.4 17.6 38.0
37 2 7 25 7.9 1.7 1.18 19.05 40.0
38 2 14 25 10.6 2.5 1.7 19.23 39.3
39 2 28 25 12.6 3 2.1 17.9 38.6
40 2 7 30 6.9 1.5 1.04 19.27 40.4
41 2 14 30 9.4 2.2 1.4 19.53 39.7
42 2 28 30 11.1 2.7 1.9 18.2 39.0
43 MSA 3 7 0 9.2 2.1 1.38 15.54 35.1
44 3 14 0 12.2 2.8 1.8 15.22 34.4
45 3 28 0 14.5 3.4 2.3 14.5 33.7
46 3 7 5 9.5 2.1 1.42 16.61 36.1
47 3 14 5 12.9 3 2.1 16.63 35.2
48 3 28 5 15.1 3.6 2.6 15.2 34.7
49 3 7 10 10.1 2.2 1.53 17.21 36.9
50 3 14 10 13.6 3.1 2.2 17.43 36.1
51 3 28 10 15.9 3.8 2.7 15.8 35.5
52 3 7 15 10.3 2.3 1.56 17.61 37.6
53 3 14 15 14.0 3.2 2.3 17.83 36.9
54 3 28 15 16.3 4 2.8 16.2 36.2

(Continued)
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coefficient of determination (R2) closer to 1. All the pre-
dicted results by RSM fell within a 10% margin of the
experimental results, whereas the ANN model had three
predicted results outside this margin.

Yaro et al. [37] highlighted the superior applicability of
the ANN model compared with the RSM model. The ANN
model demonstrates greater potential due to its capacity to
simulate a broader array of nonlinear polynomials, unlike the
RSM model, which is confined to capturing solely quadratic
approximations. The ANNmodel’s adeptness in handling non-
linear relationships accounts for its superior performance.

Ray et al. [38] found that RSM models are better at
predicting concrete properties compared with ANN models.
This conclusion is supported by RSM models exhibiting
higher determination coefficients (R2) near 1 and lower
error values compared with ANN models. Thus, RSM is the
more effective approach for forecasting concrete properties
based on the investigated parameters.

This work is a continuation of the research by Maglad
et al. [16] on seashell ash-based LFC. They conducted an
experimental companion to evaluate CS, FS, split tensile
strength (STS), WA, and P of LFC containing OSA, SSA, and
MSA. The results are used in this research to develop models
for estimating the five properties of LFC by varying additive
types and content and curing duration. For this purpose, RSM,
ANN, and genetic algorithm (GA) optimization are applied.

2 Materials

Maglad et al. [16] studied the evaluation of physicomecha-
nical properties of seashell ash-based LFC by partially repla-
cing OPC with OSA, SSA, and MSA. The study conformed to
BS EN 197-1 standards [39] for OPC and utilized clean river
sand as the fine aggregate, with a maximum particle size of
4.75mm and a specific gravity of 2.53, as per ASTM C33-03

Table 1: Continued

Sample
number

Additive Additive
type

Curing
time (days)

Additive
content (%)

CS (MPa) FS (MPa) STS (MPa) WA (%) P (%)

55 3 7 20 9.4 2.1 1.41 17.91 38.2
56 3 14 20 12.7 2.9 2.1 18.13 36.7
57 3 28 20 14.9 3.6 2.5 16.5 36.9
58 3 7 25 8.3 1.8 1.23 18.11 38.7
59 3 14 25 11.2 2.6 1.8 18.33 38.2
60 3 28 25 13.1 3.2 2.2 16.7 37.5
61 3 7 30 7.6 1.7 1.13 18.31 39.1
62 3 14 30 10.3 2.4 1.6 18.53 38.7
63 3 28 30 12.0 3 2.1 16.9 38.0

Table 2: Statistical parameters of ANOVA

Statistical parameter Equation Definition

The squared sum (SSf)
( )= ∑ −= y ySS ¯ ¯f

N

N
i

N

i1
2

nf

nf

(8)
To estimate the square of the deviation from the general mean
ȳ : the average response,
ȳ

i
: average of the measured responses for each level i of the F-factor,

N: the total number of trials,
Nnf

: the number of levels of each f factor.

The squared mean (MSi) =MSi

SS

dl

i

i
(9) Is calculated by dividing the squared sum (SSi) by the number of degrees of

freedom (dli)
The F-value =Fi

MS

MS

i

e
(10) Used to check the compatibility of the mathematical model on the grounds that

the calculated F-values must be greater than the tabulated F
MSe is the mean squared sum of the errors

Contribution (Cont.%) = ×Cont.% 100
SS

SS

f

T
(11) It shows the contribution of factors (SSf) to the total variance (SST), indicating the

degree of percent effect on response
The coefficient of
determination (R2)

( )

( )
=

∑ −
∑ −R

y y

y y

2
¯

¯ ¯

i

i

2

2
(12)

The ratio of explained variation to total variation, it is a measure of the goodness
of fit
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standards [40]. Potable water was used in accordance with
BS 3148 standards for concrete mixing [41].

The seashell ashes were collected from local fishermen in
Teluk Bahang, Penang, Malaysia, and processed by cleaning,
drying, baking at 220°C, and grinding into fine ash. These
ashes, primarily composed of calcium oxide (CaO), exhibited
pozzolanic properties and were tested as cement replace-
ments at 5, 10, 15, 20, 25, and 30%. The chemical composition
of the seashell ashes was verified through X-ray fluorescence
analysis, and the specific gravities of the ashes were found to
be 2.86 forMSA, 2.64 for OSA, and 2.27 for SSA, indicating their
suitability for partial cement replacement.

A protein-based foaming agent, diluted with water in a
1:32 ratio, was employed to create foam with a stable den-
sity of 65 ± 10 kg·m−3. The LFC mix was prepared with a
sand-to-cement ratio of 1.5:1 and a water-to-cement ratio of
0.48. Nineteen different LFC mixtures were prepared,
varying the percentage of seashell ash substitution, and
the fresh concrete was poured into molds for curing. The
specimens were water-cured for 28 days to ensure com-
plete hydration.

The CS of the LFC specimens was evaluated using cube
samples (100 mm × 100 mm) according to BS EN 12390-3
standards [42]. FS tests were performed using prism
specimens (100mm × 100mm × 500mm) following BS EN
12390-5 standards [43], while the STS was measured using
cylindrical specimens (∅ 100mm × 200mm) based on BS
EN 12390-6 standards [44]. These tests were conducted at 7,
14, and 28 days to assess the concrete’s strength perfor-
mance under axial, bending, and tensile loads.

WA was evaluated in line with ASTM C1403 standards
[45], with the specimens oven-dried at 105°C and immersed
in water for 24 h to determine their ability to resist
moisture infiltration. The P of the LFC specimens was
determined using a vacuum saturation technique.

3 Experimental results

The data used in this dataset was produced by RSM,
resulting in the formulation of 63 distinct mixes of LFC.

Table 3: ANOVA of LFC properties

Source SSf Df MSi F-value p-value Cont.% Significant

CS (MPa) 303.5 3 101.17 89.42 <0.0001
A 1.76 1 1.76 1.56 0.2171 0.47536733 No
B 263.62 1 263.62 233.03 <0.0001 71.2024633 Yes
C 38.11 1 38.11 33.69 <0.0001 10.2933232 Yes
Residual 66.75 59 1.13
Cor total 370.24 62
FS (MPa) 21.85 3 7.28 115.84 <0.0001
A 0.126 1 0.126 2 0.1622 0.492957746 No
B 19.91 1 19.91 316.62 <0.0001 77.89514867 Yes
C 1.82 1 1.82 28.91 <0.0001 7.120500782 Yes
Residual 3.71 59 0.0629
Cor total 25.56 62
STS (MPa) 11.52 3 3.84 100.58 <0.0001
A 0.0754 1 0.0754 1.98 0.1651 0.547567175 No
B 10.75 1 10.75 281.62 <0.0001 78.06826434 Yes
C 0.6925 1 0.6925 18.14 <0.0001 5.029048656 Yes
Residual 2.25 59 0.0382
Cor total 13.77 62
WA (%) 92.42 3 30.81 102.19 <0.0001
A 2.06 1 2.06 6.83 0.0113 1.869328494 Yes
B 20.22 1 20.22 67.09 <0.0001 18.34845735 Yes
C 70.13 1 70.13 232.65 <0.0001 63.63883848 Yes
Residual 17.79 59 0.3015
Cor total 110.2 62
P (%) 174.5 3 58.17 214.54 <0.0001
A 2.68 1 2.68 9.87 0.0026 1.406898 Yes
B 19.85 1 19.85 73.2 <0.0001 10.42049451 Yes
C 151.98 1 151.98 560.56 <0.0001 79.78371568 Yes
Residual 16 59 0.2711
Cor total 190.49 62

Innovative optimization of seashell ash-based lightweight foamed concrete  5



Figure 1: Perturbation plot of (a) CS; (b) FS; (c) STS; (d) WA; and (e) P.
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The blends were created by modifying several input para-
meters: the type of seashell ash additive (OSA, SSA, and
MSA), curing durations (7, 14, and 28 days), and additive
concentrations (0–30%). The three parameters were meth-
odically altered to investigate their collective impact on
five principal output properties: CS, FS, STS, WA, and P.

Each created blend represents a distinct combination
of these elements, enabling us to examine how varying
conditions influence the performance of the LFC. The
experimental design was organized to guarantee that all
pertinent combinations of the variables were included,
thereby producing a varied and thorough dataset despite

Figure 2: Q–Q plot and histogram of residuals for normality testing after ANOVA analysis.
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the limited total amount of data points. The dataset com-
prises 63 measurements for each of the five properties (CS,
FS, STS, WA, and P), forming the basis for constructing
robust predictive models for these LFC features. All
descriptions of the materials and methods are detailed in
Maglad et al. [16]. The five measured responses of LFC are
recorded in Table 1. This database, which counts 63 values
of each response, will be used to develop prediction models
of the different studied properties.

4 Model development

4.1 RSM modeling

RSM is employed in the first stages of designing experiments
to create predictive models for responses and to conduct
optimization. These response models may be represented
as linear or higher-order polynomials, as seen in the gener-
alized formats specified in Eqs. (1) and (2) [46–49].

∈= + + + +Y β β X β X β X ,
n n0 1 1 2 2 (1)

∑ ∑ ∑= + + + ⋅ ⋅ +Y β β X β X β X X ϵ,

i

k

i i

i

k

ii i

ij

k

ij i j0

2 (2)

where Y denotes the desired response, β0 is the regression
coefficient for the constant term, and βi, βii, and βij are the
coefficients for linear, quadratic, and the interaction of Xi
and Xj terms, respectively. The number of factors is
denoted by k, while the random error is denoted by ∈.

RSM offers multiple modeling methodologies, each
exhibiting unique attributes and varying degrees of preci-
sion. The accuracy of predictive outcomes is influenced not
only by the chosen model type but also significantly by the
quality and relevance of the experimental data utilized.
Accurate model predictions depend on the availability of
high-quality, relevant experimental data. This study selected

the quadratic model to represent the responses, which
include CS, FS, tensile strength, WA, and P [50,51]. This
model was selected for its superior accuracy compared to
other alternatives. The strength of the quadratic model lies
in its ability to account for nonlinear effects and complex
interactions between input variables, which is vital for
achieving reliable predictions when relationships among
the variables are not purely linear. These models are
expressed in coded terms in Eqs. (3)–(7). Equations
expressed in coded factors can be used to predict responses
across different levels of each variable. Typically, a value of
+1 signifies elevated levels of a factor, whereas a value of −1
denotes low levels by default. The coded equation facilitates
the determination of the relative importance of variables by
comparing the coefficients of factors, denoted as A: (additive
type), B: (age, fays), and C: (additive content, %).

( ) = + + +
+ +
+

CS A B C

AB AC BC

A B C

MPa 5.68 – 1.89 0.75 0.19

0.0038 0.001 – 0.002

0.50 – 0.014 – 0.01 ,2 2 2

(3)

( ) = + + +
+ +
+

FS A B C

AB AC BC

A B C

MPa 1.26 – 0.51 0.18 0.04

0.0016 0.001 – 0.0002

0.13 – 0.003 – 0.002 ,2 2 2

(4)

( ) = + + +
+
+

STS A B C

AB AC BC

A B C

MPa 0.76 – 0.37 0.13 0.039

0.0005 – 0.0002 – 0.0001

0.1 – 0.002 – 0.0016 ,2 2 2

(5)

( ) = + + + +WA A B C

AB AC BC

A B C

% 13.2 2.03 0.14 0.25

– 0.002 – 0.01 – 0.0004

– 0.51 – 0.005 – 0.004 ,2 2 2

(6)

( ) = + + +
+ +

+

P A B C

AB AC BC

A B C

% 34.19 2.69 – 0.17 0.26

0.003 – 0.009 0.0004

– 0.71 0.003 – 0.003 .2 2 2

(7)

ANOVA is a statistical technique that is widely used in
research to analyze and interpret experimental data. It
operates on the principles of probability and mathematical
statistics, aiming to validate models and evaluate the influ-
ence of input parameters on the variability of responses
[25,52–55]. ANOVA tests the significance of differences
observed among groups or treatments by partitioning the
total variance into distinct components attributed to
different sources, such as independent variables or inter-
actions [56–59]. This partitioning allows researchers to
determine whether the observed differences are statisti-
cally significant or merely due to random chance. ANOVA
is typically conducted at a 95% confidence interval,
denoted by a significance level (α) of 0.05, meaning that
results with a p-value less than 0.05 are considered statis-
tically significant [60–64]. The statistical parameters taken
into account by ANOVA are given in Table 2.

Table 4: Jarque-Bera test p-values for residual normality test

Output p-value

CS 0.30916
FS 0.26934
STS 0.13400
W 0.35193
P 0.38533

Note: For all outputs, the p-values exceed the significance level (α =
0.05). Therefore, we fail to reject the null hypothesis, and the residuals
can be considered normally distributed.
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Figure 3: 3D response surfaces for CS, FS, STS, WA, and P: (a) additive type and curing time, (b) additive type and additive content, and (c) curing time
and additive content.
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Figure 3: (Continued)
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Figure 3: (Continued)
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Table 3 presents the ANOVA of LFC properties with the
variation in three factors: additive type (A), curing time (B),
and additive content (C).

The contribution of curing time (B), which achieved
71.20, 77.89, and 78.06%, is more significant than that of
additive content (C), with 10.29, 7.12, and 5.02% in CS, FS,
and STS, respectively. Additive type (A) is deemed insignif-
icant (P value >0.05) for CS, FS, and STS. Notably, the sig-
nificance of additive content (C) with 63.63 and 79.78% is
more pronounced than that of curing time (B) with 18.34
and 10.42%, as well as that of additive type (A) with 1.86
and 1.40% for WA and P, respectively.

The perturbation diagram of the obtained models is illu-
strated in Figure 1. The perturbation diagram serves as a gra-
phical tool frequently utilized in engineering to illustrate the
impact of various factors on the output of interest. This process
assists in identifying and analyzing the impact of variations or
disturbances in input variables on the overall output. The dia-
gram illustrates that the input variables have been normalized
and are displayed on a scale ranging from −1 to +1 [52]. This
normalization allows for easier comparison and analysis of the
input-output relationships, regardless of the original units or
scales of the variables. The diagram illustrates how the sys-
tem’s output responds to simultaneous changes in the three
normalized inputs, helping to pinpoint the input combinations
that have the most significant impact on the output, as well as
potential interactions among the variables.

Figure 1(a)–(c) illustrate an increase in the CS, FS, and
STS parameters as the B factor positively increases (level
+1), while an increase in the C factor occurs near the refer-
ence point on the negative side (level −1). In addition,
factor A shows a slight increase on both the positive side
(level +1) and the negative side (level −1). Figure 1(d)

reveals a significant increase in the value of WA with the
elevation of factor C on the right side (level +1), while A and
B increase near the reference point on the left side (level
−1). In Figure 1(e), an increase in the value of P is observed
with the increase in factor B on the left side (level −1) and
factor C on the right side (level +1), while A increases near
the reference point on the left side (level −1) (Figure 2).

With a significance level of α = 0.05, the p-values for all
outputs presented in Table 4 exceed this threshold, indi-
cating that we fail to reject the null hypothesis in every
case. Consequently, the residuals for each output can be
considered to follow a normal distribution.

4.2 3D response surfaces

The 3D surface response plots illustrate the impact of vari-
ables such as additive type, curing time, and additive con-
tent (noted A, B, and C, respectively) on the properties of
CS, FS, STS, WA, and P, as depicted in Figure 3(a)–(c).

In the 3D response surface plots, color coding is used to
visually represent the effect of varying input variables,
such as additive type, curing time, and additive content,
on the physicomechanical properties of LFC. The plots help
to illustrate how these variables interact to influence out-
comes like CS or FS.

The color scheme in the plots provides a clear visual
guide, with pink areas indicating regions of highest
response intensity, where the desired property (such as
CS) is maximized. Conversely, red areas represent regions
of lowest response intensity, indicating weaker perfor-
mance in the property being measured. For example, a
high CS may occur in the pink areas when the curing

Figure 4: Graphical representation of an ANN perceptron.
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Figure 5: Schematic representation of K-fold cross-validation [71].

Figure 6: Flowchart of the K-fold cross-validation.
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time is 28 days and the additive content is 20%, while the
red areas might indicate poor results when the curing time
is shorter or the additive content is lower.

The substitution of cement with three types of additives,
namely, OSA, SSA and MSA, with a curing time of 28 days
and an additive concentration ranging from 4 to 20%, results
in maximummechanical strength, whether in terms of com-
pression, flexion or splitting tensile strength, for the LFC.

After a curing period of 28 days and an additive con-
centration fluctuating between 18 and 30%, MSA displays a
lower WA capacity compared with samples containing OSA
and SSA in the LFC.

Following a curing period of 28 days and an additive con-
centration ranging from 24 to 30%, OSA andMSA ashes exhibit
lower P than the sample containing SSA ash in the LFC.

5 Predictive modeling

5.1 ANN K-fold cross validation modeling

The human brain comprises a vast network of neurons
connected by synapses. When an individual interacts
with their environment, such as through sight or hearing,
specific neurons are activated [65,66]. This activation
enables the person to distinguish between various stimuli.
ANNs aim to replicate this process [67,68].

ANNs are organized in layers to successively analyze
input. The input layer acquires raw data and transmits it to
the following levels. Hidden layers, situated between input

Table 5: Optimal architectures of ANN

ANN model Number of hidden layers Activation functions

CS 2 The first layer: 6 nodes 3 Sigmoïde
2 Linear
1 Gaussian

The second layer: 4
nodes

2 Sigmoïde
1 Linear
1 Gaussian

FS 1 4 nodes Sigmoïde
STS 1 4 nodes Sigmoïde
WA 1 6 nodes Sigmoïde
P 1 5 nodes 3 Sigmoïde

2 Linear

Figure 7: Flow chart of the hybrid algorithm DNN-IGWO.
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and output, execute computations by using weights, biases,
and activation functions (e.g., ReLU, sigmoid) to convert data
into significant patterns [69,70]. These layers facilitate the
network’s ability to comprehend intricate relationships – an
increased number of hidden layers permits more profound
feature extraction, being the foundation of “deep learning.”
The output layer generates the outcome, such as a classifica-
tion or numerical prediction, utilizing task-specific activations
like softmax or linear functions. Collectively, these layers
emulate hierarchical information processing, transforming

raw inputs into useful insights [72,73]. This architecture is
an ANN perceptron, as shown in Figure 4.

Supposing a neural network with N layers, we define
the following quantities:
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Table 6: DNN optimization parameters

Hidden layers Hidden layer size Learning algorithms Activation functions

Min: 1 Max: 10 Min: 1 Max: 10 Trainlm: LM backpropagation Compet: Competitive transfer function
Trainbr: Bayesian regulation backpropagation Elliotsig: Elliot sigmoid transfer function
Trainbfg: BFGS quasi-Newton backpropagation Hardlim: Positive hard limit transfer

function
Traincgb: Conjugate gradient backpropagation with Powell-
Beale restarts

Hardlims: Symmetric hard limit transfer
function

Traincgf: Conjugate gradient backpropagation with Fletcher-
Reeves updates

Logsig: Logarithmic sigmoid transfer
function

Traincgp: Conjugate gradient backpropagation with Polak-
Ribiere updates

Netinv: Inverse transfer function

Traingd: Gradient descent backpropagation Poslin: Positive linear transfer function
Traingda: Gradient descent with adaptive lr backpropagation Purelin: Linear transfer function
Traingdm: Gradient descent with momentum Radbas: Radial basis transfer function
Traingdx: Gradient descent w/momentum and adaptive lr
backpropagation

Radbasn: Radial basis normalized transfer
function

Trainoss: One step secant backpropagation Satlin: Positive saturating linear transfer
function

Trainrp: RPROP backpropagation Satlins: Symmetric saturating linear
transfer function

Trainscg: Scaled conjugate gradient backpropagation Softmax: Soft max transfer function
Tansig: Symmetric sigmoid transfer
function
Tribas: Triangular basis transfer function

Table 7: Optimal parameters of DNN obtained with IGWO

Parameter HLayer
number

HLayer size Learning-
algorithm

Act-Fct

CS 3 9 Trainbr Logsig
8 Elliotsig
9 Elliotsig

FS 3 10 Trainbr Elliotsig
8 Tansig
5 Radbasn

STS 2 8 Trainbr Elliotsig
9 Radbasn

WA 2 8 Trainbr Elliotsig
8 Logsig

P 2 9 Trainbr Elliotsig
8 Radbasn

Table 8: Error functions [80]

Criteria Formulas
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where y
ex

represents the experimental value of the xth trial.
y

px
denotes the predicted value of the xth trial.

y denotes the average of the experimentally determined values.
n represents the number of experiments.
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where y is the output variable to be modeled. =a xj j
0 ; xj is

the jth input layer; and wjk
n is the weight value of the kth

neuron in the nth layer at the jth neuron in the ( )−n 1 th

layer. Similarly, we define the biases bi

j and the activation
function f.

After an ANN model is trained on labeled data, its
performance needs to be verified on new data. A critical
step – model validation – is performed to ensure the accu-
racy of the prediction model. This process entails assessing
whether the predicted results, which quantify hypothetical
relationships between variables, are acceptable as ade-
quate representations of the data.

One of the commonly used methods to assess the effec-
tiveness of an ANNmodel is K-fold cross-validation, which is
a resampling method that allows a model to be evaluated
even when data are limited [74,75]. K-fold is easy to under-
stand and is highly popular. Compared with other cross-
validation approaches, it generally tends to produce a less
biased model [76,77]. This result occurs because K-fold
ensures that all observations from the original dataset
have the opportunity to appear in the training set and the
test set simultaneously. In the case of limited input data,
K-fold is thus one of the most relevant approaches [78].

The first step is to randomly divide the dataset into K
folds. This procedure is governed by a single parameter
called K, which represents the number of groups into
which the sample will be partitioned [79]. The value of K
must be chosen wisely based on the size of the dataset,
avoiding it being too low or too high. In this case, K = 3,
which means that the dataset will be segmented into three
distinct parts. Subsequently, we proceed with an iterative
learning process, where we train the model on one-fold
and test it on the others. This process repeats until each
K-fold has been used in the training set at least once
(Figure 5). The model’s performance metric is evaluated

Table 9: Experimental and predictive CS results

N FS
Exp.
(MPa)

FS
RSM
(MPa)

FS
ANN
(MPa)

FS
DNN
(MPa)

FS
SVM (MPa)

1 2.10 1.99 2.07 2.10 2.35
2 2.80 2.78 2.81 2.80 2.79
3 3.40 3.43 3.35 3.40 3.67
4 2.00 2.14 2.06 2.00 2.26
5 2.90 2.93 2.87 2.90 2.70
6 3.50 3.56 3.52 3.50 3.58
7 2.10 2.20 2.08 2.10 2.17
8 2.90 2.98 2.95 2.90 2.61
9 3.60 3.60 3.63 3.60 3.48
10 2.20 2.16 2.13 2.20 2.07
11 3.00 2.94 3.01 3.00 2.51
12 3.70 3.55 3.66 3.70 3.39
13 2.00 2.03 2.07 2.00 1.98
14 2.80 2.80 2.90 2.80 2.42
15 3.50 3.40 3.50 3.50 3.30
16 1.80 1.81 1.81 1.72 1.89
17 2.50 2.57 2.50 2.50 2.33
18 3.10 3.16 3.08 3.10 3.20
19 1.60 1.50 1.59 1.60 1.79
20 2.30 2.25 2.14 2.30 2.23
21 2.80 2.83 2.76 2.80 3.11
22 2.10 1.88 2.07 2.10 2.43
23 2.80 2.69 2.78 2.80 2.87
24 3.40 3.35 3.27 3.40 3.75
25 2.00 2.04 2.04 2.00 2.34
26 2.80 2.84 2.83 2.80 2.78
27 3.40 3.49 3.44 3.40 3.66
28 2.00 2.10 2.05 2.00 2.25
29 2.80 2.89 2.89 2.80 2.68
30 3.50 3.54 3.57 3.50 3.56
31 2.10 2.07 2.05 2.02 2.15
32 2.90 2.86 2.92 2.90 2.59
33 3.60 3.49 3.60 3.75 3.47
34 1.90 1.95 1.93 1.90 2.06
35 2.70 2.73 2.78 2.74 2.50
36 3.40 3.35 3.41 3.40 3.38
37 1.70 1.73 1.64 1.70 1.97
38 2.50 2.50 2.38 2.50 2.41
39 3.00 3.11 2.99 3.00 3.28
40 1.50 1.42 1.49 1.50 1.87
41 2.20 2.19 2.10 2.20 2.31
42 2.70 2.79 2.72 2.70 3.19
43 2.10 2.04 2.10 2.10 2.51
44 2.80 2.85 2.82 2.80 2.95
45 3.40 3.54 3.41 3.40 3.83
46 2.10 2.20 2.12 2.10 2.42
47 3.00 3.01 2.96 3.00 2.86
48 3.60 3.69 3.66 3.60 3.73
49 2.20 2.27 2.22 2.20 2.32
50 3.10 3.07 3.11 3.10 2.76
51 3.80 3.74 3.83 3.80 3.64
52 2.30 2.24 2.28 2.30 2.23
53 3.20 3.04 3.16 3.20 2.67

(Continued)

Table 9: Continued

N FS
Exp.
(MPa)

FS
RSM
(MPa)

FS
ANN
(MPa)

FS
DNN
(MPa)

FS
SVM (MPa)

54 4.00 3.69 3.86 4.00 3.55
55 2.10 2.12 2.11 2.10 2.14
56 2.90 2.91 2.97 2.93 2.58
57 3.60 3.56 3.64 3.60 3.46
58 1.80 1.91 1.81 1.80 2.05
59 2.60 2.70 2.60 2.60 2.48
60 3.20 3.33 3.23 3.20 3.36
61 1.70 1.60 1.72 1.70 1.95
62 2.40 2.38 2.39 2.39 2.39
63 3.00 3.01 3.02 3.00 3.27
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by taking the average of the recorded scores [81,82]. Figure
6 illustrates the flowchart of the K-fold cross-validation
process employed in training the ANN model.

The architecture of an ANN defines how neurons are
structured in layers and connected to each other [83,84].
The parameters optimized in this section include the size of
the network, which encompasses the number of hidden
layers and the number of nodes in each layer, as well as
the activation functions for each layer [84,85]. The dimen-
sion of the network is particularly important when
designing a neural network, as it determines the number
of layers and nodes in each of them. Activation functions
influence the output of a neuron based on its inputs. In this
study, three types of activation functions were evaluated:
the sigmoid transfer function (hyperbolic tangent), the
linear transfer function, and the radial basis function
(Gaussian) [86,87]. The optimal architectures of ANNs,
aiming to maximize the performance of prediction models
for CS, FS, STS, WA, and P, are presented in Table 5.

ANN-K fold validation models with different architec-
tures have been developed.

5.2 Hybrid deep neural network
optimization using improved grey wolf
optimizer (DNN-IGWO)

Figure 7 depicts the architecture of the DNN-IGWO, which
represents an advanced hybrid modeling strategy devel-
oped to improve both the predictive performance and com-
putational robustness of the learning process. By inte-
grating the deep representation learning strengths of
DNNs with the metaheuristic optimization capabilities of
the IGWO algorithm, this approach enables the automated
configuration of network design parameters and

Table 10: Experimental and predictive FS results

N STS
Exp.
(MPa)

STS
RSM
(MPa)

STS
ANN
(MPa)

STS
DNN
(MPa)

STS
SVM (MPa)

1 15.54 15.42 15.34 15.54 16.47
2 15.22 15.60 15.45 15.22 16.01
3 14.50 14.36 14.47 14.50 15.10
4 16.80 16.51 16.74 16.66 16.99
5 16.91 16.67 16.87 16.91 16.54
6 15.60 15.40 15.65 15.61 15.62
7 17.57 17.40 17.59 17.57 17.52
8 17.76 17.55 17.75 17.76 17.06
9 16.30 16.25 16.33 16.30 16.14
10 18.08 18.10 18.08 18.08 18.04
11 18.25 18.23 18.30 18.26 17.58
12 16.75 16.90 16.76 16.75 16.66
13 18.46 18.60 18.43 18.45 18.56
14 18.65 18.72 18.69 18.65 18.10
15 17.10 17.36 17.09 17.10 17.19
16 18.74 18.91 18.73 18.74 19.09
17 18.95 19.02 19.00 18.97 18.63
18 17.40 17.63 17.40 17.40 17.71
19 18.97 19.03 19.03 18.98 19.61
20 19.25 19.12 19.26 19.25 19.15
21 17.70 17.71 17.75 17.70 18.23
22 15.54 15.90 15.45 15.54 16.20
23 15.22 16.06 15.36 15.22 15.74
24 14.50 14.78 14.65 14.50 14.82
25 17.06 16.93 16.99 17.09 16.72
26 17.23 17.08 16.91 17.23 16.26
27 15.90 15.77 15.90 15.83 15.35
28 17.88 17.77 17.92 17.88 17.25
29 18.03 17.90 17.90 18.03 16.79
30 16.70 16.56 16.66 16.70 15.87
31 18.36 18.41 18.47 18.37 17.77
32 18.53 18.53 18.52 18.53 17.31
33 17.20 17.16 17.17 17.20 16.39
34 18.76 18.86 18.81 18.75 18.29
35 18.93 18.96 18.95 18.92 17.83
36 17.60 17.57 17.56 17.59 16.92
37 19.05 19.12 19.07 19.04 18.81
38 19.23 19.21 19.25 19.25 18.36
39 17.90 17.78 17.91 17.91 17.44
40 19.27 19.18 19.27 19.28 19.34
41 19.53 19.25 19.45 19.52 18.88
42 18.20 17.80 18.24 18.19 17.96
43 15.54 15.36 15.14 15.54 15.93
44 15.22 15.50 15.30 15.22 15.47
45 14.50 14.18 14.39 14.50 14.55
46 16.61 16.33 16.46 16.61 16.45
47 16.63 16.46 16.59 16.63 15.99
48 15.20 15.12 15.32 15.20 15.07
49 17.21 17.11 17.22 17.21 16.97
50 17.43 17.23 17.37 17.43 16.52
51 15.80 15.86 15.84 15.80 15.60
52 17.61 17.70 17.65 17.62 17.50
53 17.83 17.80 17.84 17.84 17.04

(Continued)

Table 10: Continued

N STS
Exp.
(MPa)

STS
RSM
(MPa)

STS
ANN
(MPa)

STS
DNN
(MPa)

STS
SVM (MPa)

54 16.20 16.40 16.16 16.21 16.12
55 17.91 18.10 17.91 17.90 18.02
56 18.13 18.18 18.15 18.12 17.56
57 16.50 16.75 16.42 16.48 16.64
58 18.11 18.30 18.10 18.12 18.54
59 18.33 18.37 18.38 18.34 18.08
60 16.70 16.91 16.67 16.71 17.17
61 18.31 18.31 18.28 18.31 19.07
62 18.53 18.36 18.53 18.53 18.61
63 16.90 16.88 16.93 16.90 17.69
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hyperparameters [88–90]. The central aim of this frame-
work is to enhance the prediction accuracy of mechanical
properties through the systematic optimization of critical
model components, including the number and depth of
hidden layers, the distribution of neurons, and the activa-
tion function types.

At the outset of the optimization process, the para-
meters of the IGWO are initialized, these include the
number of search agents, the dimensionality of the problem
space, and the maximum iteration count. These parameters
critically influence the convergence behavior of the algo-
rithm by regulating the dynamics of the exploration and
exploitation mechanisms. Upon initialization, the structure
of the DNN is constructed, detailing the number of layers
and the specific configuration of neurons per layer, which
will subsequently be optimized through the IGWO process.

The optimization process is focused on determining
the optimal number of hidden layers, neurons per layer,
activation functions, and learning algorithms. Unlike con-
ventional methods, IGWO enabled an automated and effi-
cient search for the best-performing DNN configuration,
improving predictive accuracy and generalization. The
learning algorithms evaluated included trainlm, trainbr,
trainbfg, and others, while multiple activation functions
were considered to ensure adaptability to nonlinear pat-
terns. Table 6 details the optimized architecture of DNN.

The Levenberg–Marquardt (LM) optimizer was selected
for training the ANN because of its swift convergence and
stability, making it particularly appropriate for small to
medium-sized datasets such as the one utilized in this study.
The LM algorithm integrates the benefits of gradient descent
and the Gauss-Newton method, facilitating rapid training
while addressing the intricate nonlinear interactions within
the dataset [91,92]. Its adaptability in managing both linear
and nonlinear models renders it optimum for forecasting

Table 11: Experimental and predictive STS results

N CS
Exp.
(MPa)

CS
RSM
(MPa)

CS
ANN
(MPa)

CS
DNN
(MPa)

CS
SVM (MPa)

1 9.2 8.86 9.19 2.1 1.99
2 12.2 12.08 12.44 2.8 2.78
3 14.5 14.47 14.54 3.4 3.43
4 9.3 9.56 9.20 2 2.14
5 12.5 12.72 12.58 2.9 2.93
6 14.7 15.01 14.93 3.5 3.56
7 9.5 9.85 9.50 2.1 2.20
8 12.7 12.96 12.92 2.9 2.98
9 15.0 15.14 15.38 3.6 3.60
10 9.8 9.73 9.62 2.2 2.16
11 13.1 12.79 12.94 3 2.94
12 15.4 14.86 15.37 3.7 3.55
13 9.0 9.20 9.17 2 2.03
14 12.2 12.21 12.23 2.8 2.80
15 14.2 14.17 14.51 3.5 3.40
16 8.3 8.27 8.26 1.80 1.81
17 11 11.22 10.85 2.5 2.57
18 13.0 13.08 12.92 3.1 3.16
19 7.3 6.92 7.81 1.6 1.50
20 9.9 9.82 9.83 2.30 2.25
21 11.7 11.58 11.72 2.80 2.83
22 9.2 8.51 8.99 2.10 1.88
23 12.2 11.76 12.26 2.80 2.69
24 14.5 14.20 14.37 3.4 3.35
25 9.10 9.21 9.22 2 2.04
26 12.3 12.41 12.49 2.8 2.84
27 14.5 14.74 14.56 3.4 3.49
28 9.10 9.51 8.99 2 2.10
29 12.4 12.65 12.34 2.8 2.89
30 14.6 14.88 14.62 3.5 3.54
31 9.4 9.39 8.91 2.1 2.07
32 12.7 12.48 12.32 2.9 2.86
33 14.9 14.60 14.73 3.6 3.49
34 8.8 8.87 8.57 1.9 1.95
35 11.9 11.91 11.83 2.7 2.73
36 14.1 13.92 14.19 3.4 3.35
37 7.9 7.94 7.65 1.7 1.73
38 10.6 10.92 10.53 2.5 2.50
39 12.6 12.83 12.71 3 3.11
40 6.9 6.60 6.91 1.50 1.42
41 9.4 9.53 9.18 2.20 2.19
42 11.1 11.33 11.18 2.70 2.79
43 9.2 9.17 9.05 2.10 2.04
44 12.2 12.44 12.19 2.80 2.85
45 14.5 14.94 14.28 3.40 3.54
46 9.5 9.88 9.67 2.10 2.20
47 12.9 13.10 12.96 3 3.01
48 15.1 15.49 15.17 3.60 3.69
49 10.1 10.18 10.18 2.20 2.27
50 13.6 13.34 13.58 3.10 3.07
51 15.9 15.63 15.86 3.80 3.74
52 10.3 10.07 10.31 2.30 2.24
53 14.0 13.18 13.70 3.2 3.04

(Continued)

Table 11: Continued

N CS
Exp.
(MPa)

CS
RSM
(MPa)

CS
ANN
(MPa)

CS
DNN
(MPa)

CS
SVM (MPa)

54 16.3 15.36 15.89 4 3.69
55 9.4 9.55 9.47 2.1 2.12
56 12.7 12.61 12.76 2.9 2.91
57 14.9 14.68 14.98 3.6 3.56
58 8.3 8.63 8.31 1.8 1.91
59 11.2 11.63 11.36 2.6 2.70
60 13.1 13.60 13.61 3.2 3.33
61 7.6 7.29 7.56 1.7 1.60
62 10.3 10.24 9.93 2.4 2.38
63 12.0 12.10 11.96 3 3.01
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the physicomechanical properties of concrete, ensuring an
ideal equilibrium between computing efficiency and model
precision.

The optimization of DNN architectures through the
IGWO has led to the development of a bespoke model tai-
lored for the prediction of five key mechanical and phy-
sical properties of concrete: CS, FS, STS, WA, and P. The
optimized architecture, whose detailed configuration is
presented in Table 7, includes essential design elements
such as the number of hidden layers, neurons per layer,
activation functions, and the selected learning algorithm.

5.3 Support vector machines (SVMs)

SVMs are a machine learning technique used for classifica-
tion and regression. This method is based on the Vapnik-
Chervonenkis statistical learning theory [93–95]. In 1995,
Cortes and Vapnik [96] proposed an adaptation of SVMs
to solve regression problems, using the kernel trick. This
approach is essential in machine learning because it allows
nonlinear problems to be addressed using linear classifiers
in a transformed space.

Unlike ANNs, SVMs are capable of providing reliable
predictions even with limited data and are less susceptible
to overfitting [97]. For example, Ulas and Sami demon-
strated the effectiveness of SVMs in predicting surface
roughness during turning of AISI 304 steel, despite a small
amount of experimental data [98].

5.4 Predictive modeling results

In this section, we trained, tested, and validated the dif-
ferent models of RSM, ANN, DNN-IGWO, and SVM to predict
C, FS, STS, WA, and P using the 63 experimentally obtained

Table 12: Experimental and predictive WA results

N WA
Exp. (%)

WA
RSM (%)

WA
ANN (%)

WA
DNN (%)

WA
SVM (%)

1 15.54 15.42 15.34 15.54 16.47
2 15.22 15.60 15.45 15.22 16.01
3 14.50 14.36 14.47 14.50 15.10
4 16.80 16.51 16.74 16.66 16.99
5 16.91 16.67 16.87 16.91 16.54
6 15.60 15.40 15.65 15.61 15.62
7 17.57 17.40 17.59 17.57 17.52
8 17.76 17.55 17.75 17.76 17.06
9 16.30 16.25 16.33 16.30 16.14
10 18.08 18.10 18.08 18.08 18.04
11 18.25 18.23 18.30 18.26 17.58
12 16.75 16.90 16.76 16.75 16.66
13 18.46 18.60 18.43 18.45 18.56
14 18.65 18.72 18.69 18.65 18.10
15 17.10 17.36 17.09 17.10 17.19
16 18.74 18.91 18.73 18.74 19.09
17 18.95 19.02 19.00 18.97 18.63
18 17.40 17.63 17.40 17.40 17.71
19 18.97 19.03 19.03 18.98 19.61
20 19.25 19.12 19.26 19.25 19.15
21 17.70 17.71 17.75 17.70 18.23
22 15.54 15.90 15.45 15.54 16.20
23 15.22 16.06 15.36 15.22 15.74
24 14.50 14.78 14.65 14.50 14.82
25 17.06 16.93 16.99 17.09 16.72
26 17.23 17.08 16.91 17.23 16.26
27 15.90 15.77 15.90 15.83 15.35
28 17.88 17.77 17.92 17.88 17.25
29 18.03 17.90 17.90 18.03 16.79
30 16.70 16.56 16.66 16.70 15.87
31 18.36 18.41 18.47 18.37 17.77
32 18.53 18.53 18.52 18.53 17.31
33 17.20 17.16 17.17 17.20 16.39
34 18.76 18.86 18.81 18.75 18.29
35 18.93 18.96 18.95 18.92 17.83
36 17.60 17.57 17.56 17.59 16.92
37 19.05 19.12 19.07 19.04 18.81
38 19.23 19.21 19.25 19.25 18.36
39 17.90 17.78 17.91 17.91 17.44
40 19.27 19.18 19.27 19.28 19.34
41 19.53 19.25 19.45 19.52 18.88
42 18.20 17.80 18.24 18.19 17.96
43 15.54 15.36 15.14 15.54 15.93
44 15.22 15.50 15.30 15.22 15.47
45 14.50 14.18 14.39 14.50 14.55
46 16.61 16.33 16.46 16.61 16.45
47 16.63 16.46 16.59 16.63 15.99
48 15.20 15.12 15.32 15.20 15.07
49 17.21 17.11 17.22 17.21 16.97
50 17.43 17.23 17.37 17.43 16.52
51 15.80 15.86 15.84 15.80 15.60
52 17.61 17.70 17.65 17.62 17.50
53 17.83 17.80 17.84 17.84 17.04
54 16.20 16.40 16.16 16.21 16.12

(Continued)

Table 12: Continued

N WA
Exp. (%)

WA
RSM (%)

WA
ANN (%)

WA
DNN (%)

WA
SVM (%)

55 17.91 18.10 17.91 17.90 18.02
56 18.13 18.18 18.15 18.12 17.56
57 16.50 16.75 16.42 16.48 16.64
58 18.11 18.30 18.10 18.12 18.54
59 18.33 18.37 18.38 18.34 18.08
60 16.70 16.91 16.67 16.71 17.17
61 18.31 18.31 18.28 18.31 19.07
62 18.53 18.36 18.53 18.53 18.61
63 16.90 16.88 16.93 16.90 17.69
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data points. Various visualization tools, such as scatter plots
and spider plots, were used, complementing the evaluation
metrics such as correlation coefficient (R2), objective function
(OBJ), and error criteria (root mean square error (RMSE),
mean absolute percentage error (MAPE), and mean absolute
deviation (MAD)). We used Taylor diagrams to illustrate the
data availability and performance of each model. We exam-
ined the predictive capabilities of the different models by
comparing the model predictions with the corresponding
experimental data. Table 8 provides the formulas for calcu-
lating the error criteria.

Tables 9–13 and the distribution plots in Figure 8 com-
pare the predictions of C, FS, STS, WA, and Pwith the actual
values for four prediction models: RSM, ANN, DNN-IGWO,
and SVM. The points are represented by different symbols
depending on the models, while the solid lines y = x and the
dashed lines (+10 and −10%) serve as a reference to eval-
uate the accuracy of the models.

These distribution plots show that the neural network-
based models ANN and DNN-IGWO significantly
outperform traditional RSM and SVM models in terms of
predictive accuracy. DNN-IGWO performs best, with near-
perfect predictions within the ±10% error band, followed
by ANN. RSM models show moderate accuracy, with
greater dispersion. Finally, SVM models are the least accu-
rate, with predictions largely deviating from the actual
values, which limits their reliability for this task.

Table 14 and the spider plots in Figure 9 present the
comparative analysis of the predictive models (RSM, ANN,
DNN, and SVM) applied to the five target outputs (C, FS,
STS, WA, and P). This analysis highlights the superiority of
DNN. For all outputs, the DNN model systematically pre-
sents the best performances with the lowest values of error
indicators (MAD, RMSE, MAPE) and the highest coefficients
of determination (R2 ≈ 0.999), reflecting remarkable accu-
racy and generalization capacity. Conversely, the SVM
model is distinguished by the highest errors and the lowest
R2 values, particularly for the C, STS, WA, and P outputs,
demonstrating a more limited predictive capacity. The RSM

Table 13: Experimental and predictive P results

N P Exp. (%) P RSM (%) P ANN (%) P DNN (%) P SVM (%)

1 35.10 35.12 35.12 35.10 35.49
2 34.40 34.33 34.42 34.40 35.06
3 33.70 33.53 33.58 33.70 34.20
4 36.50 36.32 36.32 36.48 36.33
5 35.60 35.55 35.54 35.62 35.90
6 34.90 34.77 34.74 34.90 35.05
7 37.50 37.36 37.40 37.52 37.17
8 36.70 36.60 36.54 36.67 36.74
9 35.90 35.85 35.80 35.91 35.89
10 38.30 38.25 38.32 38.29 38.02
11 37.50 37.50 37.41 37.52 37.59
12 36.70 36.77 36.73 36.69 36.73
13 38.90 38.97 39.07 38.87 38.86
14 38.20 38.24 38.16 38.21 38.43
15 37.40 37.54 37.51 37.41 37.57
16 39.30 39.54 39.65 39.33 39.70
17 38.80 38.82 38.80 38.78 39.27
18 38.10 38.15 38.14 38.10 38.42
19 39.70 39.96 40.08 39.69 40.54
20 39.20 39.25 39.34 39.21 40.11
21 38.60 38.60 38.63 38.60 39.26
22 35.10 35.69 35.04 35.42 35.29
23 34.40 34.93 34.42 34.40 34.86
24 33.70 34.17 33.76 33.70 34.00
25 36.70 36.84 36.81 36.70 36.13
26 36.10 36.09 36.08 36.09 35.70
27 35.20 35.36 35.42 35.20 34.84
28 38.00 37.84 38.03 37.99 36.97
29 37.30 37.10 37.20 37.31 36.54
30 36.40 36.40 36.55 36.40 35.69
31 38.90 38.68 38.88 38.91 37.81
32 38.20 37.95 38.00 38.19 37.39
33 37.40 37.27 37.39 37.39 36.53
34 39.50 39.36 39.51 39.54 38.66
35 38.80 38.65 38.64 38.81 38.23
36 38.00 37.99 38.05 38.00 37.37
37 40.00 39.88 39.99 40.00 39.50
38 39.30 39.18 39.18 39.30 39.07
39 38.60 38.55 38.56 38.60 38.21
40 40.40 40.25 40.34 40.26 40.34
41 39.70 39.56 39.65 39.70 39.91
42 39.00 38.96 38.96 39.00 39.06
43 35.10 34.83 35.11 35.33 35.09
44 34.40 34.09 34.43 34.40 34.66
45 33.70 33.38 33.70 33.70 33.80
46 36.10 35.94 36.08 36.10 35.93
47 35.20 35.21 35.32 35.25 35.50
48 34.70 34.53 34.67 34.70 34.64
49 36.90 36.89 36.91 36.90 36.77
50 36.10 36.17 36.08 36.10 36.34
51 35.50 35.51 35.50 35.50 35.49
52 37.60 37.68 37.57 37.60 37.61
53 36.90 36.98 36.72 36.90 37.18
54 36.20 36.34 36.17 36.20 36.33
55 38.20 38.31 38.10 38.20 38.45

(Continued)

Table 13: Continued

N P Exp. (%) P RSM (%) P ANN (%) P DNN (%) P SVM (%)

56 36.70 37.63 37.27 36.70 38.03
57 36.90 37.02 36.73 36.90 37.17
58 38.70 38.79 38.58 38.70 39.30
59 38.20 38.12 37.84 38.19 38.87
60 37.50 37.53 37.28 37.50 38.01
61 39.10 39.11 39.22 39.10 40.14
62 38.70 38.45 38.65 38.70 39.71
63 38.00 37.89 38.09 37.89 38.86
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Figure 8: Comparison of measured values of (a) CS, (b) FS, (c) STS, (d) WA, and (e) P and predicted values using RSM, ANN, SNN-IGWO, and SVM
models.
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and ANN models offer intermediate performances, with
the ANN sometimes approaching the DNN without, how-
ever, equaling it. Thus, the DNN model appears to be the
most reliable and robust predictive tool for modeling the
outputs studied.

The Taylor diagrams presented in Figure 10 compare
the performance of four prediction models: RSM, ANN,
DNN-IGWO, and SVM in terms of standard deviation and
correlation coefficient. The DNN-IGWOmodel stands out as
the best performer, as it faithfully reproduces the experi-
mental data with a correlation coefficient close to 1 and a
standard deviation almost identical to the reference. ANN
follows closely, also showing high accuracy. The RSM
models show intermediate performance, with moderate
correlations and standard deviations somewhat far from
the reference. Finally, SVM performs the worst, displaying
a low correlation and an inadequate standard deviation.
Overall, the neural network-based models (DNN-IGWO and
ANN) significantly outperform conventional approaches,
demonstrating their superiority for this prediction task.

6 GA multi-objective optimization
results

The resolution of multi-objective optimization problems is
now a central point in the analysis of most processes.
Multi-objective optimization aims to maximize several
components of a function vector. Unlike single-objective
optimization, solving a multi-objective problem does not
lead to a unique solution but instead leads to a set of solu-
tions called the Pareto optimal solution set [99–101]. This
section addresses the optimization of the physicomecha-
nical properties of LFC using GAs based on empirical
models obtained through ANN. GAs are highly efficient
optimization methods for finding compromises and have
become popular in the field of engineering optimization
[102]. They replicate the principles of genetics and the Dar-
winian concept of natural selection (survival of the fittest).
The first step is to arbitrarily select a population of initial
solutions in the search space (the chromosomes) and then
evaluate the performance of these solutions to create a
new population of solutions by using evolutionary opera-
tors such as selection, crossover, and mutation [80,103,104].
This cycle (Figure 11) is repeated until a satisfactory solu-
tion is obtained.

The optimization process begins with data preproces-
sing, which involves collecting and preparing the input
data required for training the ANN. Data normalizationTa

bl
e
14
:C

om
pa

ris
on

be
tw
ee
n
pe

rf
or
m
an

ce
in
di
ce
s
of

RS
M
,A

N
N
,I
G
W
O
,a

nd
SV
M

m
od

el
s

CS
FS

ST
S

W
A

P

RS
M

AN
N

D
N
N

SV
M

RS
M

AN
N

D
N
N

SV
M

RS
M

AN
N

D
N
N

SV
M

RS
M

AN
N

D
N
N

SV
M

RS
M

AN
N

D
N
N

SV
M

M
AD

0.
24
5

0.
14
4

0.
01
6

0.
83
9

0.
06
9

0.
03
9

0.
00

6
0.
20
8

0.
05
9

0.
04
5

0.
00

8
0.
15
8

0.
15
5

0.
06
0

0.
00

9
0.
45
4

0.
14
3

0.
09
7

0.
02
1

0.
41
7

RM
SE

0.
30
7

0.
19
4

0.
05
2

1.
04
4

0.
08

8
0.
05
3

0.
02
5

0.
24
6

0.
07
3

0.
06
0

0.
03
4

0.
19
7

0.
20
3

0.
09
4

0.
02
1

0.
55
4

0.
21
2

0.
14
3

0.
05
6

0.
52
7

M
AP

E
(%

)
2.
13
5

1.
28
9

0.
13
7

7.
37
3

2.
68

2
1.
49
3

0.
24
8

8.
09
8

3.
37
4

2.
45
9

0.
37
5

8.
74
3

0.
92
7

0.
36
1

0.
04
9

2.
61
9

0.
39
2

0.
26
1

0.
05
6

1.
11
2

R2
0.
98

4
0.
99
4

0.
99
9

0.
81
8

0.
98

1
0.
99
3

0.
99
9

0.
85
3

0.
97
6

0.
98

4
0.
99
5

0.
82
6

0.
97
6

0.
99
5

0.
99
9

0.
83
8

0.
98

5
0.
99
3

0.
99
9

0.
91
4

O
BJ

0.
27
8

0.
16
9

0.
03
4

1.
03
6

0.
07
9

0.
04
6

0.
01
5

0.
24
5

0.
06
7

0.
05
3

0.
02
1

0.
19
4

0.
18
1

0.
07
7

0.
01
5

0.
54
8

0.
17
9

0.
12
1

0.
03
8

0.
49
4

22  Abdeliazim Mustafa Mohamed et al.



Figure 9: Spider plots of RSM, ANN, DNN-IGWO, and SVM for (a) CS, (b) FS, (c) STS, (d) WA, and (e) P.
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Figure 10: Taylor diagrams of RSM, ANN, DNN-IGWO, and SVM for (a) CS, (b) FS, (c) STS, (d) WA, and (e) P.
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Figure 11: GAs flowchart for multi-objective optimization.
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is applied to ensure that all input variables are on a com-
parable scale. The dataset is then divided into training and
testing sets to assess the performance of the ANN model.

Once the data are prepared, the next step is training
the ANN model. The ANN is designed as a regression model
to predict target output variables based on the input fea-
tures. The training process involves adjusting the network
weights to minimize prediction errors, typically using
backpropagation and gradient descent algorithms. The
trained ANN model is later incorporated into the fitness
evaluation of the GA.

After training the ANN, the GA is initialized. The GA
begins by generating an initial population of candidate

Table 15: Initial conditions for optimization by GA

Parameters Objectives Lower
limit

Upper
limit

Additive type Gamme OSA (1) SSA (2) MSA (3)
Curing time (days) Gamme 7 28
Additive
content (%)

Gamme 0 30

CS (MPa) Max. 4.857 15.341
FS (MPa) Max. 1.312 3.895
STS (MPa) Max. 0.9377 2.861
WA (%) Max. 15.7597 19.352
P (%) Max. 35.219 40.426

Figure 12: Pareto front graphs obtained by GA for CS: (a) FS, (b) STS, (c) WA, and (d) P.
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solutions, each representing a set of potential model para-
meters or hyperparameters for optimization. A key ele-
ment of the GA is the fitness function, which evaluates
the performance of each candidate solution. In this case,
the fitness function is based on the ANN model’s accuracy
in predicting the desired outputs. The GA is also configured
with parameters such as the crossover rate, mutation rate,
and the number of generations for evolution.

The next step is to evaluate the fitness of each indivi-
dual in the population. Using the ANN model, the fitness of
each candidate is assessed by comparing the predicted out-
puts to the actual target values. This process ensures that
the GA selects candidate solutions that minimize errors
while optimizing other objectives, such as improving CS
and FS in the context of LFC.

Once the fitness evaluation is complete, the GA per-
forms selection, where the top-performing candidates (par-
ents) are chosen based on their fitness scores. Selection
methods like roulette wheel or tournament selection are
employed to increase the likelihood that individuals with
better performance will pass their genes to the next gen-
eration [105,106].

Once the parents are selected, the crossover (recombi-
nation) process is applied, during which parent solutions
are combined to generate offspring. Crossover enables the
algorithm to explore new regions of the solution space by
blending traits from two parent solutions, potentially
yielding better-performing solutions in future generations.

To maintain diversity in the population and prevent
premature convergence, a mutation step is introduced. In
this stage, small random changes are made to some off-
spring to explore less-explored areas of the solution space.
This randomness ensures that the algorithm avoids getting
trapped in local optima and increases the likelihood of
finding a global optimum [107,108].

The population is then updated with the newly gener-
ated offspring, replacing the previous generation. This
iterative evolutionary process of selection, crossover,
mutation, and population updating continues until a stop-
ping criterion is met.

At the end of each iteration, a convergence check is
performed to determine whether the stopping criteria –

such as reaching a maximum number of generations or
achieving a predefined threshold for improvement –

have been satisfied. If the criteria are met, the optimization
process concludes; otherwise, the algorithm returns to the
fitness evaluation stage and proceeds with another
iteration.

Once the algorithm converges, the optimized solution
is obtained, representing the best-performing set of para-
meters for the ANN regression model. These parameters

are then used to enhance the model’s predictive accuracy
while meeting the multi-objective optimization goals of the
problem.

This section aims to identify all the optimal solutions
that yield superior physicomechanical properties for LFC,
including maximum CS, FS, tensile strength, WA, and P.
The different optimization conditions are outlined in
Table 15.

The Pareto fronts (2D) depicted in Figure 12(a)–(d)
showcase various combinations of OBJs (CS vs FS, STS,
WA, P). These fronts outline the spectrum of variation
between two properties and are characterized by series
of points. Each transition from one point to another repre-
sents an improvement in one OBJ at the expense of the
other. The selection of a solution hinges on user prefer-
ence. However, Pareto fronts offer significant utility by
streamlining options and aiding decision-makers in pin-
pointing a desired operating point from the optimal Pareto
point set [109,110].

Figure 12(a) and (b) depict the Pareto front for two sets
of OBJs: CS vs FS, and CS vs STS. These graphs illustrate the
relationship between these properties, showcasing the
trade-offs that occur when attempting to optimize both
simultaneously. When aiming to maximize both CS and
FS or CS and STS, the Pareto front highlights regions
were achieving higher values for both properties is fea-
sible. Conversely, moving toward regions where both func-
tions decrease signifies a compromise in the performance
of the concrete mix. These insights are invaluable for deci-
sion-making, as they help in identifying the most favorable
operating points and trade-offs based on project require-
ments and priorities [111,112].

Figure 12(c) and (d) depicts the Pareto front and reveal
a fundamental trade-off between the two OBJs. In this sce-
nario, maximizing one function inevitably leads to the
minimization of the other. This relationship is evident
between CS and WA, as well as CS and P. The Pareto front
illustrates that achieving higher CS values corresponds to
lower WA and P values. These findings underscore the
inherent compromise involved in optimizing these proper-
ties simultaneously. Note that no single solution is
superior; rather, the solutions represent compromises
that need to be considered carefully based on specific pro-
ject requirements and objectives [113–115].

7 Conclusion

This work explores the physicomechanical behavior of LFC
with seashell ash as an additive, a waste product, in
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concrete production to promote recycling of waste mate-
rials and reduce the reliance on cement that have high
carbon footprint attending sustainable development goals
(Nos 9, 11, 12, 13, and 15), this research helps in reducing gas
emissions associated with cement production. RSM and
ANN are employed to model and optimize mechanical
strength, WA, and P. Multi-objective optimization using
GA identifies optimal levels in LFC production. On the basis
of experimental work, the following conclusions can be
drawn:
• Curing time significantly influences the mechanical
properties of LFC (CS, FS, and STS) by its contribution
of 71.20, 77.89, and 78.06%, respectively. In contrast, addi-
tive content contributes 10.29, 7.12, and 5.02%, respec-
tively, indicating its low impact on these properties.

• OSA, SSA, and MSA insignificantly (P value >0.05) affect
CS, FS, and STS, respectively.

• Additive content exerts a greater influence on WA and P
with 63.63 and 79.78%, respectively, compared with
curing time of 18.34 and 10.42% and additive type of
1.86 and 1.40%, respectively.

• The highest CS, FS, and STS were achieved over a 28-day
curing period and with an additive content ranging from
4 to 20%, in addition to substituting cement with three
types of additives, namely, OSA, SSA, and MSA.

• For samples subjected to a 28-day curing period, additive
content ranging from 18 to 30% and the presence of MSA
showed lower WA of LFC than samples containing OSA
and SSA.

• For samples subjected to a 28-day curing period, additive
content ranging from 24 to 30%, with OSA and MSA,
exhibited lower P of LFC compared with the sample con-
taining SSA.

• The hybrid ANN (DNN-IGWO) demonstrated excellent
accuracy and reliability in predicting experimental
results. It was distinguished by a higher coefficient of
determination (R2) and significantly lower error values
(MAD, RMSE, MAPE, and OBJ), thus outperforming RSM,
ANN, and SVM models for all predicted LFC properties.

• The combined use of the hybrid ANN and the RSM
method is recommended, as these approaches are com-
plementary and contribute to enhancing the quality of
the overall statistical analysis.

• The Pareto front analysis reveals a trade-off between
maximizing the mechanical properties of LFC (CS, FS,
and STS) and minimizing its physical properties (WA
and P), emphasizing the conflicting nature of these
objectives.
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