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Abstract: As an alternate to regular concrete, foam con-
crete, also called foamcrete, has several useful applica-
tions. It saves money on transportation and production
costs as well as dead weight on buildings and foundations,
which helps with energy efficiency. Nevertheless, there is
still a lack of practical applications, which calls for more
research, especially in strength studies, to increase its use in
the actual world. For this purpose, the compressive strength
(C-S) of foamcrete was assessed using two machine learning
algorithms: gene expression programming (GEP) and multi-
expression programming (MEP). A sensitivity analysis was con-
ducted to determine how important certain aspects were. For
predicting foamcrete’s compressive strength, MEP was better
than GEP. By comparison, the MEP model had an R, value of
0.970, while the GEP models only managed 0.94. This is further
supported by the findings of the statistical analysis and the ML
models’ cross-validation using Taylor’s diagram. The sensitivity
analysis results indicated that density (28.0%), cement content
(11.0%), and age (8.5%) were the three most significant criteria
influencing overall strength. The generated models can deter-
mine the compressive strength of foamcrete for different input
parameter values, hence enhancing its practical uses and
saving time and financial resources compared to laboratory
testing.
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1 Introduction

Foamcrete is created by mixing cement, water, and a
stable, homogeneous foam that has been treated with the
appropriate foaming agent [1-3]. In scholarly circles, this
material is known by a variety of names, including cellular
lightweight concrete, low-density foam concrete, and light-
weight cellular concrete [4-7]. It offers effective ways to
tackle diverse obstacles encountered in construction activ-
ities. This material has fewer chemicals, aligning with sus-
tainability and environmental requirements, and can occa-
sionally be partially or wholly replaced by conventional
concrete [8,9]. It is widely used for thermal insulation
[10,11], sound absorption [12,13], and fire resistance [14,15]
due to its textural surface and microstructural cells. In
recent years, a large number of environmentally conscious
buildings have been built using foamcrete for nonstruc-
tural purposes [16,17]. To avoid differential settlement, it
is used to fill bridge abutments [18]. Also reported are uses
for airport buffer systems [19], foundations for buildings
[20,21], and the production of prefabricated components
[22]. Foam concrete is used in building projects in several
nations, including the US, UK, Canada, and Germany [23].
Interest in subsurface engineering has been reignited
by this material. Managing the underlying dead load is
essential for underground buildings [24-26], and one effec-
tive way to do this is by using adjustable density and minimal
self-weight [26]. This material’s rising popularity is due in large
part to its many desirable properties, such as its resilience to
earthquakes, its ideal coordinated deformation capacity, and
its simplicity of pumping [27,28]. Foam concrete is now making
rapid strides as a subsurface project material. Because of its
exceptional self-flowing capabilities, it can be used to fill voids,
sinkholes, abandoned subways, decommissioned sewage pipe-
lines, and similar situations. It is suitable for use as a linear
component in metro and tunnel systems or for load relief
because of its small and controlled self-weight [29-31].
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Despite the scarcity of studies on the actual applica-
tions of foam concrete in civil engineering, its qualities
have been adequately investigated. Nonetheless, further
investigation of its strength-related properties is vital to
broaden its applicability, as strength is a critical character-
istic for any material [32-35]. To better understand how
foamcrete responds to stress and strain, Fu et al. [36] inves-
tigated its compression deformation properties when used
as a liner element. The results of their experiments showed
that while confining pressure and density both increase
foamcrete’s compressive strength, modulus of elasticity is
positively correlated with density alone, regardless of pres-
sure. Contrary to expectations, we found that peak strain
increased with confining pressure but showed no signifi-
cant correlation with density. The freeze-thaw resistance
of cellular concrete was studied by Tikalsky et al. [37], who
proposed a better way to test for this phenomenon. The depth
of absorption is a crucial determinant in the formulation of
freeze—thaw-resistant concrete, potentially improving the
application of foamcrete as an insulating material for tunnels
in frigid areas. Sun et al. [38] provided important information
for material specifications and applications by studying the
effects of several foaming agents on foamcrete’s compressive
strength, workability, and drying shrinkage. Ramamurthy
et al [28] classified literature concerning foaming agents,
cement, fillers, mix ratios, manufacturing procedures, and
the fresh and hardened aspects of foamcrete, whereas Amran
et al [27] investigated foamcrete’s composition, preparation
methods, and attributes. Foamcrete has seen tremendous
improvement in its application in the last several decades.
In Canada, tunnel grouting with cement-based foamcrete has
been widely used [39]. An impact-reducing material for sacri-
ficial tunnel lining cladding was developed by Zhao et al. [40]
using foam cement. Improved cladding thickness greatly
reduced tunnel dynamic reactions to blasting. The effective
use of lightweight foamcrete for tunnel drainage in a South
Korean dual-lane highway tunnel was credited to the effi-
cient creation and distribution of open-cell foams, which
resulted in enhanced permeability, according to Choi and
Ma [41]. The essential characteristics of foamcrete remain
inadequately examined and require additional research,
especially through the utilization of cutting-edge machine
learning (ML) methodologies.

The advent of soft computing has allowed for a more
accurate representation of many materials’ technical char-
acteristics in computer simulations [42,43]. ML models fed
data are crucial to the accuracy of predictions [44,45]. It is
infamously difficult to precisely estimate construction mate-
rials due to their inherent volatility and intricate intricacy.
One prominent application of ML techniques in the con-
struction industry is the assessment of engineering
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properties of materials [46]. The characteristics of both con-
temporary and classic concrete kinds have been studied
using ML methods. This category includes innovative types
of concrete such as those enhanced with phase change mate-
rials, designed for self-compaction, made lightweight, incor-
porating recycled aggregates, or reinforced with fibers
[47-51]. Strong ML models outperform their more traditional
theoretical and experimental equivalents when it comes to
estimating certain qualities of concrete engineering,
according to multiple study sources. Reliable predictions on
the properties of concrete need the resolution of certain com-
putational challenges. Cement hydration and microstructure
development are complex processes that present consider-
able challenges. The activity of cement paste depends on
both time and temperature, and this dependency is non-
linear [52-54]. ML algorithms can be trained to accurately
anticipate desired features by entering data on combination
proportions and curing situations [55]. In addition to being
easy to use and requiring low computer power, ML models
offer a number of advantages, including generalizability,
accuracy, and reproducibility in prediction.

The study suggests that a dependable computational
framework for predicting the compressive strength (C-S) of
foamcrete could be established using well-trained ML algo-
rithms. This work intends to examine the C-S of foamcrete
utilizing robust ML algorithms. Publicly accessible research
data was utilized to construct regression models using gene
expression programming (GEP) and multi-expression pro-
gramming (MEP) to forecast the C-S of foamcrete. The
dataset comprises a total of 300 points. Mathematical veri-
fications and a Taylor diagram were utilized to confirm the
models. In order to determine the extent to which the fac-
tors had an impact on the forecast, a sensitivity analysis was
carried out. Developing new methods and technologies for
automated, low-intervention assessment of material proper-
ties has the potential to significantly influence the construc-
tion industry as a whole.

2 Methods of research

2.1 Dataset assortment and scrutiny

The creation of effective and widely applicable ML models
depends on the availability of accurate and dependable
datasets. This study utilizes a dataset of 300 detailed records
on compressive strength (C-S), sourced from a previously
published article, to investigate the prediction of lightweight
foamed concrete strength using GEP and MEP techniques [56].
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The experimental data was used to create the model, and it
captured the nonlinear correlations between the input vari-
ables and concrete strength exceedingly well. There was a
deliberate strategy to the data collection process, with an
emphasis on including pertinent attributes and using trust-
worthy sources. The databases utilized nine input factors to
build foamcrete: density (Dn), cement (CM), sand (Sa), sand-
to-cement ratio (SCR), water-to-cement ratio (WCR), sand
size (SS), foaming agent (Ag), foam content (Fm), and age
(A). The output variable was C-S. According to previous
research, the ideal number of records per input variable
for making accurate predictions is at least 5 [57]. The utiliza-
tion of a dataset of 300 points for C-S, with nine distinct
input variables (resulting in 300/9 33.33), markedly
enhances the observed ratio in this study. The reliability
of this database stems from two key factors: (i) the data
were generated through experiments carried out in the
same laboratory by the same personnel, following uniform
international standards and environmental conditions; and
(i) the dataset is sufficiently large to encompass the full
range of variables affecting concrete compressive strength.
Furthermore, it is a globally recognized resource utilized by
other researchers for the advancement of soft computing
models, facilitating direct comparisons [58,59].

In building and refining M-L models, the preproces-
sing of data is an important and vital step. Typical data
preprocessing operations encompass handling missing
data, encoding, identifying and addressing outliers, and
partitioning data [60]. A thorough data pretreatment pro-
cedure was implemented to ensure that no outliers were
present, even though a multivariate outlier identification
technique was not expressly used in the study. Every

Table 1: Summary of statistics from the C-S database [63]
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feature was subjected to univariate outlier identification
before the M-L models were trained. Finding and
removing data points that did not fall inside the specified
acceptable ranges was part of this process. To further
ensure that no outliers were missed, the dataset was sub-
jected to extensive statistical and visual analysis. A brief
synopsis of the input and output statistical data is provided
in Table 1. The statistical measurements provide the ranges
of values for the variables, including maximum and
minimum. Included as well are the standard deviation,
median, kurtosis, skewness, mode, and standard error.
The cement content varies from 439.2 to 992.8 kg-m >, while
the density ranges from 1406.91 to 2009.48 kg'm . In all C-S
situations, the maximum SCR and WCR were maintained at
2.0 and 0.45, respectively. The maximum foam content uti-
lized was 357 kg'm~>, similarly. Additional statistical metrics
include data on the mean, variability, kurtosis, and skewness
of each input and output. The degree to which the probability
distribution of a real-valued variable is asymmetric with
regard to its mean is called its skewness. In most cases, an
elongated left-hand side of the dispersion curve is indicated
when negative numbers are present [61]. The likelihood dis-
tribution along the vertical axis can be better understood
with the help of kurtosis, a statistical metric that shows if a
dataset is appropriate for a specific normal distribution and
has light or heavy tails [62].

Additionally, the complete compressive strength (C-S)
dataset was randomly divided into two subsets: 70% (210
samples) was used for model training, while the remaining
30% (90 samples) was allocated for validation and testing.
For ML model development and evaluation, data must be
split into training and test sets. The model parameters are

Parameters Density Cement Sand SCR WCR Sand- Foaming Foam content Age (d) C-S (MPa)
(kg-m3) (kg-m3) (kg-m3) size (mm) agent (L) (kg-m3)
Mean 1742.771 727.448 733.449 1.06 0.388 0.836 0.176 208.847 17.5 24.845
Standard error  9.89 7.153 8.813 0.022 0.003 0.047 0.0Mm 4.646 0.607 0.655
Median 1758.815 748.55 749.6 1 0.4 0.6 0.2 205 17.5 24.905
Mode 1519.11 770.6 770.6 1 0.45 0.6 0 305 7 18.42
Standard 171.304 123.889 152.652 0.383 0.054 0.822 0.182 80.469 10.518  11.35
deviation
Sample variance 29344.97 15348.4 23302.61 0.147 0.003 0.676 0.033 6475.221 110.619 128.824
Kurtosis -1.061 0.021 0.457 1975 -1.376 18.016 -1.6 -1.068 -2.013  -0.902
Skewness -0.22 -0.44 -0.219 1.407 -0.102 4.349 0.28 0.008 0 0.021
Range 602.67 553.6 723.6 1.5 0.15 415 0.5 310 21 46.33
Minimum 1406.81 439.2 374.4 0.5 0.3 0.6 0 47 7 2.55
Maximum 2009.48 992.8 1098 2 0.45 4.75 0.5 357 28 48.88
Sum 522831.3 218234.4 220034.8 318 116.4  250.68 52.8 62,654 5,250 7453.46
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fitted using the training data, while the model’s perfor-
mance on new data is evaluated objectively using the test
set [62]. Avoiding overfitting and getting a good idea of the
model’s generalizability are both made possible using a
separate test set.

The possible impact of input variables on output was
also assessed using the Pearson correlation (R) matrix. For
C-S, this is graphically shown in Figure 1. R values between
-1 and +1 show strong negative or positive connections,
while R values close to 0 indicate weak relationships. The
inputs exhibit a robust correlation with C-S, evidenced by
the maximum positive R-value of 1.0, which clearly sub-
stantiates this connection. The proximity of R to zero, indi-
cating a weak correlation, does not always imply that the two
variables are entirely independent. This is a significant aspect
to consider. Consequently, it is advisable to examine models
derived from other studies, such as Shapley Additive exPlana-
tions (SHAP) and sensitivity analysis, to gain a thorough com-
prehension of the relationship between inputs and outcomes.

The efficiency of the model is strongly correlated with
the distribution of the input variables. 3D histogram prism
charts, as shown in Figure 2(a)-(i), help to clarify the
inputs’ proportionate distribution in extensive datasets
for C-S. A really random distribution among the polyhedral
forms is clearly indicated by the data points. Additionally,
noteworthy data clusters, patterns, or outliers can be

Dn (kg/m’)
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highlighted by 3D prism charts, allowing for the discovery
of trends or possible problems. It is worth noting that the
dataset does not contain any clusters or outliers, which
suggests that the data points follow a normal distribution.
When it comes to ML models, this aspect is paramount.

2.2 ML modeling

To measure foamcrete’s compressive strength, a controlled
setting was utilized. In order to get the output (C-S), nine
inputs were needed. The C-S forecasts for foamcrete were
created using cutting-edge ML algorithms like GEP and
MEP. In the evaluation of ML algorithms, it is customary
to juxtapose the outputs with the input data. Thirty percent
of the data was allocated for testing, whereas seventy per-
cent was used to train the ML models. The R* value of the
predicted outcome indicates the model’s effectiveness. R* is
small for a substantial disparity, indicating that the
expected and actual values diverge only marginally [64].
The model’s accuracy is corroborated using many
approaches, including statistical testing and error assess-
ments. Figure 3 presents a scenario model, while Tables 2
and 3 detail the hyperparameters used for the GEP and
MEP models, respectively.

0.76

CM (kg/m®)

Sa (kg/m®) 0.52
SCR 028
WCR -0.27 017

0.04
SS (mm) 0.02 (0]

-0.21
Ag (L)

Fm (kg/m®) -0.76 [-0.16 -0.05 -0.02 1 -0.45
A @) 0 0 0 ] ] 0.69
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-0.93
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Figure 1: C-S database correlation matrices.
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Figure 2: 3D variable frequency histograms for the C-S database: (a) density; (b) cement; (c) sand; (d) S/C; (e) W/C; (f) sand size; (g) foaming agent;
(h) foam content; (i) age.



6 =—— Guoyuan Wang et al.

DE GRUYTER

Figure 2: (Continued)

2.2.1 GEP ML technique

The genetic algorithm (GA), inspired by Darwin’s theory of
evolution, was developed by J. H. Holland. In order to address
optimization problems, this algorithm mimics the process of
natural selection and the principle of survival of the fittest by
gradually improving solutions over time [65]. A series of GAs
denotes genomic progression, culminating in uniformly sized
chromosomes. A novel GA termed “gene programming” was
developed by Koza [66]. Genetic programming (GP) employs
GAs to create an evolutionary model, serving as a universal
approach for problem-solving [67]. In genetic programming,
flexibility arises from the ability to utilize nonlinear struc-
tures, such as parsing trees, in lieu of fixed-length binary
strings. The present artificial neural system aligns with Dar-
win’s theory [68] and utilizes naturally occurring genetic ele-
ments (such as procreation, crossovers, and modification) to

address reproductive issues. Similar to the last case, the
unsuitable trees were removed, and the remaining ones
were utilized to replant the area according to our chosen
method. However, the evolutionary process helps prevent
premature convergence [68,69]. It is essential to ascertain
the following five elements prior to using the GP: crucial
domain tasks, fitness evaluation, fundamentally useful opera-
tors (such population size and crossover), and results from
terminals that are specific to the methods used [68]. A cross-
over genomic processor manages the predominant growth of
parse trees, even when the model creation of the GP is reit-
erated. In nonlinear GP, representations must function as
both genotype and phenotype, leading to more complex
expressions of desired traits [69].

The original proponent of GP was Candida Ferreira,
who was also responsible for inventing GEP. An improve-
ment on classical GP, this method allows for more efficient
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DATASET FROM EXPERIMENTAL WORK

« Raw material as input parameters (#9)
« Test results as output (C-S) (#1)
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MACHINE LEARNING TECHNIQUES/

MODELING

« Gene-Expression Programming (GEP)

« Multi-Expression Programming (MEP)

STATICTICAL VALIDATION OF MODELS
« Employing statistical metrics i.e. MAE, RMSE etc.

« R-square (COD).
« Taylor's diagram.

Figure 3: Flow diagram of the approach used from data generation and model validation.

and capable evolution by capturing programs as linear
chromosomes and then expressing them as tree topologies
[69]. GEP, grounded in the concept of population-based
modeling, utilizes linear chromosomes of fixed length
and their corresponding parse trees. Often considered an
extension of GP, GEP encodes intermediate-sized programs
through simple, fixed-length chromosomes. This approach
enables the formulation of predictive equations capable of
addressing complex and nonlinear problems [70,71]. The
termination criteria, final set, and fitness function are all
supplied, similar to GP. The “Karva” dialect is used to des-
ignate the chromosomes before manufacture, even though

The foundation of GEP is a line with a constant length. In
contrast, the data processing of the GP produces parse
trees of differing lengths. Individual cords with pronged
morphologies of varying diameters depict chromosomes
through nonlinear manifestation/parse trees after being
defined as genomes of static length [68]. These genotypes
and phenotypes can be differentiated by their distinct
genetic representations [34]. GEP prevents costly structural
modifications and replications by preserving the genome
across generations. Because of their unusual “head” and
“tail” arrangement, GEP chromosomes are able to generate
intricate expressions of several genes from a single copy of

the GEP process uses random numbers to generate them. DNA. This well-designed structure improves the

Table 2: GEP model standardized factors

Hyper-parameters Settings Hyper-parameters Settings

Genes 4 Stumbling mutation 0.00141

Leaf mutation 0.00546 Constant per gene 10

General CS Inversion rate 0.00546

Head size 10 Gene recombination rate 0.00277

RIS transposition rate 0.00546 Data type Floating number
Two-point recombination rate  0.00277

Function set Addition, subtraction, multiplication, division, square root, Chromosomes 250

and exponential

IS transposition rate 0.00546 Linking function Addition

Gene transposition rate 0.00277 Lower bound -10

One-point recombination rate  0.00277 Upper bound 10

Mutation rate 0.00138 Random chromosomes 0.0026
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Table 3: MEP model standardized factors

Hyper-parameters Settings Hyper-parameters Settings

Terminal set Problem input  Error MSE, MAE

Problem type Regression Crossover probability 0.9

Number of generations 250 Number of sub-populations 150

Replication number 15 Sub-population size 100

Mutation probability 0.01 Number of runs 10

Number of treads 2 Function set Addition, subtraction, multiplication, division, power, square root, and
exponential

Operators/variables 0.5 Code length 50

technique’s ability to built complex solutions [68]. These
genes encode instructions rooted in mathematics, statistics,
logic, and Boolean algebra. Activator elements connect
these genetic instructions to the specific computational
processes they govern, much like how biological DNA reg-
ulates cellular functions. Due to the emergence of a novel
language named Karva, which is capable of interpreting
these chromosomes, equations derived from empirical
data are now feasible. An illustrious revolutionary begins
their voyage at Karva after the ET. The underneath layer is
allocated to nodes by ET utilizing Eq. (1) [70]. It is possible
that the total number of ETs is a good predictor of the

degree of GEP gene K-expression as well as the duration

of that expression
.3

ET GEP = log|i - i M

Unlike less sophisticated ML methods, GEP can learn

from data even in the absence of labels. In Figure 4, we can

see the numerous steps that go into developing GEP equa-

tions. At birth, every cell has the same number of chromo-

somes. To evaluate everyone’s health, these chromosomes

must be certified as ETs. Only the fittest and healthiest
individuals are able to breed. When the greatest people

REPRODUCTION AND GENETIC — pEi et MT‘:S;S"““'C
MODIFICATION I
Execute Expression .
4 Tree T Replication —~
Fitness Test S
Create Chromosomes Mutation
of New Generation l
Iterate or Terminate Transportation
Express
Chromosomes —/
(Expression Tree) Terminate Iterate
\—| Recombination |/

-

Figure 4: Gene-expression programming workflow diagram [72].
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are involved in an iterative process, the outcome is
optimal. Following three generations of breeding, muta-
tion, and crossover, the final product is the result of all
these operations

2.2.2 MEP ML technique

MEP is considered by some to be a cutting-edge linear
variant of GP, distinguished by its use of linear chromo-
somes. What sets MEP apart from other modern GP
approaches is its ability to encode multiple candidate solu-
tions or expressions within a single chromosome. Fitness
analysis is employed to choose the most optimum chromo-
some to accomplish the desired result [73,74]. This occurs
when a bipolar system couples twice, leading to the forma-
tion of two new generations, as elucidated by Oltean and
Grosan. Every generation secures a progenitor for itself
[75]. Before the termination condition occurs, the proce-
dure will continue until the ideal software is determined
(as indicated in Figure 5). Fitness analysis plays a vital role
in MEP for determining the dataset compatibility of emer-
ging mathematical expressions. In order to find the optimal
set of chromosomes to reproduce, the fitness function com-
pares the program’s actual and anticipated results. Selec-
tion, crossover, and mutation are the tools used by MEP to
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fitness level, generational threshold, or limit of improve-
ment, the algorithm can cease its repetitive procedures and
remain in charge. Mutations in MEP are a mechanism by
which evolution modifies linear chromosomal compo-
nents. Minor alterations to the genetic code increase
genetic diversity in populations. Mutations, initiated early
in the MEP optimization process, alter the genetic material
of successive generations, enabling the exploration of
diverse solutions. The algorithm’s functionality in
searching solution spaces and adapting to fitness land-
scapes is enhanced with the introduction of mutations.
The MEP model permits component merger, similar to
other ML paradigms. Alphabet or code size, function
number crossover frequency, and subpopulation count
are crucial factors to think about when doing MEP [76].
Assessing the populace gets increasingly tedious and
time-consuming as the number of individuals equals the
number of packages. Code length plays a critical role in
determining the computational output generated during
the process. Keeping in mind the MEP properties men-
tioned in Table 3 is essential for building a dependable
mechanical property model.

When evaluating and modeling using the MEP tech-
nique, it is common practice to use datasets that comprise
published literature [77,78]. Some researchers suggest that
popular linear GP methods, such as MEP, may offer

promote fit programs. When the system hits a certain superior performance in predicting the real-world
- ( F , ‘ oro".sprinﬁ
Fitness Evaluation

Creation of Chromosomes

/ Population
Terminate
Selection of Two Parents (Binary )

Tournament Procedure)

N

Figure 5: MEP process flow diagram [72].
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properties of concrete. For instance, Grosan and Abraham
identified an optimal neural network approach by com-
bining linear genomic programming with maximum like-
lihood estimation [79]. One notable distinction between the
two is the operational approach of the GEP, which is unde-
niably more intricate than that of the MEP [76]. Notwith-
standing the reduced density of MEP relative to GEP, sig-
nificant differences are present between the two: (i) MEP
facilitates the reprocessing of code; (ii) encased by chromo-
somes, non-coding constituents are not obligatory to be
exhibited at a precise position; and (iii) it clearly encodes
references to function arguments [80]. Due to the struc-
tured design of standard GEP genes, with defined “head”
and “tail” regions that facilitate the generation of syntacti-
cally correct programs, many consider GEP to be a more
powerful and capable modeling technique [75]. This
finding calls for a more in-depth examination of the limita-
tions and challenges associated with each GP technique.

2.3 Substantiation of models

The models built using GEP and MEP were subjected to sta-
tistical analysis using a test set. All of the models’ computed
metrics consist of root mean square error (RMSE), Pearson’s
correlation coefficient (r), mean bias error (MBE),
Nash-Sutcliffe efficiency (NSE), mean absolute error (MAE),
mean absolute percentage error (MAPE), and normalized root
mean square error (NRMSE) [57,78,81-83]. The formulas for
several statistical indicators are given as

Yie1(0; - O)(P; - P)

r= = —, ()
VZ(0; - 0)2 [Ty (P; - P)?
1 n
MAE = —) |0; - Pil, ®3)
s
n L P 2
RMSE = Zu, 4
=1 N
RMSE
NRMSE = ——, )
0
Mapg = 105 10~ P1 ®)
niS 0
1 n
MBE =~ (P, - 0)), )
nio
(’_ O: - P: 2
NSE =1 - zl‘l(lil) 8

Yiea(0; = 0’
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Figure 6: C-S GEP expression tree schematic: (a) Sub-ET 1; (b) Sub-ET 2;
(c) Sub-ET 3; (d) Sub-ET 4.
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m20
20 - index = ——. 9
a maex M

In the context of the above equations, O; represents the
observed value, P; denotes the predicted value, O signifies
the mean of the observed values, P indicates the mean of
the predicted values, and n represents the total number of
data points.

With M being the dataset size and m20 the entry count,
this accounts for an expected or experimental value ranging
from 0.80 to 1.20, as stated in Eq. (8) [84]. The prediction model
indicates that an a20-index of 1% would be optimal. This index
reflects the performance of the physical engineering approach
by measuring the proportion of samples that fall within a 20%
uncertainty range of the experimental values. Another key
metric for assessing a model’s predictive accuracy is the cor-
relation coefficient (), where higher values of r signify a
stronger correlation between predicted and actual outcomes
[85]. The value of component R remains unchanged regardless
of whether it is divisible or multiplied. Since it takes into
account both actual and predicted results, R* provide a closer
estimate of the true value. R* values that are higher and
approach 1 indicate a more accurate and robust model con-
struction [86,87]. Like MAE and RMSE, the proposed model
shows significant improvements as the number of errors
increases, leading to even greater performance with fewer
mistakes. The amount of errors grows, but both approaches
eventually approach zero [88,89]. Closer inspection, however,
showed that MAE truly excels in continuous and smooth data-
bases [90]. In most cases, the model performs better when the
previously computed error values are smaller.

Two effective approaches for assessing a model’s pre-
dictive performance are statistical validation and the use
of a Taylor diagram. The Taylor diagram provides a visual
means of evaluating the accuracy and reliability of models
by comparing their deviations from a reference point or
observed data [91,92]. At the actual value point, circular
lines represent RSMEs, radial lines show correlation coeffi-
cients, and the x- and y-axes display standard deviations.
With these three measures, you might be able to locate
your model’s optimal point. The top model is the most
reliable one if we look at its prediction accuracy [91].

3 Results and analysis

3.1 C-S GEP model

Figure 6(a)-(d) present the expression trees (ETs) gener-
ated using the GEP technique for the C-S dataset of
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Figure 7: (a) Predicted vs test C-S relationships using the GEP model; and
(b) error distribution analysis.

foamcrete. These ETs represent the mathematical relation-
ships (Egs. (10)-(14)) derived from the input parameters to
predict the C-S of foamcrete. The ETs, built using a range of
mathematical operations like addition, square roots, sub-
traction, division, multiplication, and exponentiation, play
a key role in modeling compressive strength. By encoding
these operations, the GEP method generates arithmetic for-
mulas capable of estimating the future C-S based on the
input data. These models, when provided with sufficient
data, have the potential to outperform idealized models
under optimal conditions. Figure 7(a) displays the scatter
plot comparing the test and estimated C-S values generated
by the GEP model, with the black line representing the
perfect fit line. The GEP model exhibited significant
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accuracy, evidenced by a high R* value of 0.94. The coeffi-
cient of determination (R? reflects how well the model’s
predicted values correspond to the actual observed values.
In ML models, a greater R* value (approaching 1) signifies a
superior fit, indicating that the model can account for
a substantial percentage of the variance in the output vari-
able, hence validating the model’s correctness and
reliability.

Figure 7(b) illustrates the error distribution between
the test and estimated C-S values across all data points. The
plot shows that the estimated C-S values align well with
the test results, as depicted by the closeness of the data to
the reference line. In terms of the error values, the max-
imum error recorded is 7.04 MPa, while the minimum is
0.004 MPa, with an average error of 1.99 MPa. The distribu-
tion of errors indicates as shown in Figure 8 that 32 data
points have errors below 1.0 MPa, 42 points have errors
between 1.0 and 3.0 MPa, and 26 points have errors greater
than 3.0 MPa. This suggests that the majority of predictions
fall within a reasonable acceptable error range for light-
weight structural and nonstructural applications, where
variations of +2MPa are generally considered tolerable
[93]. Both the high R? value (0.94) and the error distribution
further validate the strong prediction capability of the GEP
method for the C-S dataset of foamcrete, confirming the
model’s reliability and accuracy in estimating the compres-
sive strength of foamcrete. This confirms the reliability of
the developed models for real-world foamcrete strength
prediction

C-S(MPa) =A + B+ C + D, (10)
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Figure 9: (a) Predicted vs test C-S relationships using the MEP model and
(b) error distribution analysis.

-13.971 x \/D, Sa
B=|—— Ny (B, - 13210 —2|, (12
“ ; (Fn )[ oy
Sa _ ,SCR
C= SCRQTR +(-12.11 - WCR) x SCR|, (13
D= Ag_ls’_squA - 8799 (14)
WCR LR |

where D, is the density, CM is the cement, S, is the sand,
SCR is the sand-to-cement ratio, WCR is the water-to-
cement ratio, SS is the sand size, A, is the foaming agent,
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F,, is the foam content, A is the age, and C-S is the com-
pressive strength.

3.2 CS-MEP model

A practical formula was established to ascertain the C-S of
foamcrete, based on the results of the MEP technique and
considering the influence of nine independent variables.
The concluding set of mathematical equations produced
during the modeling procedure is delineated as follows:

C-S (MPa) = A + B, (15)
CM xS
_ A~ SRaeM-F)?  |CM - Ey| x +/SCR
log(Fn) WCR
(16)
CM xS
A~ SREM-EY ~ Ag _ WCR
log(Fy) e
I _cm-p,
CM  SS CM - E,
B = |l - 17
08 [SCR(CM - Fm)z] ss | an

where D, is the density, CM is the cement, S, is the sand,
SCR is the sand-to-cement ratio, WCR is the water-to-
cement ratio, SS is the sand size, A, is the foaming agent,
Fy, is the foam content, A is the age, and C-S is the com-
pressive strength.

Figure 9(a) displays a scatter plot comparing the pre-
dicted and actual C-S values based on the MEP model, with
the black line representing the line of perfect agreement.

70

|:| Absolute error|
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Figure 10: MEP error distribution frequency distribution plot.
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The close clustering of data points around this line high-
lights the excellent predictive accuracy of the MEP model.
An R? value of 0.97 further confirms its strong perfor-
mance, indicating that the model explains nearly all the
variability in the C-S data. In ML, such a high R? and close
alignment with the ideal fit line are key indicators of a
model’s reliability and effectiveness in capturing real-
world trends.

Figure 9(b) illustrates the error distribution between
the predicted and actual C-S values across all test data
points. The plot demonstrates a strong alignment between
the estimated and observed values, with most errors clus-
tering near the reference line. The error analysis indicates
a maximum deviation of 6.93 MPa, a minimum of 0.01 MPa,
and an average error of 1.13 MPa, reflecting the model’s
high predictive accuracy. Notably, 62 data points exhibit
errors below 1.0 MPa, 32 points fall between 1.0 and
3.0 MPa, and only 6 points show errors above 3.0 MPa, as
shown in Figure 10. This distribution indicates that the
MEP model consistently delivers accurate predictions
with minimal deviation falling within the acceptable range
of £2MPa for lightweight structural and nonstructural
applications [93]. Both the high R* value of 0.97 and the
error distribution validate the MEP method’s superior pre-
diction capability for the foamcrete C-S dataset, exceeding
the performance of the GEP method. MEP outperforms GEP
due to its efficient chromosome structure, where multiple
expressions are encoded within a single chromosome,
allowing for the selection of the best-performing solution.
This approach enhances convergence speed, as multiple
candidate solutions are evaluated simultaneously [94].
MEP also shows greater robustness to overfitting by
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Figure 11: Validating C-S model precision with Taylor’s diagram.
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Table 4: Results of the statistical analysis

Metrics C-S

GEP MEP

MAE (MPa) 1.993 1121
MBE (MPa) 0.100 0.068
RMSE (MPa) 2.533 1.592
NRMSE (MPa) 0.103 0.062
MAPE (%) 10.10 5.00
r 0.972 0.985
NSE 0.944 0.969
a20-index 0.900 0.960
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0.5% I CM

4.5% A
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48%

% v'
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Figure 12: Sensitivity analysis pie chart.

improving generalization across datasets. Its linear repre-
sentation makes the model more interpretable and easier
to analyze compared to the tree-based format of GEP. Addi-
tionally, MEP offers better computational efficiency due to
its simpler decoding process [95]. These combined advan-
tages explain MEP’s superior predictive performance
observed in the study.

3.3 Model’s validation

R, RMSE, MAE, RRMSE, RSE, NSE, and the results from Egs.
(2)-(9) are summarized in Figure 4, which also includes the
outcomes of the efficacy and error evaluations. Reducing
error levels often improve the accuracy of model predic-
tions. This is especially true when comparing the C-S MEP
model to the C-S GEP model: the former achieves a much
lower MAE (from 1.993 to 1.121 MPa) and a far lower MAPE
(from 10.10% to 5.00%). Following suit are other error-
based measures, such as NRMSE, MBE, and RMSE. With a
slightly higher Nash-Sutcliffe efficiency (0.969) than the
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latter’s 0.944, the C-S MEP model achieves better efficiency
than the C-S GEP model. Both models produce findings that
are similar when we use Pearson’s coefficient (r). Figure 11
shows the Taylor diagram, which compares all forecasting
models. It shows that MEP models are close to one another
when predicting the C-S of foamcrete, but GEP models are
farther away. The MEP model is the best ML-based method
for predicting the C-S of foamcrete because it has the
lowest error, highest R? value, and the fewest standard
deviations, which is consistent with previous research
(Table 4).

3.4 Sensitivity analysis

The study examines how input parameters affect foam-
crete’s C-S prediction. Strong correlation between input
factors and anticipated output [96]. Figure 12, which dis-
plays how each input impacts the C-S of foamcrete, pro-
vides a glimpse into the future of building materials and
concrete. The foamcrete density (Dn) is the most important
factor, explaining 48% of the variation in C-S predictions.
Other factors include cement content (11.0%), age (8.5%),
WCR (8.0%), foaming agent (Ag) (7.5%), SS (7.0%), foam
content (Fm) (5.0%), sand (Sa) (4.5%), and SCR (0.5%). The
outcomes of the sensitivity analysis were significantly
influenced by both the number of data points and the
number of model parameters. Notably, certain input vari-
ables, such as the proportions of concrete mix components,
had varying impacts on the results when analyzed using
the ML approach. To determine the relative importance of
each input parameter within the model, Eqgs. (18) and (19)
were employed

M = fmax (Xi) - fmin (Xi)y (18)
N;
Si= >
zj—i N 19)

where f ;. (x;) is the lowest projected value through the ith

outputs and f; . (x;) is the maximum.

4 Discussions

There is a limited range of nine input parameters that the
GEP and MEP models used in this study can accommodate;
hence, the predictions will be particular to foamcrete
depending on the dataset provided. The C-S projections
will be accurate because each model has the same unit
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measurements and testing methodology. The models learn
the mix’s layout and how each parameter influences it
using mathematical calculations. The anticipated models
will be useless if you use any mix of the nine inputs in
the composite analysis. Inconsistent or variable units of
the input parameters may result in the models underesti-
mating or overestimating outcomes. Uniform unit dimen-
sions are essential for optimal model performance.
Accurate correlation with the training data utilized for
these models is also essential. In its absence, they could
not function as anticipated. ML models are increasingly
applied in the construction sector for tasks such as esti-
mating material strength, ensuring quality control, asses-
sing risks, performing predictive maintenance, and
improving energy efficiency. However, several challenges
persist. A major concern is the dependency on human
input, which can introduce inaccuracies and compromise
data reliability. To overcome these limitations, future
research should pursue various strategies to enhance
ML-based solutions. These may include integrating IoT
devices, developing hybrid modeling approaches, lever-
aging explainable Al techniques, emphasizing sustain-
ability, and customizing data collection and distribution
methods to suit specific industry needs. Emerging technical
advancements may induce a transformation in the
building sector. These technologies can enhance ecological
sustainability, mitigate project delays, and improve safety
by rendering processes more efficient, intelligible, and
transparent, and facilitating informed decision-making.
The study’s findings may prompt a transition to more
environmentally sustainable building practices and an
increased use of durable, eco-friendly materials.

5 Conclusions

This study aims to apply ML techniques, specifically GEP

and MEP, to predict the C-S of foamcrete, thereby sup-

porting its broader practical implementation. A compre-
hensive experimental dataset sourced from existing litera-
ture was utilized for model development and evaluation.

Model validation was performed using multiple assess-

ment tools, including statistical analysis, Taylor diagrams,

and the coefficient of determination (R?). The key findings
of the study are summarized below:

» The GEP technique achieved a high prediction accuracy
for the C-S of foamcrete, with an R?> value of 0.94.
However, the MEP approach performed even better,
attaining a superior R* value of 0.970, indicating greater
predictive accuracy.

Compressive performance of foamcrete using ML == 15

* The mean disparity between predicted and experimental
C-S in the GEP approach was 1.99 MPa, compared to
113 MPa in the MEP approach. With these error rates,
the MEP technique clearly outperformed the GEP model
when it came to forecasting the C-S of foamcrete.
Statistical validation confirms the efficacy of the models,
with improvements observed in both the R* values and
error rates of the ML models. In particular, the MAPE
was 11.0% in the GEP model and 5.0% in the MEP model.
With RMSE values of 1.592 and 2.533 MPa, respectively,
the MEP model fared better than the GEP model. These
results provide more evidence that the models’ perfor-
mance is valid in many respects.

Density had the highest impact on the C-S estimation of
foamcrete (48.0% according to the sensitivity study), fol-
lowed by the cement content at 11.0%, age at 8.5%, WCR
at 8.0%, foaming agent at 7.5%, SS at 7.0%, foam content
at 5.0%, sand at 4.5%, and SCR at 0.5%.

Their different mathematical approaches are the foun-
dation of GEP and MEP’s significance for characteristic
prediction in different datasets. These methods provide
an efficient way to assess, improve, and optimize the com-
position of concrete mixtures. The mathematical models
developed in this study enable professionals to effectively
evaluate and enhance concrete mixtures, promoting swift
progress in the discipline.
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