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Abstract: Two-stage concrete (TSC) is a sustainable mate-
rial produced by incorporating coarse aggregates into
formwork and filling the voids with a specially formulated
grout mix. The significance of this study is to improve the
predictive accuracy of TSC’s tensile strength, which is
essential for optimizing its use in construction applications.
To achieve this objective, novel and reliable predictive
models were developed using advanced machine learning
algorithms, including random forest (RF) and gene expres-
sion programming (GEP). The performance of thesemodels was
evaluated using important evaluation metrics, including the
coefficient of determination (R2), mean absolute error (MAE),
mean squared error, and root mean square error (RMSE), after
they were trained on a comprehensive dataset. The results
suggest that the RF model outperforms the GEP model, as evi-
denced by a higher R2 value of 0.94 relative to 0.91 for GEP and
reduced MAE and RMSE error values. This suggests that the RF
model has a superior predictive capability. Additionally, sensi-
tivity analyses and SHapley Additive ExPlanation analysis
revealed that the water-to-binder (W/B) ratio was the most
influential input parameter, accounting for 51.01% of the pre-
dictive outcomes presented in the model. This research

emphasizes optimizing TSC design, enhancing material perfor-
mance, and promoting sustainable, cost-effective construction.

Keywords: two-stage concrete, tensile strength, machine
learning

1 Introduction

Two-stage concrete (TSC) is a specialized type of concrete
that is produced using a process that is distinct from con-
ventional concrete. The initial step in TSC entails the
stuffing of the formwork with coarse aggregate particles.
Subsequently, a highly fluid grout mixture is employed to
occupy the cavities between the particles of aggregate. The
fundamental structural component of TSC is the coarse
aggregate, which comprises approximately 60% of the mate-
rial [1]. By directing stresses onto the aggregate particles’
points of contact, TSC achieves an exceptionally accurate
stress distribution [2]. These forces may cause aggregate
particles to shatter or separate from grout [3]. The grout
used in TSC is composed of water, well-graded sand, chemical
admixtures, and ordinary Portland cement (OPC). In certain
TSC formulations, blended binders are now included as a result
of the presence of supplementary cementitious materials
(SCMs). The flowability of grout, water requirements, and
heat generated during hydration can all be enhanced by repla-
cing approximately 33% of OPC with fly ash [4,5]. Despite its
unique characteristics and potential advantages in construc-
tion, the existing body of research on TSC remains limited.
Many studies focus on traditional concrete, with comparatively
fewer investigations exploring TSC’s mechanical behavior and
durability. As the demand for sustainable and high-performance
concrete solutions grows, understanding TSC’s properties
becomes increasingly important. However, the time-consuming
and costly nature of experimental evaluations has hindered
extensive research in this area.

It is anticipated that the utilization of TSC will experi-
ence a substantial increase in the years ahead due to the
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ongoing expansion of concrete in construction projects.
However, despite the multiple benefits that TSCs provide,
only a small number of study examinations have been
conducted on them. It was determined that the highest
quality mortar is produced by a cement–sand ratio of 1
and a water-to-cement ratio of 0.47 when developing TSC
[6]. Furthermore, the incorporation of silica fume (SF) as a
partial replacement for OPC exhibits two opposing impacts
on the properties of the TSC: it simultaneously improves
the strength of the TSC while diminishing the workability
of the grout [2]. The workability of TSC grouts is decreased
as a result of the incorporation of SF as a micro-filler that is
designed to fill the crevices between the particles of sand
and cement during the preparation process [2]. This is
because SF has a very large surface area, which increases
the water demand. Simultaneously, SF undergoes a vig-
orous reaction with CH, resulting in the production of addi-
tional calcium silicate hydrate (C-S-H), the primary hydration
product that contributes to the enhancement of mechanical
strength [7]. The mechanical characteristics of TSC have been
the subject of extensive research [1,2,4]. A number of factors
considerably affect the mechanical characteristics of TSC,
including the w/c and s/c ratios of the cement and sand, as
well as the parameters of the coarse aggregate. SCMs were
suggested as a potential material for enhancing the perfor-
mance and durability of TSC [7]. Evaluating the mechanical
properties of TSC necessitates considerable time, financial
resources, and extensive experimentation [8,9]. The computa-
tional discipline of machine learning (ML) has emerged in
recent decades to predict a variety of properties, thereby
avoiding the costly and time-consuming process of con-
ducting experiments [10–13]. Given these complexities, there
is a growing need for advanced computational techniques to
facilitate the prediction and optimization of TSC properties.
ML offers a powerful approach to predicting concrete proper-
ties with high accuracy while reducing reliance on extensive
experimental work. ML-based models can analyze vast data-
sets, recognize patterns, and provide reliable estimations of
mechanical properties such as tensile strength (T-S). How-
ever, despite the success of ML in conventional concrete stu-
dies, its application in TSC research remains underexplored.

The properties of concrete have been predicted using a
variety of ML algorithms, including artificial neural networks
(ANNs) [14–16], gradient boosting [17–19], extreme learning
machines [20,21], support vector regression [22,23], random
forest (RF) [24,25], decision trees (DT) [26,27], gene expression
programming (GEP) [28,29], XGBoost [30,31], and adaptive
boosting [16,32]. The recent developments in ML approaches
have generated new opportunities for the precise prediction

of T-S. T-S is important because it ensures structural integrity
and durability in applications subject to stretching or pulling
forces [11,33]. For instance, an optimized support vector
machine (SVM) model has been successfully implemented
to estimate the splitting T-S at the bonding interface,
achieving an error margin of less than 5% between the pre-
dicted and actual values [34]. Gradient boosting machine
models were used to illustrate additional advancements in
predictive modeling. These models demonstrated superior
performance in estimating concrete T-S when compared to
SVM [35]. ANNs have also demonstrated substantial poten-
tial as they circumvent conventional mathematical equa-
tions and rapidly adjust to new data, thereby expanding
their applicability [36]. The accuracy of predictions and
the number of errors have been significantly enhanced
and reduced by ensemble learning techniques, such as bag-
ging and boosting when applied to 1,030 datasets [16]. The
optimization of predictive models remains a persistent chal-
lenge, particularly in the determination of the initial para-
meter values, despite these advancements [37]. Optimization
techniques are employed to overcome these obstacles and
improve the efficacy of the model [38,39]. These techniques
enhance the model’s performance by fine-tuning the rele-
vant parameters, ensuring better accuracy and generaliza-
tion [40–43]. These methods are essential for improving the
accuracy of models and circumventing the constraints of
traditional methods. Table 1 provides the details of the ML
techniques employed in previous research studies.

Experimental testing is a resource-intensive and time-
consuming procedure that necessitates specialized labora-
tory apparatus, an experienced workforce, and competent
labor to guarantee the quality of TSC. Furthermore, the
ecosystems in which they are introduced are adversely
affected by sand, additives, and cement. Another environ-
mental concern is the persistence of TSC specimens fol-
lowing the completion of testing. Consequently, the utiliza-
tion of TSC in structures may prove to be affordable for the
endeavor as a whole and more straightforward for the
engineers involved if the necessary number of experi-
mental experiments can be reduced. The objective of this
investigation is to create a surrogate prediction model that
employs ML algorithms to predict the T-S of TSC. This will
result in a decrease in the number of environmental issues
that must be addressed, as well as time and financial sav-
ings. Modeling material behavior is essential because it
provides detailed insights into how materials will perform
under various conditions, enabling better design and appli-
cation strategies. GEP and RF are two powerful ML algo-
rithms known for their effectiveness in predictive

2  Muhammad Nasir Amin et al.



modeling [58,59]. Consequently, GEP was employed to
develop a T-S equation, and RF was incorporated as a result
of its precise predictions and modeling capabilities. Ferreira
proposed the concept of GEP in 2001 as an enhanced variant
of genetic programming (GP) [60]. It employs a parse tree
with branches of varying lengths and a string that is for-
matted in a straight line. The RF approach, also known as
RF, was introduced in 2001 and is now considered an
enhanced classification regression technique [61]. Conse-
quently, the objective of this study is to establish a precise
approach for predicting the T-S of TSC through the applica-
tion of ML techniques. Two distinct methodologies were
implemented to optimize the forecast’s efficacy. This study
is crucial as it addresses the challenge of accurately pre-
dicting TSC’s T-S, a key property influencing its performance
in construction applications.

Although ML-based predictions for TSC properties have
been conducted in the past [62–64], no equation has been
developed for predicting T-S. The experimental evaluation
of TSC’s mechanical properties remains time-consuming
and costly, limiting large-scale research and practical imple-
mentation. Additionally, conventional methods for predicting
TSC performance often lack accuracy and adaptability,
while the influence of diverse input parameters on TSC
properties remains underexplored in ML applications. To
address these gaps, this study aims to develop a predictive
equation for T-S using GEP and enhance modeling accuracy
through RF. By leveraging advanced ML techniques, this
research seeks to improve the precision of TSC predic-
tions, optimize material performance through data-driven
insights, and reduce reliance on extensive experimental
work. Sensitivity analysis and SHapley Additive ExPlanation
(SHAP) analysis were conducted to elucidate the link between
the inputs and the outcome. The analysis sought to determine

the most significant input factors that affect the target vari-
able. The findings are anticipated to advance sustainable con-
struction practices and facilitate better-informed decisions by
contributing valuable knowledge to materials science and
construction engineering.

2 Research methodology

The T-S of TSC is predicted in this investigation using GEP
and RF. The research employs a structured methodology
that commences with data acquisition and is subsequently
followed by preprocessing to guarantee the quality of the
data. Subsequently, the T-S is predicted using GEP and RF
models in accordance with the input variables. Standard
metrics are implemented to assess the models’ function-
ality. Figure 1 illustrates the flowchart of the research
methodology, which delineates the primary stages in the
model development and validation process.

2.1 GEP

GEP has the ability to generate explicit mathematical
equations, making it highly interpretable compared to
black-box ML models. It effectively captures nonlinear
relationships in complex datasets while offering robust
generalization. Additionally, GEP’s evolutionary approach
optimizes model performance without overfitting, making
it well-suited for predicting TSC properties. Ferreira was
the pioneer in introducing GEP, a novel computational
technique that serves as a subset of GP [60]. Experiments
have demonstrated that GEP converges more quickly
than traditional genetic algorithms [60]. Also, because the

Table 1: Previous researchers employed ML methodologies [44]

S. no Applied ML methods Predicted properties Materials used Total data points Publication year Ref.

1 MV CS Crumb rubber with SF 21 2020 [45]
2 RKSA Slump, CS FA 40 2018 [46]
3 GEP CS NZ (natural zeolite) 54 2019 [47]
4 ANFIS CS — 55 2018 [48]
5 GEP, MLR, and MNLR CS Bagasse ash 65 2020 [49]
6 ANN CS FA 69 2017 [50]
7 RSM, GEP CS Steel fibers 108 2020 [51]
8 IREMSVM-FR with RSM CS FA 114 2019 [52]
9 ANN CS FA 114 2017 [53]
10 M5MARS CS, Slump FA 114 2018 [26]
11 DEA CS, Slump FA 114 2021 [54]
12 SVM Slump, CS FA 115 2020 [55]
13 RF CS FA, GGBS 131 2019 [56]
14 ANN, DT, RF T-S Recycled aggregates 166 2022 [57]
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genetic manipulations are performed at the chromosomal
level, there is more openness about the process [65]. Figure
2 is a simplified diagram of the primary GEP procedures.
The procedure kicks off with the chromosomes of the
founding population being generated at random. Then,
the performance of each individual is measured against
a collection of fitness instances based on the expression
of these chromosomes. The individuals are then filtered
based on their fitness (how well they do in that environ-
ment) to reproduce with alteration, producing offspring
with novel characteristics. The same developmental pro-
cess – genome expression, environmental conflict, selec-
tion, and modified reproduction – is then applied to these
newly formed individuals. The procedure is continued
until a satisfactory answer is discovered [66], which may
take several generations.

In GEP, individuals are initially represented as linear
strings of fixed-length (genomes). These genomes are then

translated into complex structures of varying sizes and
forms. Expression trees (ETs) identify these entities [67,68].
The typical human being consists of a single chromosome,
each copy of which might contain anywhere from one to
many genes. To produce offspring, a chromosome’s expres-
sion, or ET, is subjected to a selection mechanism (often
fitness proportional) based on the ET’s fitness. The genetic
operators do not alter the respective ET but rather the chro-
mosomes during reproduction [47]. Open reading frames
(ORFs) provide a better framework for understanding the
structural organization of GEP genes. A gene’s ORF consists
of a “start” codon, the amino acid codons themselves, and a
termination codon [60]. The genes speak one language, and
ETs speak another in GEP.

In GEP, the phenotype can be directly derived from the
genetic code, owing to the fundamental principles that
govern the formation and functioning of ETs. Karva lan-
guage is the name given to this mutually understandable
bilingual notation [60,66]. Genetic operators make changes
to the chromosomes during reproduction. Genetic opera-
tors in the GEP system include various processes such as
duplication, alteration, rearrangement of genetic material,
root and insertion sequence transpositions, recombination
through single or double crossover, and gene transposition
[60]. Each genetic operator in the GEP system has extensive
documentation outlining its capabilities, which can be
found in previous literature [65,69,70].

2.2 RF

The performance of individual trees within a forest can be
predicted using a method called RF. This approach relies
on values from a randomly generated vector, collected
without bias, and applies a uniform distribution applied
uniformly to all trees in the forest. As the quantity of trees
in a forest significantly grows, the generalization error will
eventually approach a limit. A forest of tree classifiers will
have a generalization error that is proportional to the
effectiveness of each tree in the forest and the interactions
between the trees [56]. When a subset of features is chosen
randomly to divide each node, the error rates are equal to
those of AdaBoost; however, they are more resilient in
terms of noise. Improvements in error, robustness, and
connection measurement are achieved by internal assess-
ments in reaction to increasing the amount of character-
istics utilized for partitioning. This is done as a result of the
increased number of features. Estimations made internally
can also be utilized in the process of determining whether
or not a variable is significant. These concepts are also

Figure 1: Flowchart of the study.
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relevant when thinking about regression. RFs are an effec-
tive method for making predictions [72]. They are able to
avoid becoming too snug because of the law of huge num-
bers. They become reliable classifiers and regressors when
the appropriate form of randomness is introduced into the
process. Additionally, the framework gives insight into the
forecasting capabilities of the RF with regard to the inter-
actions between individual predictors and their efficacy.
Instead, theoretical parameters like strength and correla-
tion are estimated using out-of-bag data, and the results
are more tangible [61]. Figure 3 shows the diagrammatic
representation of the RF method.

2.3 Data collection

The information used to compile the TSC database could be
found in a variety of published sources [3,6,8,74–84]. These
sources were consulted in order to collect the necessary
information. The frequency distribution of the database,
which contains a total of 226 data points for tensile testing,
is illustrated in Figure 4. The data was divided into two
parts: 30% for assessment and 70% for training. Data pre-
processing is the crucial stage of ML techniques. Preproces-
sing of data involves scanning it for any error or invalid

entity. The current study was preprocessed using various
statistical checks. Table 2 and Figure 5 provide information
on the various statistical measures, including the highest
and lowest possible values for each parameter and corre-
lation coefficients. Table 2 also describes the standard
deviation, median, mean, and sum of all the target and
input regressors. These parameters provide a comprehen-
sive overview of the data distribution, including the total,
range, and central tendency. The minimum and maximum
values indicate the spread of the data, while the mean and
median offer insights into its average behavior and central
position. The standard deviation highlights the variability,
and the sum represents the cumulative value across all obser-
vations. It has been previously stated that the minimum ratio
between the number of data points and input variables
should be three. For a robust model, it is recommended
that this ratio exceeds 5 [85]. In this case, the ratio is approxi-
mately 20.5, using 226 data points and 11 input factors,
ensuring the adequacy of the dataset used for the ML mod-
eling. Prior to the building of a model, the most important
step that has an impact on the TSC’s characteristics is input
selection, and it takes place in this context. The running time
of the developed models varies depending on their com-
plexity and dataset size [86,87]. In order to produce a function
that can be used in a more broad sense, the components of

Figure 2: The stepwise procedure of the GEP technique [71].
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concrete which have the most significant influence on the
qualities of the concrete are extracted from the mixture. As
part of this investigation, the TSC properties were looked at in
relation to the following equation:

( )= fTS C, W, SF, SL, S, S/B, G, W/B, EA, FA, SP . (1)

A mix of domain knowledge and statistical metho-
dologies were used to assess the TS of TSC. A detailed
literature study and expert consultation resulted in the
identification of a number of possible indicators, as shown
in Eq. (1). These factors were chosen because they have
been shown to influence the TS of TSC. A thorough feature
importance analysis was conducted utilizing SHAP to eval-
uate the relative significance of the chosen indicators. This
method facilitated a thorough evaluation of each feature’s
contribution to the model’s predictions [30]. In addition to
highlighting the most impactful input parameter, the SHAP
analysis also helped identify potential multicollinearity
issues, ensuring that the model remained robust and inter-
pretable. As a result of this method, a more comprehensive
knowledge of the underlying linkages among the attributes
and the output parameter was made possible, which further
enhanced the model’s transparency and dependability. More-
over, as demonstrated by low pairwise correlations and con-
sistent feature priority rankings across manymodel iterations,
multicollinearity was not deemed to be a serious problem
among the chosen features.

Data autoscaling and standardization are crucial for
ML model performance because they mitigate the impact
of features with greater values on model accuracy. After
data normalization, the model is more accurate and stable
since each variable is considered to have contributed
equally. This process is essential for achieving results
that are reliable and interpretable, particularly in the
case of complex datasets. It was essential to normalize
the original data before the ML algorithms began their
analysis. The normalizing procedure not only improves
computational stability but also reduces undesired feature
scale effects [88]. Using Eq. (2), the range of values for each
parameter was set to be between 0 and 0.9

′ = ×
−

−
y

y y

y y
0.9 ,

min

max min

(2)

where y is the initial value, y
min

is the lowest value of the
function, y

max
is the highest value of the function, and y′ is

the normalized value.

2.4 Hyperparameter tuning of the models

Defining appropriate hyperparameters is essential for developing
generalized and robust GEP and RF models. Hyperparameter
optimization is achieved through systematic tuning techniques
that combine trial and error with guidance from prior studies

Figure 3: A diagrammatic representation of the RF method [73].
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Figure 4: Frequency distribution: (a) cement, (b) fly ash, (c) SF, (d) slag, (e) sand, (f) water, (g) gravel, (h) W/B, (i) S/B, (j) superplasticizer, (k) expanding
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[89], ensuring the models align effectively with the data. In the
GEP model, hyperparameters such as population size, crossover
rate, and mutation rate are adjusted to balance exploration and

convergence, which enhances the model’s ability to find optimal
solutions while avoiding overfitting. As the population size
increases, the model becomes more complex and accurate,

Table 2: Description of the parameters involved for TSC (inputs similar to [64])

Parameters Units Symbol Total Minimum Maximum Mean Median Standard deviation Sum

Input
Cement (kg·m−3) C 226 176.00 873.00 379.44 376.74 105.00 85754.02
Water (kg·m−3) W 226 100.00 431.00 203.54 191.85 63.14 46000.78
Slag (kg·m−3) SL 226 0.00 228.00 11.69 0.00 43.08 2643.00
W/B — W/B 226 0.30 0.85 0.52 0.47 0.17 117.44
SF (kg·m−3) SF 226 0.00 57.00 5.23 0.00 12.57 1183.02
S/B — S/B 226 0.00 2.00 0.98 1.00 0.58 220.91
Sand (kg·m−3) S 226 0.00 873.00 363.40 396.00 179.81 82129.26
Expanding admixture (kg·m−3) EA 226 0.00 10.50 1.27 0.00 2.95 287.86
Gravel (kg·m−3) G 226 1.56 2001.00 1375.06 1474.00 349.12 310764.27
Fly ash (kg·m−3) FA 226 0.00 262.00 13.51 0.00 45.43 3052.40
Superplasticizer (kg·m−3) SP 226 0.000 10.500 2.977 2.115 3.336 672.770
Output
Tensile strength MPa T-S 226 1.200 5.500 2.756 2.600 0.939 622.900
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although it may take longer to align optimally with the data.
Similarly, in the RF model, hyperparameters like the number
of trees, maximum depth, andminimum samples split to control
the model’s complexity and generalization ability. Proper tuning
of these parameters is crucial for optimizingmodel performance,
ensuring it captures relevant patterns while maintaining a bal-
ance between accuracy and generalization. Table 3 outlines the
hyperparameter ranges optimized for predicting TSC T-S.

2.5 Validation of models

The correctness of the model was determined for the dataset
by examining its performance based on three metrics: the
mean absolute error (MAE), mean squared error (MSE), the
root mean squared error (RMSE), and the coefficient of deter-
mination (R2). When estimating regressionmodels for this kind
of issue, these measures are utilized extensively [15,90,91].
Based on MAE and RMSE, the error criteria are employed to
terminate the development of the models involved. To prevent
overfitting, the models were suspended when these metrics
reached predefined acceptable thresholds or demonstrated
minimal improvement across iterations.

The MAE is a measurement that determines the mean
size of the errors, which is the size of the disparity between
the values that were seen and those that were anticipated
[92]. Large mistakes brought about by outliers are almost
never significant because the value being discussed is abso-
lute and not quadratic [93]. Eq. (3) is used to calculate
the MAE, which can range from zero to positive infinity,
where Pi represents the actual value obtained from the

experiment,Mi denotes the anticipated value, and n repre-
sents the overall count of occurrences. The model is con-
sidered to be of higher quality when its MAE is lower

∣ ∣∑= −
=n

P MMAE
1

.

i

n

i i

1

(3)

MSE is a widely utilizedmetric for evaluating the accuracy
of regression models. It computes the average of the squared
deviations between expected and observed values, as shown in
Eq. (4). MSE is sensitive to outliers since it squares the data,
giving greater mistakes a higher weight. A lower MSE suggests
that the model is better fitted to the data. MSE is commonly
used for model improvement and performance evaluation [43]
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i
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i i
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The RMSE is a statistic that is frequently utilized for
the purpose of measuring the extent of mistakes [92]. How-
ever, in contrast to the MAE, the RMSE tends to increase
quite a bit when the error associated with each estimate
grows due to the fact that it possesses a quadratic charac-
teristic [93]. Eq. (5) is used to calculate RMSE. In the same
vein as the MAE, having a low RMSE number is preferable

( )
=

∑ −= P M

N
RMSE .

i
n

i i1
2

(5)

A statistic known as R2 has values that can vary all the
way from negative infinity to one [94]. As a result, R2 will
equal 1 if the model provides a perfect fit to the data, and
the model will understand all of the data’s variability [93].
Because the performance of the evaluated model is differ-
entiated from that of a flat line, which is a reference model
in which every forecast will correspond to the average of
the outputs, the R2 will be negative if the evaluated model
offers a fit that is less satisfactory than that of the flat line
of mean values. It is possible to calculate the R2 by using Eq.
(6), in which Pi represents the actual value received from
the experiment, Mi represents the value anticipated by the
model, and n represents the overall count of occurrences
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3 Results and discussion

3.1 Development of the GEP equation

In order to successfully evolve computer programs, gen-
expro tool software was used for GEP; the GEP method

Table 3: Configuration of hyperparameter values

Hyperparameter GEP
(range)

GEP
(value)

RF (range) RF (value)

Generations 50–400 200 — —

Crossover rate 0.5–1.0 0.7 — —

Population size 50–600 400 — —

Tail length 5–50 20 — —

Mutation rate 0.01–0.1 0.07 — —

Head length 5–50 40 — —

Maximum depth — — 5–50 30
Bootstrap samples — — True/false True
Number of trees — — 100–1,000 700
Minimum
samples leaf

— — 1–10 4

Random state — — Integer
or none

None

Minimum samples
split

— — 2–20 10
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makes use of a number of different factors. The length of
the chromosome, which determines the size of the pro-
gram representation, and the gene set, which includes all
of the accessible functions and genes that are responsible
for the construction of the programs, are the essential
parameters. The length of the main program that is con-
tained within the chromosome is characterized by the
head length parameter, whereas the length of the remaining
section is characterized by the tail length parameter. GEP is
able to optimize its algorithmic behavior in order to provide
the required outcomes in tasks such as symbolic regression,
classification, and feature selection if these parameters are
adjusted with care and attention. The configuration of the
variables is specified in Table 4.

After configuring the GEP algorithm’s settings in accor-
dance with Table 4, as shown above, ETs, also known as
ETs, are constructed by merging genes and functions from
the gene set using the aforementioned criteria. The ETs are
a representation of possible equations or solutions. The ETs
are shown in Figure 6. They are assessed with fitness mea-
surements that are unique to the issue and then optimized,
utilizing those results. Techniques like genetic crossover,
mutation, and selection are used during a series of itera-
tive generations to bring about the evolution of the ETs. Eq.
(7) displays the resulting equation that was obtained from
the ET.

− = + + +T S A B C D, (7)
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where T-S represents the tensile strength, S represents the
sand, C represents the cement, W/B represents the water-
to-binder ratio, W represents the water, EA represents the
expanding admixture, SL represents the slag, G represents
the gravel, SP represents the superplasticizer, FA repre-
sents the fly ash, S/B represents the superplasticizer-to-
binder ratio, and SL represents the slag.

3.2 The outcome of the GEP model

The GEP method was employed to predict the T-S of TSC.
The analysis revealed a coefficient of determination (R2) of
0.91, indicating an excellent agreement between the pre-
dicted values and the experimentally observed results, as
shown in Figure 7. The maximum prediction error recorded
was 0.73MPa, while the minimum error observed was
0.01MPa, with an MAE of 0.19MPa. An analysis of the error
distribution demonstrated that 31.3% of the predictions
had an error of 0.1MPa or less, reflecting a high level of
accuracy. Additionally, 62.6% of the predictions fell within
an error range of 0.1–0.5 MPa, while only 6.1% exhibited
errors exceeding 0.5 MPa. Figure 8 presents the distribution
of errors for the experimental and predicted data. The
close alignment between experimental and predicted values
highlights the robustness of the GEP model in capturing the
underlying relationship between input parameters and T-S.
Furthermore, the low error margin reinforces the capability
of GEP to approximate experimental outcomes with a high
degree of precision. Collectively, these findings confirm that
the GEP method is effective in predicting the T-S of TSC,
supported by a high R2 value and a low average prediction
error.

3.3 The outcome of the RF model

The RF technique was also employed to predict the T-S of
TSC. The analysis was conducted using Python program-
ming, implemented via the Spyder (Anaconda software).
The R2 for the predictions was determined to be 0.94,
indicating a strong correlation between the predicted
values and the experimentally observed results, as shown
in Figure 9. The maximum prediction error recorded
was 0.55 MPa, while the minimum error observed was
0.02 MPa, with an MAE of 0.18 MPa. An analysis of the error

Table 4: Variables used to configure the GEP algorithm for
implementation

Variables Settings

Linking function Addition
Chromosome 100
Function set Ln, +, ×, ÷, −, ∛. -
Head size 11
Genes 3
General T-S
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distribution revealed that 28.3% of the predictions had an
error of 0.1 MPa or less, demonstrating a high degree of
accuracy. Additionally, 70.1% of the predictions fell within
an error range of 0.1–0.5 MPa, while only 1.6% exhibited
errors exceeding 0.5MPa. The alignment between the
experimental and predicted values reinforces the reliability
of the RF model in capturing the underlying relationships
between input parameters and tensile strength. Figure 10
illustrates the distribution of errors for the experimental
and predicted data.

The high R2 value and the relatively low average pre-
diction error affirm the effectiveness of the RF method in

predicting the T-S of TSC. The RF model outperformed the
GEPmodel in terms of predictive performance, as evidenced
by a higher R2 value. Furthermore, the concentration of
predictions within acceptable error margins underscores
the reliability of RF as a practical tool for forecasting the
T-S of concrete. These findings imply that the RF model is
better suited for practical applications where accurate and
reliable predictions of T-S are crucial, particularly in TSC
design and material optimization. This is primarily because
the RF model can capture complex relationships between
input parameters and T-S more effectively, making it a more
reliable and accurate tool for predicting T-S in TSC.
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Figure 8: GEP model error distribution.
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3.4 Modeling based on statistical data
evaluation

Presently, there are no models capable of accurately fore-
casting the T-S of TSC. Given the same range of input vari-
ables, Figure 11 demonstrates that RF models perform
better than GEP models in predicting the T-S of TSC. The
RF model, in contrast to other ML models, has the cap-
ability of effectively capturing the relationship between
complex input factors and the output variables. When

evaluated with the outcomes achieved by the GEP model,
the MAE was determined to be 0.197 MPa, MSE was found
to be 0.064MPa, RMSE was found to be 0.254MPa, and R2

was found to be 0.91. Similarly, the RF model yielded MAE
values of 0.181 MPa, MSE of 0.046MPa, RMSE of 0.215 MPa,
and R2 of 0.94, respectively.

Following the completion of the investigation, the GEP
model was developed. This model was subsequently used to
generate predictions regarding the T-S of TSC and to assess
the accuracy of those forecasts in comparison to those

Figure 10: RF model error distribution.

Figure 11: Statistical checks for the GEP and RF models.
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generated by RF models. Given that the observed and antici-
pated values are more closely aligned, there is statistical evi-
dence to imply that RF models are successful in forecasting
the T-S of TSC. This proof comes in the form of statistics. The
RF model demonstrates a minimum rate of error and higher
R2 values in comparison to the GEP ML approaches.

3.5 Sensitivity analysis

A model’s expected output can be affected by changes to its
input variables; therefore, conducting a sensitivity analysis
is helpful. This method is crucial for assessing the stability
and predictability of the model [95,96]. First, the problem
has to be narrowed down by identifying the input factors
that have an effect on the model’s predicted value. After
the variables were recognized, their respective intervals of
variation were calculated. For the parameters under dis-
cussion, this range should contain values that are both
acceptable and meaningful. By testing different values within
the specified ranges, the relative importance and influence of
each input variable on the model’s output were determined
using sensitivity analysis. This technique helps determine
which factors have the most impact on forecasts and makes
model-based decisions easier. A sensitivity assessment was
performed to evaluate the effect of different factors on the
T-S performance of TSC. The sensitivity analysis was con-
ducted using the following equations:

( ) ( )= −N f x f x ,i i imax min
(8)
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∑ =
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N
SA .

i

n
j

j
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The results illustrated the relative significance of the
factors by displaying the percentage of the impact each
input had on the output. It was revealed that the W/B had
the greatest impact of around 51.01% among the components
that were studied, which demonstrates the huge influence
that it has on the T-S performance of the TSC. It was also
observed in the previous investigation that the critical para-
meter for concrete strength is W/B [97]. Following that,
gravel, water, and cement had the biggest influence on the
T-S, contributing 23.52, 5.33, and 5.03%, respectively. The
contributions of the remaining seven parameters on the
T-S were less than 5%, as shown in Figure 12.

3.6 SHAP analysis results

The SHAP summary graphic illustrates the influence of
various input characteristics on an ML model that fore-
casts T-S in TSC, as shown in Figure 13. The features,
including the W/B, gravel, water, superplasticizer, cement,
and other components, are ranked in order of their signif-
icance. The predicted T-S is considerably influenced by the
most impactful feature, W/B, which is depicted at the top.
Each dot on the figure represents the SHAP value for a
single observation, indicating the degree to which each
characteristic contributes to the T-S prediction. Positive
SHAP values signify that a characteristic augments the
T-S prediction, while negative ones attenuate it. The hue
of the dots signifies the true value of the characteristic,
with red dots representing high values and blue dots repre-
senting low values. The predicted T-S is increased by a high
W/B ratio (represented by red dots), whereas lesser values
(blue dots) have a reducing effect. The impacts of other

Figure 12: Sensitivity analysis of the TSC for the T-S.
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features, such as water, superplasticizer, and gravel, are
also variable. The horizontal spread of the dots for each
feature indicates the extent of influence. Consistent effects
are indicated by tightly concentrated dots, while a broader
range of impacts is implied by more dispersed dots. These
features importance provides essential insights for TSC
design, as they highlight which material properties signifi-
cantly influence T-S. For instance, the high impact of the
W/B ratio suggests that adjusting this parameter can lead to
better control over T-S, which is crucial for optimizing the
mix design in TSC production. This plot provides valuable
insights for optimizing T-S predictions by facilitating the
interpretation of the contributions of individual material
properties in the TSC mixture.

4 Discussion

TSC refers to the process of depositing coarse aggregate
particles in an established formwork and subsequently
occupying the gaps with a specialized cementitious mix.
There are numerous differences between TSC and regular
concrete. Initially, the components of traditional concrete
are combined and thereafter placed in the formwork [63].
When making TSC, however, the grout components are
mixed individually and then injected into the pre-arranged
aggregate mass in the same way as previously explained.
Not only that, but TSC has a greater percentage of coarse
aggregate, which accounts for around 60% of the overall

volume, whereas regular concrete normally accounts for
approximately 40%. Through the placement of the aggre-
gates in the formwork in advance, the TSC technique is
able to assist in the resolution of the issue of coarse aggre-
gate segregation, which is particularly prevalent in high-
density aggregate concretes. In addition, TSC does not need
to be consolidated, vibrated, or compressed in order to
obtain a compact structure, which results in a reduction
in the expenses associated with its manufacture [98]. As a
result of these advantages, researchers are consistently
investigating the mechanical characteristics of TSC.

The current trend in investigating the mechanical
characteristics of TSC requires lab trials, which conversely
influence the time and cost. However, in recent years, ML
applications have been widely employed in the field of civil
and material engineering to study the performance and
characteristics of materials [99,100]. These ML techniques
include SVM, DT, ANN, GEP, RF, bagging, and boosting
[101–104]. Most of the studies in the past utilized ANN to
predict the mechanical characteristics of concrete success-
fully. The current study is compared to the work of pre-
vious researchers who have implemented ML algorithms,
as shown in Table 5. In addition, prior researchers have
employed metrics such as R2, MAE, and RMSE to assess the
accuracy and performance of their models in predicting
outputs [105]. In analytical studies, these statistical mea-
sures are frequently employed to evaluate the model’s
model fit and to quantify the discrepancies between pre-
dicted and actual values, thereby enabling a thorough com-
prehension of the model’s predictive capabilities [105,106].

Figure 13: The influence of input parameters is illustrated in the SHAP plot.
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However, to study the T-S of TSC, this study utilized GEP and
RF techniques. GEP is an advanced technique utilized for sym-
bolic regression and the creation of new features. It utilizes
mathematical formulas to adapt computer programs to match
the provided data. GEP provides the mathematical expression
to compute the T-S of TSC, which can easily be computed and
cross-checked by users. Similarly, RF is an effective ensemble
learning method that builds many DTs and then combines
their predictions. When training, each tree uses a different
subset of the available data and parameters. By integrating
the predictions of numerous trees, RF enhances the model’s
generalization performance and reduces overfitting. The
results of this experiment show that the RF model per-
formed better than the GEP model, as indicated by the RF
model’s greater values for R2 and reduced MAE and RMSE
results.

The RF and GEP models devised in this study offer
advantages by operating within a predefined set of 11 inde-
pendent variables (i.e., cement, water, SF, slag, sand, S/B,
gravel, W/B, expanding admixture, fly ash, and superplas-
ticizer). This characteristic guarantees that the forecasts
generated are tailored to the application of these materials
in the context of predicting T-S. The model's adherence to a
standardized testing procedure and the use of identical
unit measurements establish the dependability of the T-S
predictions they generate. The prescribed arithmetic equa-
tions of the ML models are of the utmost significance in
understanding the ratio of the design of the mix and the
impact on each variable that is independent. Nevertheless,
the relevance of the ML forecasting algorithms may be com-
promised if additional variables are incorporated into the
model equations in addition to the 11 variables previously
mentioned [111]. It is possible that additional input variables
will cause the produced models to fail because they were
tailored to handle the particular collection of 11 input vari-
ables. The forecast models may also generate incorrect
results if the input variable units are altered or if there
are discrepancies. It is imperative that the units of the input
parameter models match those employed in this study in
order to guarantee that the models are deemed effective.

5 Conclusions and
recommendations

The T-S characteristics of TSC are examined in this inves-
tigation using both GEP and RF ML algorithms. In order to
enhance the predictive capabilities, both the GEP and RF
strategies were implemented. Each input variable was
meticulously analyzed to uncover its relative frequency
distribution. In order to conduct RF analysis, the Spyder
(Anaconda program) was modified using Python code, and
the Genexpro tool was employed for GEP to conduct the
requisite model simulations for further research. Multiple
statistical tests were examined and evaluated to ensure the
accuracy of the models being employed, including MAE,
RMSE, and R2. Furthermore, a sensitivity analysis was per-
formed to investigate the potential impacts of all of the
input variables. The subsequent findings were derived
from the investigation’s results.
• When it comes to predicting the T-S of TSC, the RF model
provides a more accurate answer with less degree of
variation.

• The value of the coefficient of correlation (R2) for T-S
according to the RF model is equal to 0.94, but the value
of R2 according to the GEP model is equal to 0.91.

• The excellent accuracy of the model is indicated by the
relatively high values of R2 for the RF regressor’s contri-
bution to the prediction of T-S.

• According to the statistical tests, the fact that the RF
method has a lower value for errors (MAE and RMSE)
shows that it has a higher level of performance when
compared to the GEP algorithm.

• According to the results of the sensitivity analysis, the
contribution of W/B to the prediction of the T-S of TSC
was much higher than that of any other parameter,
amounting to 51.01%.

• SHAP analysis also revealed that the W/B had the highest
impact on T-S compared to all other components, fol-
lowed by gravel. This insight can guide targeted adjust-
ments to improve the T-S of TSC.

Table 5: ML evaluation of the present study’s findings in relation to pertinent previous studies

Ref. Material studied Property studied Applied ML algorithms Best-performing model

Present study TSC T-S GEP and RF RF
[64] TSC Compressive strength GEP and RF RF
[107] Fly-ash based concrete Compressive strength GEP and RF RF
[108] High-strength concrete Compressive strength GEP and RF RF
[109] Concrete-filled steel tube columns Bearing capacity of concrete GEP, PSO, and ANN GEP
[110] Fly-ash based concrete Compressive and T-S GEP, MNLR, and RSM GEP
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The study highlights that while the RF model outper-
forms GEP in predicting T-S of TSC, its effectiveness is lim-
ited by the dataset’s scope and the use of only 11 input
variables. Future research should focus on expanding the
dataset and incorporating advanced ML techniques like
gradient boosting, convolutional neural networks, and
DTs. Exhaustive sensitivity analyses and exploring addi-
tional variables will improve predictive accuracy and
understanding. The study emphasizes the importance of
advanced ML in enhancing material performance for sus-
tainable construction.
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