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Abstract: Agro-waste like eggshell powder (ESP) and date
palm ash (DPA) are used as supplementary cementitious
materials (SCMs) in concrete because of their pozzolanic
and cementitious attributes as well as environmental and
cost benefits. In addition, performing lab tests to optimize
mixed proportions of concrete with different SCMs takes
considerable time and effort. Therefore, the creation of
estimation models for such purposes is vital. This study
aimed to create interpretable prediction models for the
compressive strength (CS), eco-strength (ECR), and cost–
strength ratio (CSR) of DPA–ESP concrete. Gene expression
programming (GEP) was employed for model generation via
the hyperparameter optimization method. Also, the impor-
tance of input features was determined via SHapley Additive
exPlanations (SHAP) analysis. The GEP models accurately
matched experimental results for the CS, ECR, and CSR of
DPA–ESP concrete. These models can be used for future
predictions, reducing the need for additional tests and
saving effort, time, and costs. The model’s accuracy was
confirmed by an R2 value of 0.94 for CS, as well as high
values of 0.91 for ECR and 0.92 for CSR, as well as lower
values for statistical checks. The SHAP analysis suggested
that test age was the most critical factor in all outcomes.

Keywords: date palm ash, eggshell powder, compressive
strength, sustainable concrete, predictive models

1 Introduction

The yearly production of concrete continues to increase
rapidly as a result of the worldwide need for infrastructure
construction. The worldwide utilization of concrete sur-
passes 25 gigatons per year [1,2]. The construction sector
is a main contributor to global greenhouse gas (GHG) emis-
sions, with a major portion arising from concrete manu-
facture, including both the materials used and the building
activities involved [3,4]. During the building process, two
types of GHG CO2 emissions are generated: embodied CO2

and operational CO2. The CO2 emissions that are directly
associated with transportation, manufacture of materials,
maintenance, and demolition contribute to the overall carbon
footprint. The operational CO2 emissions are derived from the
energy utilized during the operational period [5,6]. The pri-
mary source of CO2 emissions in the construction sector is
cement manufacturing. Specifically, the cement industries
are accountable for around 7–8% of the worldwide CHG
CO2 emissions [7]. The manufacturing of 1 kg of cement
results in the release of about 1 kg of CO2 into the atmosphere,
which varies depending on the type and amount of clinker
[8]. The primary source of CO2 emissions in cement manufac-
ture occurs during the clinker-forming process. The clinker is
produced by the process of calcination when limestone and
clay are heated to temperatures exceeding 1,500°C in a furnace.
This causes the transition of CaCO3 into CaO and CO2. During
calcination, around 50% of the overall CO2 generated during
cement manufacturing is released into the environment [9].
Given the rising demand for cement, with a yearly manufac-
turing rate surpassing 4.4 billion tons and projected to surpass
5.5 billion tons by 2050 [10], reducing cement manufacture and
demand will effectively decrease worldwide CO2 emissions from
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the construction sector. This, in turn, will mitigate the long-term
risk of global warming [11]. One method of reducing cement
usage is by using supplementary cementitious materials (SCMs)
derived from industrial or agricultural byproducts [12–15].

Agro-based byproducts such as eggshell powder (ESP)
and date palm ash (DPA) are utilized as SCMs in cementi-
tious composites because of their pozzolanic characteris-
tics [16,17]. DPA is acquired by the incineration of all parts
of the date tree, containing its leaves, fronds, stems, and
mesh, at elevated temperatures, followed by the process of
grinding them into extremely small particles [18,19]. Studies
have shown that the DPA contains a significant amount of
silica, which is responsible for its pozzolanic response [20].
Prior research has demonstrated the effectiveness of DPA as
a pozzolanic substance in cementitious composites. It has
been seen to improve the mechanical characteristics and
long-lasting nature of cementitious composites [16,21]. DPA
might be used with other SCMs, such as fly ash, to improve
the performance of cementitious composite [20,22]. In addi-
tion, ESP has a significant amount of CaO, which enhances
its cementing characteristics along with its pozzolanic char-
acteristics [23]. ESP is acquired by the process of pulverizing
poultry eggshells into a finely powdered state. Prior to
grinding, eggshells are obtained from various sources such
as chicken farms, bakeries, and restaurants. They undergo a
thorough process of washing and drying before being
further processed [24]. The ESP is typically mixed with other
SCMs that have a high content of SiO2 and Al2O3. CaO in the
ESP facilitates the production of more Ca(OH)2, which then
combines with SiO2 and Al2O3 to generate an excess of cal-
cium silicate hydrate (C–S–H) gel [23]. The C–S–H gel is
primarily important for the formation of concrete strength
[25]. ESP has a role in stabilizing ettringites and mono-car-
bonates in the cementitious composite when it undergoes
hydration. This leads to enhanced mechanical strength and
resilience characteristics [26]. ESP has been used with other
agricultural-based SCMs, such as straw and rice husk ashes
[27,28] and DPA [29,30], and the resulting combined SCMs
were observed to improve the performance of cementitious
composites.

Researchers are now developing estimating models to
evaluate the properties of materials and structures in
order to reduce the requirement for extensive laboratory
experiments [31–34]. Artificial intelligence (AI) strategies,
like machine learning (ML), are presently at the forefront
of the development of modeling techniques in this field
[35–37]. In recent years, there has been a growing recogni-
tion of the application of ML approaches in evaluating the
performance of building materials [38–42]. Gene expression
programming (GEP) is an advantageous multiphysics model
since it disregards previously established relationships while

developing a model [43,44]. The GEP algorithm represents a
program using a linear chromosome with a fixed length [45].
It can offer a mathematical formula for predicting behavior
that can be applied in practical situations [46–48]. Unlike
neural networks, GEP has several advantages. When dis-
cussing artificial neural network algorithms, they lack prac-
tical value, as they are unable to generate a functional
relationship or framework. In contrast, GEP produces output
in the form of an expression tree (ET), which can be decoded
to obtain a mathematical relationship. This relationship is
user-friendly and can be effectively utilized to make future
predictions. GEP possesses the unique capability of estab-
lishing frameworks, which showcases its novelty through
the provision of dependable models [49]. This characteristic
enhances the reliability of GEP in generating precise predic-
tions for the future. In contrast, all other techniques, with the
exception of genetic programming (GP), are solely employed
as predictors. Due to their limitations, neural networks are
classified as black-box algorithms, which restrict their prac-
tical use. As a result, GEP emerges as a viable alternative to
these methods, surpassing other approaches in addressing
technical and complex problems, including SHapley Additive
exPlanations (SHAP)-based studies, while outperforming tra-
ditional methods like LR [50–52].

The aim of this research is to create and evaluate GEP-
basedmodels for the compressive strength (CS), eco-strength
(ECR), and cost–strength ratio (CSR) of DPA–ESP concrete
while also investigating the impact of input components.
The aim was accomplished by pursuing the following objec-
tives: (i) optimizing hyperparameters for GEP using experi-
mental data to build prediction models, (ii) verifying the
accuracy of the constructed GEP prediction models using
statistical measures and analyzing deviations among actual
and predicted outcomes, and (iii) examining the influence of
input components through SHAP analysis. Conducting stu-
dies on materials necessitates a significant investment of
time, money, and effort, as it involves acquiring materials,
creating samples, allowing them to cure, and subsequently
assessing them through testing. These problems can be over-
come using innovative techniques, such as ML, which
would be advantageous for the construction sector. The
characteristics of concrete are also influenced by several
factors, and it is challenging to accurately measure their
collective impact using experimental techniques. SHAP
analysis is a valuable method for examining the influence
and correlation between input characteristics and out-
puts. The necessary data for constructing the ML model
and conducting SHAP analysis can be obtained from pre-
vious research or laboratory experiments. Consequently,
the obtained database may be used to implement ML
algorithms, predict material characteristics, and analyze
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the impact of inputs. The results of this study have the
potential to enhance the flexibility of SCMs (DPA and ESP)
composites in the construction sector, hence benefiting
green building programs.

2 Data collection and analysis

The dataset was collected from the published literature [53]
and includes five input variables: cement (C), DPA, super-
plasticizer (SP), ESP, and test age (A). The corresponding
output variables are CS, ECR, and CSR. The ECR of DPA–ESP
concrete is calculated using Eq. (1), and CSR is calculated by
dividing the cost of concrete in $/m3 by CS in MPa. The
dataset was increased from its initial 28 data points to
560 data points with the aid of a Python code that operated
in accordance with a strategy that had been established
beforehand. The user is given the opportunity to pick a
database file via a Tkinter-based file dialog box, which
leads to the beginning of the code. A Pandas DataFrame
was used to import the file, and then the code checked the
current point count once it was imported. A freshly formed
file that included synthetic and original data was then used to
hold the upgraded dataset after it had been created. The
script provides incisive statements as it supplements the
data. The declarations include a variety of information,
including the precise location of the saved file, the number
of synthetic data elements added, and the total number of
data elements added. Furthermore, the script accommodates
scenarios in which resampling is necessary, or no file is
selected. This method was also utilized in earlier studies in
order to enhance the number of data points included inside a

database [54,55]. In order to develop models, the data are
allocated as follows: 70% is allotted for the training phase,
while 30% is set aside for the testing phase. Data preparation
facilitated the acquisition and organization of the data. Com-
monly, data preparation is employed as a buffer to surmount
a substantial impediment in the well-established method for
deriving novel insights from old data [54]:

=
F

E
ECR ,

c

CO2

(1)

where Fc is the CS of concrete in MPa, and ECO2
is the

embodied CO2 release for 1 m3 of concrete.
The primary characteristics of the dataset were sum-

marized using descriptive statistics, and the results are
summarized in Table 1. Table 1 contains critical metrics for
the input and output variables, including the mean, median,
standard deviation, minimum, and maximum values. These
statistics reveal the central tendencies, variability, and overall
distribution patterns of the variables, which provide a com-
prehensive overview of the data. The correlation coefficients
among the variables were calculated to evaluate the intensity
and direction of their linear relationships, in addition to
descriptive statistics. The correlation between the variables
is denoted by these coefficients, which vary from −1 to 1. A
direct relationship is suggested by a positive coefficient, while
an inverse relationship is indicated by a negative coefficient.
The correlations between each pair of input and output vari-
ables are visually represented in Figure 1(a)–(c). This figure
offers valuable insights into the interdependencies within the
dataset by identifying the inputs that have the most signifi-
cant impact on the outputs. For example, test age was the
crucial parameter with the highest positive values of 0.71 and
0.72 for CS and ECS, respectively, and −0.69 for the CSR.

Table 1: Descriptive statistics of all input and output variables

Parameter Cement
(kg·m−3)

DPA
(kg·m−3)

ESP
(kg·m−3)

SP (kg·m−3) Age
(days)

CS (MPa) ECR (MPa/kg
CO2/m3)

CSR ($/MPa·m−3)

Mean 396.37 72.22 8.76 4.77 16.60 40.50 0.106 2.97
Standard error 2.1869 1.6870 0.2100 0.005 0.44 0.44 0.001 0.032
Median 392 75.6 9.4 4.77 7 39.36 0.1 2.89
Mode 392 75.6 9.4 4.77 7 34.74 0.1 4.075
Standard
deviation

51.7512 39.92 4.96 0.12 10.47 10.58 0.027 0.759

Sample variance 2678.19 1593.79 24.68 0.0146 109.63 112.06 0.0007 0.576
Kurtosis −0.11 −0.11 −0.10 −0.39 −1.97 −0.52 −0.525 −0.150
Skewness 0.12 −0.12 0.03 −0.08 0.17 0.38 0.564 0.501
Range 196 151.2 18.7 0.46 21 42.72 0.102 3.14
Minimum 294 0 0 4.54 7 20.53 0.06 1.73
Maximum 490 151.2 18.7 5 28 63.25 0.16 4.879
Sum 221,970 40,446 4,910 2673.39 9,296 22685.33 59.34 1666.54
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3 Methodology

The methodology involved the implementation of advanced
modeling techniques to examine the correlations between
the input variables (C, DPA, SP, ESP, and Age) and the output
variables (CS, ECR, and CSR). After that, the models were
fine-tuned for optimal performance by employing the mod-
eling approach GEP to create the predictive models. This
allowed for the correct prediction of output variables from
each input. Figure 2 illustrates the flow chart of this study,
which includes the sequential phases of data acquisition,
model development, and validation. Thismethodical approach
facilitated the identification of critical input variables and the
development of predictive models that were both accurate
and robust.

3.1 GEP

GEP is an expanded version of GP and genetic algorithms
(GAs), which was initially presented by Koza [56,57]. In the

field of domain-independent problem-solving, GP is defined
as a strategy in which computer programs are progressed to
resolve problems on the basis of the Darwinian principle of
reproduction and fittest survival, as well as similarities of
naturally occurring genetic processes like mutation cross-
over. The GA relies on a population of potential solutions
known as individuals. Individuals are typically made up of a
single chromosome, and each individual may have one or
more genes that are separated into tail and head seg-
ments. The selection process continues by picking indivi-
duals based on their fitness, and genetic diversity is
initiated by employing one or more genetic operators
to resolve optimization problems. The majority of the
genetic operators that are utilized in GAs are also capable
of being executed in GEPs with very few modifications.
These GEPs are composed of five primary components:
fitness function, function set, control parameters, ending
condition, and terminal set [58,59]. Figure 3 shows a flow-
chart illustrating a method for gene expression. For the
purpose of representing solutions to issues, GEP makes
use of character strings of a predetermined length. These
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Figure 1: Correlation coefficient of the dataset: (a) CS, (b) ECR, and (c) CSR.
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solutions are then described as parse trees of varying
sizes and forms. These trees are referred to as GEP ETs
and other formulations that are linked to them can be
created by following the approach, as shown in Figure 4.
This technique is capable of performing well for the explicit
formulation and predicting mechanical characteristics. In
this method, all of the issues are denoted by ETs, which
are made up of operators, constants, functions, and vari-
ables [60,61].

3.2 Developing GEP models

To establish a generalized connection, an exhaustive ana-
lysis was conducted on each parameter in the database,
and the outcomes of an extensive number of preliminary
trials were also analyzed. This was undertaken to acquire a
comprehensive comprehension of the parameters that have
the most substantial influence. As a result, it is assumed that
the CS, ECS, and CSR are influenced by the parameters given
in Eqs. (2)–(4):

( )= f C ACS , DPA, SP, ESP, , (2)

( )= f C AECS , DPA, SP, ESP, , (3)

( )= f C ACSR , DPA, SP, ESP, . (4)

When it comes to the process of developing reliable
and all-encompassing models, it is of utmost importance to
have a firm awareness of the significance of relevant vari-
ables. Both the findings of prior research and the outcomes
of several test runs were taken into consideration when
determining the parameters that were utilized for fitting
the GEP technique. There is a correlation between the size
of the population and the length of time it takes to com-
plete the procedure. In the same way that the complexity of
each term is dictated by the program, the number of sub-
ETs can be determined by the size of the head. Control and
regulation of the structure of the model created by the
software are accomplished via the use of the head size.
GeneXpro software was used to perform GEP simulation.
The parameters that were employed in the GEP modeling
are presented in Table 2, where parameters were chosen
based on a previous study [64].

In order to prevent overfitting, GEP implements mechan-
isms such as controlled genetic operations and multi-popula-
tion strategies. The GEPmodels are intended to prevent exces-
sive complexity by employing fitness functions that penalize
excessively intricate solutions, thereby promoting the

Figure 2: Flow chart of the study.

Figure 3: GEP algorithm flowchart [62].
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development of simplified, more generalizable models in the
specific context of this study. The derived equations are guar-
anteed to maintain interpretability and robustness while
achieving high predictive accuracy through the use of adap-
tive selection pressures in conjunction with this approach.
Furthermore, GEP inherently evaluates model stability and

mitigates the risk of overfitting the training data by utilizing
internal cross-validation during the training phase.

3.3 Model validation

The accuracy and reliability of the predictive models were
evaluated by the implementation of numerous statistical
tests during model validation. The coefficient of determi-
nation (R2), mean absolute error (MAE), root mean square
error (RMSE), and root mean squared logarithmic error
(RMSLE) were the performance metrics employed for vali-
dation. The overall fit of the model is indicated by the
proportion of the variance in the output variables that is
predictable from the input variables, which is calculated
using Eq. (5). It is denoted as R2. Eq. (6) defines MAE as the
average absolute variance among estimated and actual
values, which provides insight into the model’s prediction
accuracy. RMSE, as delineated in Eq. (7), is used to calculate
the average magnitude of prediction errors, emphasizing
larger errors as a result of its squaring effect. On the other
hand, RMSLE, as given in Eq. (8), is employed to penalize
underestimation errors more than overestimation errors,
with an emphasis on the relative differences between esti-
mated and actual values. The model’s efficacy in accurately
anticipating the output variables was confirmed by the
exhaustive evaluation of its performance, which these

Figure 4: Decoding of the chromosome in GEP, containing two genes [63].

Table 2: Parameter set for optimized GEP models (parameters similar to
those in the study of Guan et al. [64]

Parameters Settings

General CS, ECS, CSR
Linking function Addition
Function set Ln, √, +, −, ×, ÷
Constant per gene 10
Head size 7
Chromosomes 250
Genes 3
Data type Floating number
Inversion rate 0.00546
Mutation rate 0.00138
Gene transposition rate 0.00277
Stumbling mutation 0.00141
RIS transposition rate 0.00546
Gene recombination rate 0.00277
Lower bound −10
Upper bound 10
Random chromosomes 0.0026
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metrics collectively assured. A thorough examination of the
numerous statistical parameters is provided in Table 3
based on a recent study [64]:

( )

( )
= −

∑ −
∑ −

=

=
R

p t

t t
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¯
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j
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j j
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j

m

j j1
2

(7)

( ( ) ( ))
=

∑ + − += x y

n
RMSLE

log 1 log 1

.
j

m

1
2

(8)

Here, tj represents the experiment data that were col-
lected prior to the building of the model, p

j
represents the

result that is predicted by the model, t̄ indicates the antici-
pated average value, and m represents the total number of
occurrences that were utilized in the modeling process.
The forecasted result is represented by x, while the actual
outcome is represented by y.

4 Results

The prediction of CS, ECR, and CSR was assessed using the
GEP model. ETs were constructed for each output variable,
and the accuracy of the predictions was evaluated by cal-
culating R2. The following subsections provide a detailed
discussion of these evaluations, which include the derived
ETs and their corresponding R2 values. These analyses
offer a thorough examination of the model’s ability to
exactly predict each of the output variables.

4.1 GEP CS model

The output of the ideal GEP model is represented by the ET
for predicting CS, as demonstrated in Figure 5(a)–(c). The

model equation for predicting CS was obtained by decoding
the ET. Eq. (9) is a fundamental forecasted formula which
utilizes fundamental arithmetic operators, including Ln, +,
−, /, √, and ×. From Sub-ETs 1, 2, and 3, three discrete vari-
ables are extracted and used in this equation. The decoded
equation provides a clear and interpretable model for pre-
diction by effectively capturing the connection between the
inputs and CS. Eq. (9a) suggests that the impact of DPA and
SP on cement can be represented through a logarithmic and
inverse relationship, indicating a sensitive dependence of
the blend’s properties on the ratio of these components. In
Eq. (9b), the nested square root term involving ESP implies
that even minor variations in ESP content may have a non-
linear effect on certain material characteristics, possibly
related to flowability or structural integrity. Eq. (9c) reveals
that the DPA-to-cement ratio, when combined with the addi-
tive effects of ESP, can significantly influence the final mate-
rial properties, emphasizing a need for a careful balance in
the mix design. These equations, therefore, not only capture
the mathematical interactions but also offer a deeper under-
standing of how each component contributes to the overall
behavior of the material:

= + +A A ACS ,1 2 3 (9)

where

( )

( ( ) )
= −

− − −
A C

Ln 8.06

DPA 8.27 SP
,1

(9a)

[ ( ) ( )]= − − − × −

×

A C ADPA SP 8.27

ESP ,

2 (9b)

( )

( )
= ×

− +
× +

A A
A

ESP 8.22

1.54 9.37
.

C

3

DPA

(9c)

The GEP model’s ability to predict CS was demon-
strated by an R2 value of 0.94, which suggests that the model
accurately predicted the data, as illustrated in Figure 6. An
error analysis was also performed to compare the experi-
mental values with the predicted values, as illustrated in
Figure 7. According to the analysis, 40.5% of the forecasts
had an error of less than 1MPa, while 45.2% of the predic-
tions were within the range of 1–4MPa. A total of 14.3%
of the results were predictions, with errors exceeding 4.
The error statistics consist of an average error of 1.92MPa,
a lowest error of 0.47MPa, and a maximum error of 5.41MPa.
The model’s efficacy is underscored by this exhaustive error
analysis, which also pinpoints potential areas for enhance-
ment. The high R2 value confirms that, overall, the model is
well-tuned for CS predictions, though certain cases may still
benefit from additional fine-tuning to improve consistency
across all data points.

Table 3: Numerous statistical metrics correlated with varying error
ranges [64]

Evaluation criteria Range Model accuracy

RMSE (0, ∞) Greater precision if lesser
R2 value (0, 1) Greater precision if higher
MAE (0, ∞) Greater precision if lesser
RMSLE (0, ∞) Greater precision if lesser
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4.2 GEP ECR model

Figure 8(a)–(c) illustrates the ET for ECR. This ET is the
output of the optimal GEP model and was decoded to
create a mathematical equation for predicting ECR, as

shown in Eq. (10). Basic arithmetic operations and specific
variables obtained from the ETs are incorporated into
the derived equation, as was done in the previous case.
A transparent and comprehensible model for ECR predic-
tion is provided by this mathematical formula, which

Figure 5: ETS of the GEP model for CS. (a) Sub-ET 1; (b) Sub-ET 2; (c) Sub-ET 3.
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encapsulates the interactions between input variables to
accurately forecast ECR. Eq. (10a) suggests that the interac-
tion between SP, C, and A relative to ESP and DPA affects
the material properties in a non-linear fashion. Eq. (10b)
reveals a logarithmic relationship involving the combina-
tion of SP and DPA with cement, modified by the presence
of SP and A. This implies that changes in the ratios between
these components can significantly influence the material’s
behavior, possibly affecting flowability or bonding. Eq. (10c)
indicates a complex interplay between cement, SP, and
ESP relative to DPA, where the interaction between these
parameters and a logarithmic term involving A can have
substantial implications for the material’s stability and per-
formance. Together, these equations highlight the intricate

relationships among these components, emphasizing the
importance of the precise mix design to achieve the desired
material properties.

= + +B B BECR ,1 2 3 (10)

where

= ⎛
⎝ +

+
− ⎞

⎠ −B
C A

SP
0.74

ESP DPA ,1
(10a)

( )
( )= ⎡

⎣⎢
⎛
⎝

+
× × + ⎞

⎠ − ⎤
⎦⎥

B
C

ALn
SP DPA

SP 7.67 DPA ,2
(10b)

( ) ( )=
⎛

⎝
⎜ − −

⎞

⎠
⎟ − ×+B

C
ADPA ESP Ln 8.66 .

C3 SP

ESP

(10c)

As shown in Figure 9, the performance of the GEP
model for predicting ECR resulted in an R2 value of 0.91,
which indicates that the model’s predictions are accurate
to a high degree. In addition, an error analysis was carried
out in order to compare the values obtained from the
experiment with those predicted, as shown in Figure 10.
According to the findings of the investigation, 39.8% of the
forecasts had errors that were less than 0.003, and 36.3% of
the forecasts had errors between 0.003 and 0.010. A total of 23.9%
of the findings were composed of predictions that had errors
greater than 0.10. According to the data on errors, the highest
error is 0.015, the lowest error is 0.001, and the average error is
0.006, respectively. Similarly, the predominance of greenmarkers
in the figure aligns with this high R2, showing that themodel can
reliably predict ECR in most cases. The few red markers repre-
senting error-prone cases are relatively isolated, suggesting the
model effectively handles ECR predictions overall, with minor
opportunities for improvement under special conditions.
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4.3 GEP CSR model

The optimal GEP model generates the ETs for predicting
the CSR, as illustrated in Figure 11(a)–(c). The model equa-
tion for CSR prediction was obtained by decoding the ET, as
illustrated in Eq. (11). The formula that results from this

process employs fundamental arithmetic operations and
variables from the decoded ET. The cost-effectiveness of
the ESP–DPA concrete formulations can be accurately
and interpretably predicted by this equation, which depicts
the relationship between CSR and the input factors. Eq.
(11a) describes a non-linear interaction involving DPA, C,
SP, ESP, and A, affecting the resulting CSR. Eq. (11b) empha-
sizes the role of cement relative to SP and A, where the
ratio of cement to a modified SP term directly impacts CSR.
Eq. (11c) introduces a logarithmic dependency on DPA,
modulated by the combination of C, A, ESP, and SP, sug-
gesting that these components collectively influence CSR
through sensitive variations. Together, these equations
provide a structured approach to predicting CSR:

= + +C C CCSR ,1 2 3 (11)

Figure 8: ETS of the GEP model for ECR. (a) Sub-ET 1; (b) Sub-ET 2;
(c) Sub-ET 3.
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where

( )= − × +C
C

A
DPA

SP ESP ,1
(11a)

( )=
−

× +C
C

A

7.67

0.74 ,
A2

SP

(11b)

( )
= +×

×

C
Ln DPA

0.74.
C A3

ESP SP

(11c)

Figure 12 illustrates that the GEP model’s CSR predic-
tions were highly accurate, as evidenced by an R2 value of
0.92. In order to compare the experimental values with the

Figure 11: ETS of the GEP model for CSR. (a) Sub-ET 1; (b) Sub-ET 2; (c) Sub-ET 3.

Analyzing the CS and cost parameters of agro-waste-derived concrete  11



predicted values, an error analysis was also performed, as
illustrated in Figure 13. Based on the analysis, 47% of the
predictions had errors of less than 0.15, while 41.7% of the
predictions had errors in the range of 0.15–0.4. Only 11.3%
of the results were predictions, with errors exceeding 0.4.
In terms of error statistics, the highest error is 0.58, the
lowest error is 0.02, and the average error is 0.17. The
distribution of red markers indicates certain complexities
in predicting CSR accurately, possibly due to fluctuating
cost factors. These error-prone areas suggest that while
the model effectively captures the overall relationship,
enhancing it to account for specific cost variations could
further reduce prediction discrepancies and improve accu-
racy across all cases.

4.4 Model validation

The GEP model’s predictions for CS, CSR, and ECR were
thoroughly evaluated using an extensive variety of statis-
tical checks to determine their accuracy and reliability. The
checks that were included in this analysis were MAE,
RMSE, and RMSLE. The specifics of the statistical tests are
illustrated in Figure 14. The GEP model for CS achieved an
MAE of 1.915, indicating that the average absolute variance
among the estimated and actual values was 1.915. The
RMSE for CS was 2.37, which was used to determine the
standard deviation of the prediction errors. This value
highlights the squaring effect, which results in greater dis-
crepancies. The RMSLE value for CS was 0.063, and its
primary focus was on the relative differences between pre-
dicted and actual values. These results suggest that the
model is capable of reliably predicting CS with relatively
low errors. The CSR GEP model demonstrated an MAE of
0.177, which suggests a small average absolute variance
between the predicted and actual values. An RMSLE of
0.073 and an RMSE of 0.23, which indicate a low standard
deviation of the prediction errors, exemplify the model’s
ability to effectively manage both small and large values.
Thesemetrics assure the reliability of cost-effectiveness assess-
ments of the ESP-DPA concrete mixtures, underscoring the
model’s capacity to accurately predict CSR. The GEP model
achieved an MAE of 0.04, which is an exceptionally low value
for ECR. This value denotes the smallest average absolute
variance among the predicted and actual values. An RMSE
of 0.073 for ECR, which indicates very small standard
deviations of the prediction errors, and an RMSLE of
0.072 demonstrated the model’s precision in capturing the
relative differences between the predicted and actual values.
These findings support the model’s robustness and accuracy
in predicting ECR. The results demonstrated low error values
across thesemetrics, indicating strong predictive accuracy and
reinforcing the reliability of the models. In general, the statis-
tical evaluations for CS, CSR, and ECR suggest that the GEP
model produces predictions that are both precise and depend-
able, with negligible errors in all metrics. This comprehensive
evaluation underscores the model’s capacity to accurately
represent the complex relationships among the input vari-
ables and their corresponding output variables, ensuring
confidence in their predictive capabilities.

5 Outcomes of SHAP analysis

The SHAP study offers a thorough approach for evaluating
ML models [65]. The Shapely score is an approach used to
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quantify the comparative impact and influence of each
input parameter on the final model outcome. It is similar to
parametric evaluation, where all parameters, excluding one,
are kept continual, and the effect of the parameter in a query
on the output characteristic is noted. The model generates a
predicted result for each expected sample, and the SHAP
score represents the amount assigned to each feature in the
supplied sample [66]. This study investigated how input fac-
tors affect the CS, CSR, and ECR of DPA–ESP concrete. The
entire data sample utilizes the SHAP tree explainer to provide
a detailed depiction of localized SHAP explanations and the
overall impact of characteristics.

The SHAP plot results are illustrated in Figure 15,
which illustrates the impact of input parameters on the
CS of DPA–ESP concrete. The x-axis of the SHAP diagram
indicates the impact of each factor, while the values of each

input element are displayed using a color spectrum. The
analysis establishes that the specimen’s age (test age) is the
primary determinant of CS, with cement quantity, ESP, SP,
and DPA following in that order. The CS is positively influ-
enced by the test age and cement quantity, indicating that
an increase in either factor can increase the strength. ESP
and SP, on the other hand, demonstrate both positive and
negative effects, suggesting that their impact on CS can
fluctuate based on their interactions and levels. The impact
of DPA, however, remains uncertain as a result of the
dataset’s limited variation, which implies that additional
research may be necessary to gain a comprehensive under-
standing of its role. These insights emphasize the potential
of ESP and DPA as partial cement replacements, which may
have a beneficial impact on environmental sustainability
and concrete performance.

Figure 14: Comparative analysis of statistical check results for CS, CSR, and ECR.

Figure 15: SHAP values for the CS. Figure 16: SHAP values for the ECR.
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Figure 16 illustrates the SHAP plot for the ECR of
DPA–ESP concrete. The most significant factors in this
study were test age and ESP, which suggest a primarily
positive influence on ECR. This influence may be associated
with the curing process and material properties. The order
of influencing factors is as follows: test age, ESP, cement, SP,
and DPA. Cement and SP have both positive and negative
effects on ECR, indicating that their impact may be contin-
gent upon specific conditions. It is important to note that the
limited variation in DPA data hindered the ability to draw
definitive conclusions regarding its influence on ECR. The
results of this analysis emphasize that, although test age and
ESP have a positive impact on ECR, it is crucial to balance
other components, particularly cement and SP, in order to
optimize ECR performance in DPA–ESP concrete.

The test age is once again the most influential factor in
the SHAP plot for CSR of DPA–ESP concrete, as illustrated
in Figure 17. This finding is consistent with its significance
in CS and ECR. In descending order of impact, the remaining
influencing factors are SP, DPA, ESP, and cement. It is intri-
guing that the test age and cement exhibit a more negative
correlation with CSR, indicating that, despite their impor-
tance, their impact may potentially diminish CSR under spe-
cific circumstances. The impacts of SP and ESP on CSR are
both positive and negative. The DPA dataset’s impact was
equivocal due to its limited variation. It is evident from this
analysis that the substitution of cement with ESP and DPA in
DPA–ESP concrete can result in economic and environ-
mental benefits in addition to its performance benefits.

6 Discussion

This study aimed to develop ML forecast models for the CS,
ECR, and CSR of DPA-ESP concrete. In cases where the R2

value is low, experimental validation should be preferred
over model predictions, as a lower R2 suggests that the
model may not fully capture the complexity of the data,
leading to potential inaccuracies. For applications requiring
precise predictions, especially in high-stakes or safety-cri-
tical environments, validation through experimental testing
can ensure accuracy and mitigate risks associated with
model limitations. However, in this case, the R2 values for
all three models are high (0.94 for CS, 0.91 for ECR, and 0.92
for CSR), indicating strong predictive reliability. Also, the
statistical check values are lower. Thus, the models can be
applied confidently, although conservative interpretation
is recommended in cases where larger deviations may
impact critical decisions. The GEP ML method is used for
this purpose as it provides model equations for future use.
Additionally, the SHAP analysis method was employed to
determine the importance of different features on themodel
outputs. The results of this study yielded GEP estimation
models that closely aligned with experimental findings.
These models can be utilized to calculate the CS, ECR, and
CSR of DPA–ESP concrete using various input components,
thereby decreasing the time, effort, and cost required for
further experiments. Furthermore, the SHAP study showed
the effect of input features on the CS, ECR, and CSR of
DPA–ESP concrete, providing valuable insights for aca-
demics and industry in selecting the quantity of raw ingre-
dients during DAP–ESP concrete production. The prediction
models will be limited to the CS, ECR, and CSR of DPA–ESP
concrete since the GEP models developed in this research
can only receive values from a certain set of five inputs. The
dependability of predictions is guaranteed due to the utili-
zation of uniform units and test techniques across all models
in the database. To gain a deeper understanding of the mix
proportions and the impact of each aspect, the models
yielded mathematical equations. The output models will
not work if the analysis has less or more than five inputs.
The accuracy of the model’s predictions in this study
relies on the consistency of input units. Previous studies
using experimental and ML approaches to analyze alter-
native materials emphasize the importance of precise
inputs and robust methodologies to ensure reliable and
insightful results [67–69].

ML-based prediction models have various practical
applications in the construction sector, such as predicting
the strength of materials, conducting predictive mainte-
nance, assessing risks, ensuring quality control, and opti-
mizing energy efficiency. However, ML models do have
certain limitations, including challenges related to accessing
data, achieving high accuracy, managing costs, and requiring
human interaction. Future research should prioritize the
incorporation of the Internet of Things, the creation of hybridFigure 17: SHAP values for the CSR.
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models, the implementation of Explainable AI methods, the
inclusion of sustainability aspects, and the establishment of
standardized data collection and sharing practices within the
industry. These efforts will help overcome existing limita-
tions and enhance the efficiency of ML-based results. These
advancements have the potential to provide more precise
and up-to-date information, improve productivity, increase
transparency, facilitate understanding, and enable well-
informed decision-making. As a consequence, they may
help reduce project delays, enhance safety, and promote
sustainability in the construction sector.

7 Conclusions

GEP was implemented in this research to generate predic-
tive models for three critical performance metrics of DPA
and ESP-modified concrete, including CS, ECR, and CSR.
The selection of GEP, a type of evolutionary algorithm,
was based on its capacity to develop mathematical expres-
sions that accurately represent the intricate relationships
between numerous input variables. Moreover, the SHAP
analysis yielded the impact of each input on model outputs.
The main findings of this study are as follows:
• The mathematical equation-based GEP models for the CS,
ECR, and CSR of DPA-ESP concrete agreed well with the
experimental findings and can be used for future predic-
tions, thereby reducing the time, effort, and cost required
for further experiments.

• The model’s accuracy was confirmed with an R2 value of
0.94 for CS and similarly high values of 0.91 for ECR and
0.92 for CSR.

• The absolute error analysis for CS revealed that 45.2% of
the predictions were between 1 and 4, 14.3% were greater
than 4, and 40.5% had errors of less than 1. The error
distribution for CSR was similarly low, and for ECR, the
errors were minimal, suggesting robust predictive per-
formance across all variables.

• The reliability and accuracy of the models for CS, CSR,
and ECR were also verified through statistical evalua-
tions such as MAE, RMSE, and RMSLE. For example,
MAE, RMSE, and RMSLE for the CS GEP model were
1.915, 2.37, and 0.063 MPa, respectively.

• SHAP study exhibited that the age of the specimen (test
age) was the crucial factor for all outputs (CS, ECR, and
CSR), exhibiting a positive impact on CS and ECR and a
negative impact on CSR. The impact of cement was found
to be more positive with the CS, more negative with the
CSR, and both negative and positive with the ECR. This

implies that cement replacement with ESP and DPA may
have both cost and environmental benefits.

The model predictions are adapted to the dataset and
five input variables, predicting DPA–ESP concrete CS, ECR,
and CSR in this structured input framework. Nevertheless,
this specificity also implies that the model may become
ineffective or lose accuracy if it is used with fewer or addi-
tional variables or if inconsistent units are applied to the
inputs. Although the model exhibits high R2 values (0.94 for
CS, 0.91 for ECR, and 0.92 for CSR), which suggest strong
reliability within these constraints, future research could
seek to broaden the model to include additional SCMs or
environmental factors. The model’s adaptability to various
concrete compositions would be enhanced by the inclusion
of SCMs such as fly ash, silica fume, and slag cement.
Furthermore, customizing the model to suit a variety of
geographical regions would take into account environ-
mental factors such as temperature, humidity, and the
availability of raw materials. This would increase the
model’s efficacy in a variety of construction settings and
climates, thereby expanding its application to a wider
range of contexts.
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