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Abstract: Steam turbines are essential for energy conver-
sion, with blades engineered for optimal efficiency, endurance,
and robustness in varying pressure conditions. However, these
blades face significant risks from fatigue, corrosion, and solid
particle erosion (SPE), particularly in high-pressure areas.
Understanding SPE mechanisms, influenced by particle char-
acteristics, impact angles, and material properties, is vital for
developing effective mitigation strategies. From 2013 to 2023,
the number of publications in this field increased by 133%,
reflecting substantial growth in research. Initially, experi-
ment-based studies represented about 30% of the research
from 2013 to 2015, while simulation and computational
methods became predominant, constituting approximately
70% of studies from 2020 to 2023. Key focuses included
impingement angle and impact speed. Thermal spray pro-
cesses dominated coating studies, comprising about 50% of
research from 2014 to 2023, with physical vapor deposition
at roughly 30%. Advanced coatings, like yttria-stabilized zir-
conia and titanium aluminum nitride, showed promise in
enhancing erosion resistance. Future research should prior-
itize optimizing these parameters and exploring eco-friendly
materials to improve turbine longevity and performance.
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1 Introduction

Steam turbines are essential energy converters in thermal
power plants and various industrial applications. They play a
crucial role in absorbing the power of steam and converting it
into mechanical energy. The turbines are equipped with com-
prehensively built blades that are divided into low-pressure
(LP), medium-pressure (MP), and high-pressure (HP) parts as
shown in Figure 1. These sections are specifically engineered
to handle different operational requirements based on the
varied pressures and temperatures [1]. In the LP section of
the steam turbine blades, the design focuses on maximizing
efficiency and extracting as much energy from the steam as
possible. In the mid section (MP) of the steam turbine blades,
the design aims to balance efficiency and durability, as this
section experiences relatively HPs and high temperatures.
Finally, in the HP section of the steam turbine blades, the
design prioritizes strength and resistance to erosion and cor-
rosion, as this section is subjected to the highest pressures
and temperatures in the turbine [2]. Every section of the
turbine is meticulously designed to achieve the optimal bal-
ance between efficiency, durability, and strength, so maxi-
mizing its performance.

Among the various difficulties that pose a threat to
steam turbine blades, such as fatigue, corrosion, erosion,
creep, and thermal stresses, erosion is particularly insi-
dious. The continuous and unrelenting impact of water
droplets or solid particles gradually erodes the surfaces
of the blades, posing a risk to both the efficiency of airflow
and the structural strength. Unlike slower-paced failure
mechanisms, erosion accelerates the degradation process,
especially in environments rich in moisture or particulate
matter. Erosion in steam turbine blades occurs in two main
forms: water droplet erosion (WDE) [3], which mostly
affects the LP region, and solid particle erosion (SPE),
which is a significant concern in HP parts [4]. The erosive
effect of solid particles, such as grit or sand transported by
the flow of steam, gradually wears away the surfaces of the
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Figure 1: Rotor of the combined HP-IP and LP sections of a large impulse-type steam. Reproduced from Dick [9].

blades, often resulting in early failure [5]. To address a
critical need, there are ongoing research efforts to investi-
gate various materials, coatings, and design alterations
that can improve the durability of turbine blades against
erosion and corrosion [6-8].

Alot of recent research shows that SPE is a hig problem
for steam turbine blades. The Scopus database reveals a
significant corpus of 2,806 papers (2013-2023) dedicated to
this subject (Figure 2). However, despite this substantial
body of literature, there remains a notable dearth of up-
to-date review articles addressing SPE and its implications
for steam turbine blade integrity, particularly concerning
protective coating strategies. To better illustrate the metho-
dology used in gathering and analyzing this literature, we
present Figure 3, which outlines the systematic approach we
followed in our review.

In light of this gap in comprehensive reviews, this
article aims to address the deficiency by providing a com-
prehensive overview of SPE-induced failures in steam tur-
bine blades. Section 2 delves into a thorough review of
failures in steam turbine blades, while Section 3 focuses
on SPE in these blades. Section 4 examines the myriad
parameters influencing SPE, including particle properties
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Figure 2: Number of publications for SPE between 2013 and 2023 based
on Elsevier database.

and impingement conditions. In Section 5, the article scru-
tinizes materials and protective coatings designed to miti-
gate SPE, offering detailed insights into their selection and
application methods. Section 6 summarizes and discusses
the findings from the review. By meticulously dissecting
these aspects, this review aims to bridge the existing
knowledge gap and shed light on the profound impact of
SPE on steam turbine blade performance. Finally, in Section 7,
we conclude by identifying the current gaps in under-
standing and addressing the ramifications of SPE, paving
the way for future research endeavors and advancements
in turbine blade technology.

2 Failure in steam turbine blade

The blades of steam turbines might fail for a variety of
reasons, even though they are essential parts of many
industrial applications. The factors that contribute to the
degradation of the system include thermal stress, mechan-
ical stress, vibration effects, corrosion, erosion, fatigue, and
creep, as shown in Figure 4. Gaining a comprehensive
understanding of the complex mechanisms responsible
for these failures is crucial to develop efficient mitigation
techniques that guarantee consistent turbine performance
across time.

Thermal stresses arise due to variations in temperature
within turbine parts, resulting in deformation, cracking, and
other types of damage. The studies conducted by Kumar and
Reddy [10], Azeez [11], and Mukherjee et al. [12] have exam-
ined topics such as high-temperature low-cycle fatigue and
material characteristics that are important for withstanding
thermal stress. The combination of mechanical stress, fluc-
tuating dynamic stresses, and centrifugal forces plays a cru-
cial role in causing blade fatigue and eventual failure. The
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Figure 4: Common failure modes in steam turbine blades are depicted: (a) crack localization on last stage LP turbine blades, (b) fracture surface of
rotor blade, (c) erosion on HP turbine rotor blade, (d) fractured blade failure in LP last stage, (e) pitting along the leading edge of turbine blade, (f and g)
corrosion and fracture on blade surface, and (h) fracture surface of cracked steam turbine blade. Reproduced from [14-19].
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blade experiences mechanical stresses due to the combined
effects of steam pressure, steam temperature, and centri-
fugal forces caused by rotating movement [13].

Corrosion is a notable risk in steam turbines due to
their frequent use of fuels that contain corrosive sub-
stances, including sulfur, vanadium, lead, sodium, and
other elements [20]. When air or saltwater impurities are
present, the presence of these chemicals can cause the
formation of alkali metals. These alkali metals then launch
highly destructive corrosion attacks on turbine blades, ulti-
mately resulting in failure [21]. The study conducted by
Plesiutschnig et al. [22] examined a crack located at the
base of the third row of blades in an LP steam turbine.
The steam turbine blade was made of Ferritic/Martensitic
x20cr13 alloy. The researchers noted that corrosion pits at
the root caused stress levels to exceed the yield stress. The
primary factor leading to the onset of fatigue cracks was
determined to be pitting corrosion. Additionally, crack pro-
pagation was attributed to the combined effects of centri-
fugal load and superimposed bending strain resulting from
unstable steam forces.

Fatigue failure, a common reason for blade malfunction,
happens when cyclic stresses exceed the fracture toughness of
the material. Cano et al. [23] He et al. [18], and Zhao et al. [24]
have conducted research to enhance turbine dependability
by investigating the fatigue behavior. They have taken into
account several elements including material qualities and
operating conditions. Krechkovska et al [25] examined the
fatigue fracture of steam turbine rotor blades made of high-
alloyed heat-resistant steel 15Kh11MF. The researchers dis-
covered several factors that contribute to early failure, such
as severe corrosion-erosion wear, uneven microstructure,
and the presence of micro defects in the surface layers.
The corrosive impact of the steam-water combination in
the phase transition region was also discovered to contri-
bute to the fracture process. The study examined the struc-
tural and mechanical condition of various high-alloyed
heat-resistant steels in steam turbine rotor blades at dif-
ferent points throughout their operation.

Creep, which refers to the gradual distortion of a mate-
rial over time when exposed to high temperatures and
steady stress, presents an ongoing risk to the integrity of
turbines. Gong et al. [26], Mudang et al. [27], and Abdollah-
zadeh Jamalabadi [28] have conducted research on many
elements of creep behavior, such as the impact of heat
treatment and material microstructure.

Erosion stands out prominently among the mechan-
isms affecting steam turbine blades due to its high occur-
rence rate, as shown in Figure 5. Its impact is particularly
pronounced when compared to other common degrada-
tion mechanisms such as creep, fatigue, corrosion, thermal
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Figure 5: Distribution of type failure in steam turbine blade from 2013
to 2023.

stress, and mechanical damage. The evidence is clear from
published research and industry data, where erosion con-
sistently emerges as a leading cause of degradation in
steam turbine blades. This phenomenon is often attributed
to the abrasive action of particles suspended in the steam
flow, which can wear away the surface of the blades over
time. Erosion, which includes the effects of solid particle
impact, corrosion, and mechanical degradation, gradually
deteriorates the surfaces of the blades and undermines
their performance [29]. Yadav et al [21] and Thijel et al
[17] emphasize the harmful impact of erosion corrosion on
the lifespan and performance of blades and recommend
taking proactive maintenance and optimization steps. Thijel
et al [17] examined a fracture in an LP steam turbine blade
at an Iraqi refinery. They concluded that the fracture was
mainly caused by erosion—corrosion pitting and a decrease
in material strength. The study conducted by Yadav et al
[21] investigated the effects of foreign particles on several
turbine components, specifically blades. They emphasized
that turbine blades play a vital role in turning steam into
shaft work. However, erosion and particle deposits can
cause defects, resulting in operational problems such as
reduced steam flow and increased axial thrust. These issues
arise from the poor quality of steam caused by the dissol-
ving of boiler salt.

WDE, alongside SPE, significantly damages steam tur-
bine blades, often leading to critical material loss, particu-
larly on the leading edges, which exhibit rough, eroded
surfaces characteristic of WDE, as shown in Figure 3(e). WDE
commonly affects LP and MP steam turbine blades, where wet
steam conditions result in frequent high-velocity water droplet
impacts [30]. The erosion severity increases with larger dro-
plets and higher velocities, following a power-law relationship
[31]. To mitigate WDE, advanced coatings like high-velocity
oxygen fuel (HVOF) coatings with hard carbide particles and
laser surface treatments that enhance surface hardness are
commonly employed [32]. Additionally, blade geometry is vital;
optimizing design features such as drainage grooves can help
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reduce erosion effects [3,33]. Given the critical role of WDE in
turbine blade degradation, it is equally important to consider
SPE, which also poses significant risks to blade integrity and
performance. Understanding the interplay between WDE and
SPE provides a comprehensive view of the erosion mechan-
isms affecting turbine blades, setting the stage for a deeper
exploration of SPE in the following section.

3 SPE in steam turbine blades

SPE presents a significant challenge to the structural integ-
rity and operational efficiency of HP steam turbine blades.
Notably, the control valve stems, first-stage stationary
blade, and moving blade of the HP turhine, as well as the
first-stage stationary blade, moving blade of the intermediate
or reheat turbine, and the fin region of these stages, are parti-
cularly susceptible to SPE [3]. During operation, steam flowing
through the turbines’ HP section commonly carries solid
particles such as dust, sand, or other impurities [34]. Upon
collision with the blade surface, these particles generate
high-speed erosive impacts. The resulting high velocity and
energy lead to material removal or wearing away from the
blade surface, a process known as erosion [6,35]. Figure 6 dis-
plays a schematic diagram illustrating erosion wear caused by
the impact of solid particles.

3.1 Understanding SPE mechanisms

To effectively address SPE, it is crucial to grasp the under-
lying mechanisms and contributing factors. Parameters
like type of erosive particle, particle size, velocity, impact
angle, and material properties exert notable influence on
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Figure 6: Erosion wear due to SPE. Reproduced from the study of Shitole
et al. [36].
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the erosion process [36—41]. The investigation findings pro-
vide a deeper understanding of the complex dynamics of
SPE and offer significant knowledge about how materials
function under erosive situations. A study conducted by
Laguna-Camacho et al. [37] examined the erosion charac-
teristics of AISI 304, 316, and 420 stainless steels, revealing
major differences in their erosion tendencies. AISI 420 had
excellent resistance to erosion and exhibited ductile beha-
vior regardless of the impact angle. In contrast, AISI 304
and 316 showed higher rates of erosion and suffered con-
siderable wear damage, including detachment of large
fragments and brittle fractures. The study also noted that
the diameters of wear scars rose when the impact angles
were lower (30 and 45°) but decreased when the angles
were higher (60 and 90°), with different forms being
detected. In addition, the surface roughness experienced
a substantial increase following erosion testing, especially
when subjected to normal impact angles of 90°. The study
by Shitole et al. [36] examined copper erosion using quartz,
silicon carbide (SiC), and alumina particles, focusing on the
impact of particle characteristics and impact angles. The
highest erosion wear was observed at shallow impact
angles of about 30° for quartz and SiC and approximately
22.5° for alumina (Figure 7). Increased particle angularity led
to deeper craters and greater mass loss. Dense, angular par-
ticles showed significantly higher erosion rates, empha-
sizing the relationship between particle form and erosion
rate. The results from both researchers highlight the signifi-
cance of comprehending the interaction among material
parameters, particle characteristics, and impact angles in
forecasting and reducing SPE in engineering applications.
Additionally, the design of turbine blades and the
implementation of protective coatings have a substantial
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Figure 7: Comparative erosion rates of copper utilizing quartz, SiC, and
alumina (d=362.5pm,v=4 m-s™, ¢w = 10%). Source: by Shitole et al. [36].
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influence on their ability to withstand erosion [42]. A study
conducted by Chen et al [43] discovered significant SPE
damage on an IP stage 1 turbine after 6 years. The damage
was mostly observed on the fixed blade trailing edge and
moving blade leading edge. The analysis uncovered that
particles known as “bounce back” were responsible for ero-
sion, specifically on the trailing edge of the fixed blade, due to
the centrifugal force propelling them outward. Expanding the
axial distance between the fixed and moving blade decreased
the extent of this damage. Field inspections conducted after a
period of 4 years confirmed these findings (Figure 8). The
inspections showed that erosion was reduced at the trailing
edge of the fixed blade, but damage on the ledge of the
moving blade remained. These findings have contributed to
a better understanding of the phenomenon known as SPE
and have provided valuable insights for designing turbines
that can perform better and last longer.

3.2 Materials and design considerations

The composition and hardness of turbine blade materials
are crucial factors in determining their resistance to ero-
sion. Materials that possess higher levels of hardness and
toughness exhibit enhanced resistance to erosive impacts
[12,15,44]. The study, which is conducted by Hawas et al.
[45], examines several materials and surface treatments to
enhance the erosion resistance of turbine blades. Steel,
especially when subjected to carburizing treatment, is
the optimal choice since it exhibits increased hardness
and resistance to erosion. Copper and aluminum are not
recommended because they have lower surface qualities.
On the other hand, steel with thermal surface treatment
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shows greater wear resistance, hardness, and toughness.
Mukherjee et al. [12] propose that Inconel 718 alloy could
replace stainless steel in turbine blades, especially for
longer ones operating at high temperatures. This alloy
maintains mechanical properties under extreme condi-
tions, reducing failures and enhancing turbine efficiency,
including resistance to erosion.

Moreover, the design aspects such as blade shape, surface
roughness, and aerodynamic characteristics profoundly affect
particle impingement and rebound, thereby influencing ero-
sion extent. Leveraging advanced computational modeling
allowed for the optimization of blade designs, resulting in
improved erosion resistance [1]. Kumaraswamy and Siva
Naga Raju’s study [13] proposed modifications for HP steam
turbine blades that prioritize efficiency through design, man-
ufacturing, and maintenance, ensuring safe operation. These
steps are crucial for reducing SPE, prolonging turbine lifespan,
and optimizing performance. Leyzerovich [46] investigated
SPE resistance in 30L structural steel, examining nitriding
and boriding surface modifications. Boriding degrades erosion
resistance at 30 and 90° flow angles due to surface embrittle-
ment, while nitriding enhances resistance by 10-20% at 30°
without worsening it at 90°. The study emphasizes the influ-
ence of steel composition on erosion resistance, crucial for
selecting suitable surface modification techniques to enhance
equipment reliability and longevity.

SPE presents a substantial threat to both the structural
integrity and operational efficiency of HP steam turbine
blades. To effectively address this challenge, it is impera-
tive to thoroughly understand the intricate dynamics of
SPE, encompassing factors such as particle characteristics,
impact angles, and material properties. In the subsequent
sections, will delve into these contributing factors in detail
to elucidate their roles in SPE.

Figure 8: Compares SPE in steam turbine blades before and after modification using the particle trajectory method. (a) Original IP stage 1 SPE damage
(6 years) and (b) modified IP stage 1 SPE damage (4 years). Source: from Chen et al. [43].
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4 Solid particle erosion
contributing factors

The effects of SPE on steam turbine blade operation have
been extensively studied due to its complex nature, invol-
ving multiple processes and parameters requiring thor-
ough analysis. Various factors, including particle velocity,
size, shape, concentration, and target material properties,
significantly influence the rate of material removal and the
mechanisms underlying SPE (Figure 9). Table 1 provides a
summary of parameters impacting blade life efficiency
affected by SPE. Understanding the interaction of these
factors is crucial for developing effective strategies to miti-
gate SPE and extend turbine blade lifespan. It also has been
observed that there is a limited amount of experimental
research on steam turbine blade performance compared to
simulation studies. The majority of publications regarding
steam turbine blade analysis are based on simulation
results, often utilizing software such as Abaqus or Ansys.

4.1 Effect of velocity

The most concerning parameter impacting erosion rates
appears to be the velocity of the erosive particles. Higher
particle velocities generally result in increased erosion
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Figure 9: Key contributing factors to SPE on steam turbine blade [47].

Solid particle erosion in steam turbines: Key factors == 7

rates, as observed in studies [39,40]. To achieve a low ero-
sion rate, it is advisable to minimize particle velocities
during turbine operation. Among the studies analyzed, Di
et al. [48] investigated the erosion of turbine blades made
of 1Cr12W1MoV steel by tiny, high-speed particles. The
researchers analyzed how particle shape, size, and speed
influence blade damage rates, aiming to enhance blade
durability. It found that the erosion rate decreased when
the impact velocity of the particles was lower. Specifically,
at lower impact speeds, the erosion rate was mitigated,
indicating that reducing particle velocity can lead to lower
erosion rates. This finding underscores the critical role of
particle velocity in SPE and suggests that controlling par-
ticle velocities could be an effective strategy for mini-
mizing erosion rates in turbine blades.

4.2 Impingement angle

In the quest to minimize erosion rates, optimal parameter
values often hinge on the unique conditions and materials
involved. Research has indicated that lower impact angles,
specifically 30°, are associated with increased erosion rates
in comparison to angles that are greater [8,36,37,48]. There-
fore, it is highly recommended to optimize the angle of
impact towards higher values to reduce erosion. Zhang
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Solid particle erosion in steam turbines
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et al. [8] conducted a significant study that extensively
examined the influence of impingement angle on the rates
of SPE, specifically on important components in big steam
engines. By utilizing advanced computer simulations, their
study revealed a complex correlation: smaller particles at
shallower angles cause less harm, resulting in lower rates
of erosion. In contrast, when larger particles collide with
surfaces at steeper angles, they cause more substantial ero-
sion, resulting in increased erosion rates. The main point of
their research highlights the crucial significance of impinge-
ment angle in determining erosion rates and emphasizes the
necessity of considering angle effects when assessing SPE in
turbine components. For example, their research reveals that
smaller particles at shallower angles (e.g., 7.5 um at 0°) cause
less damage, resulting in low erosion rates. On the other
hand, larger particles landing at steeper angles (e.g., 75 um
at 90°) cause significant erosion, leading to higher erosion
rates. These revelations highlight how important it is to care-
fully consider angles when estimating erosion rates.

4.3 Substrates material

Materials with higher hardness and resistance, such as
AISI 420 stainless steel, tend to exhibit lower erosion rates
compared to materials like copper [36,37]. Selecting sub-
strates with superior hardness and resistance properties
can contribute to lower erosion rates. As the study by

DE GRUYTER

Laguna-Camacho et al. [37], the study evaluated the SPE
performance of AISI 304, 316, and 420 stainless steels under
varying impact angles and abrasive flow rates, employing SiC
as the abrasive material. AISI 420 demonstrated superior ero-
sion resistance with minimal wear damage and ductile beha-
vior across all impact angles, contrasting AISI 304 and 316,
which exhibited higher erosion rates and significant wear
damage, including brittle fracture. Notably, AISI 420 higher
hardness and resistance resulted in lower erosive rates com-
pared to AISI 304 and 316, highlighting the correlation between
material hardness and erosion resistance. Furthermore, sur-
face roughness increased notably post-erosion tests, particu-
larly at normal impact angles (90°). The other study by Budur
et al [40] investigated SPE, focusing on aluminum alloys
AA2024-T351, AA6061-T651, and AA7075-T651, using SiC parti-
cles. AA7075-T651 emerged as the most resilient to SPE,
exhibiting minimal wear compared to AA2024-T351 and
AA6061-T651. The erosion intensity increased with particle
speed, peaking at a 30° impact angle. The study emphasized
the correlation between material hardness and erosion resis-
tance, highlighting AA7075-T651’s superior performance in
mitigating SPE damage.

4.4 Erosive particles

Understanding the specific characteristics of erosive parti-
cles like quartz, SiC, alumina, salt, and iron oxide is crucial

Figure 10: Particle materials and shapes of SPE used in studies. (a) 500 pm sand [50], (b) 150 pm semirounded sand [36,51], (c) 300 pm sharp sand [36], (d)
SiC [37], (e) quartz [36], (f) alumina [36], (g) 150 um glass beads [51], (h) 50 pm Al,03 [52], and (i) 50 pm SiO, [52]. Reproduced from [36,37,50-52].
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for minimizing erosion rates, as different particles exhibit
varying erosion rates [36,37,48,49]. Factors such as material
composition, size, and shape significantly contribute to
erosion rates. For instance, alumina particles generally
result in higher erosion rates compared to SiC and quartz
[36,37]. Figure 10 illustrates a range of particle materials,
shapes, and sizes used in investigating SPE. The study by
Shitole et al. [36] delves into the impact of different solid
particles on the erosion of ductile materials, particularly
focusing on copper. Utilizing a slurry pot tester, it investi-
gates erosion caused by quartz, SiC, and alumina particles
across various impact angles (30-90°), revealing that max-
imum erosion occurs at shallow angles, notably 30° for
quartz and SiC, and 22.5° for alumina. Moreover, the study
underscores the influence of particle angularity on erosion
rates, with denser and more angular particles exhibiting
higher erosion rates, thereby emphasizing the critical role
of particle shape in erosion behavior.

4.5 Effect of temperature

Recognizing the impact of temperature on the rates of SPE
also is crucial for evaluating and reducing damage to com-
pressor blades, which is a significant contributor to turbine
component failure. Mohammadi and Khoddami [39] con-
ducted a study that extensively investigated the influence
of temperature on SPE rates using a specialized computer
model. The research examines the relationship between
temperature and erosion rates by investigating variables
such as impact angle, particle speed, and size within a
temperature range of 298-623 K. Their findings reveal a
significant correlation between higher temperatures and
accelerated erosion rates, emphasizing the crucial role of
temperature in SPE dynamics. This highlights the impor-
tance of thoroughly addressing temperature effects for pre-
dicting and managing damage caused by SPE in turbine
components.

To achieve low SPE rates in turbine components, opti-
mizing key parameters is essential. Lower particle velocities,
higher impact angles, materials with superior hardness and
resistance, suitable types of erosive particles, and lower
temperatures within the suggested range contribute to mini-
mizing erosion rates. Studies indicate that reducing particle
velocities mitigates erosion, while higher impact angles and
materials like AISI 420 stainless steel exhibit lower erosion
rates. Additionally, SiC particles result in lower erosion rates
compared to alumina particles. Lower temperatures, typi-
cally within the range of 298-623 K, correlate with lower
erosion rates, while higher temperatures accelerate erosion.

Solid particle erosion in steam turbines: Key factors = 11

Understanding and optimizing these parameters are crucial
for effectively mitigating SPE and preserving turbine com-
ponent integrity and performance. In conclusion, optimizing
parameters such as particle velocity, impact angle, substrate
material, temperature, and type of erosive particle is crucial
for minimizing erosion rates in turbine blades. Understanding
the interactions between these parameters can help devise
effective strategies to mitigate SPE and enhance turbine dur-
ability and performance.

5 Coating technology for SPE
mitigation

SPE poses a significant challenge across various industries,
from aerospace to energy and manufacturing. To effec-
tively prevent this erosion, it is necessary to use resistant
coatings and materials [53-57]. These coatings must with-
stand high-speed impacts and minimize material loss, making
advanced coating technologies essential.

Among these technologies, nanocomposite coatings,
particularly those based on graphene, show potential for
improving erosion resistance [58-62]. Furthermore, current
research is exploring self-healing coatings and enhanced
ceramic materials, which have the potential to make signif-
icant advancements in reducing erosive particle damage
[63,64]. By investing in the research and implementation
of these advanced coating technologies, it is possible to
greatly extend the lifespan and improve the performance
of essential components when faced with SPE difficulties.

Recent studies have specifically focused on creating
advanced coatings that possess enhanced adhesion, hard-
ness, and erosion resistance. These coatings aim to enhance
the durability of turbine blades when exposed to challen-
ging operating conditions. A comprehensive compilation of
studies regarding coating treatments on SPE, as summarized
in Table 2, provides valuable insights into key parameters
such as coating process, material, substrate, thickness, ero-
sive particle characteristics, test conditions, and observed out-
comes. This compilation is a useful resource for researchers
and practitioners who are working to improve coatings for
the purpose of reducing erosive wear.

5.1 Coating composition and material used

The protective coatings investigated in the reviewed studies
encompass a diverse array of materials and application
methods. Materials such as yttria-stabilized zirconia (YPSZ),
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yttrium aluminum garnet (YAG), WC-CrsC,Ni, CoNiCrAlY, tita-
nium aluminum nitride (TiAIN), chromium carbide (CrsC),
boride coatings, and various hard-metal compositions are
explored for their erosion and SPE resistance. These coatings
are applied onto substrates ranging from nickel superalloys
and stainless steel to titanium alloys and low-carbon steel.
Coating thickness varies considerably, spanning from 5 to
750 um, depending on application requirements. Notably,
the study by Bhosale et al. [65] stands out for its investigation
into differences in coating material and thickness and their
impact on erosion rates. They examined WC-Cr3C,-Ni coatings
deposited by atmospheric plasma spray (APS) and HVOF pro-
cesses on stainless steel substrates. By varying the coating
thickness (APS 345 mm and HVOF 387 mm) and utilizing alu-
mina as the erosive particle, they demonstrated significantly
lower erosion rates compared to uncoated specimens at ele-
vated temperatures. This study underscores the critical role
of coating material and thickness in achieving optimal ero-
sion resistance, offering valuable insights for the develop-
ment of erosion-resistant coatings.

5.2 Coating parameter effects on
erosive rate

The influence of several parameters on the erosive rate is
highlighted in Table 2, including particle size, impact angle,
coating composition, deposition method, substrate mate-
rial, and temperature. Studies indicate that erosion rates
are affected by factors such as material hardness, micro-
structure, and resistance to cracking. For instance, coatings
with higher carbide content and microhardness tend to
exhibit lower erosion rates due to their enhanced resistance
to particle impact. Hierarchical coatings, with varying layer
thicknesses, offer superior wear resistance and strength
compared to single or multi-layered coatings [66]. Li et al
[67] found that NiCr-CrsC, coatings with varying NiCr
amounts exhibit different levels of resistance to particle-
induced damage at various speeds and angles. Increasing
NiCr content decreases coating hardness but increases por-
osity, potentially improving impact absorption while com-
promising overall durability. Matikainen et al [68] observed
that coatings with higher carbide content and microhard-
ness exhibited lower erosion rates, particularly evident at a
90° impact angle, emphasizing resistance to particle pene-
tration. Rao et al [69] noted that SiC-WC-Cr3C, multilayer
coatings significantly enhance the hardness of stainless
steel, increasing its resistance to high-speed particle wear.
Erosion testing conditions simulate operational environ-
ments with temperature tests conducted at temperatures
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ranging from 25 to 1,000°C. Impact speeds vary between 27
and 135 m's ", while impingement angles range from 12 to 90°,
affecting the distribution and intensity of particle impact on
coated surfaces [70,71]. This comprehensive exploration pro-
vides valuable insights into the performance of protective
coatings under erosive conditions, contributing to the
advancement of erosion-resistant materials for diverse indus-
trial applications. Alumina (Al,03) emerges as the predomi-
nant erosive particle, although silica sand (SiO,) and quartz
sand are also utilized. These particles exhibit a wide range of
hardness, from 20 to 27 GPa, and are delivered at flow rates
ranging from 0.067 to 30 g-min™". Particle sizes employed in
erosion testing span from 40 to 312 um, with variations based
on experimental needs.

The study by Zhang et al [8] investigates the effect of
various parameters on erosion rates, specifically focusing on
different particle sizes, impact angles, and substrate mate-
rials. They conducted experiments on first-stage steam
turbine components, utilizing ceramic coatings and metal
substrates. By varying parameters such as particle size (ran-
ging from 7.5 to 75 mm), impact angle (20-35°), and substrate
material, they observed significant differences in erosion
rates. This study shows the complex interplay between ero-
sion parameters and coating performance, providing valu-
able insights for optimizing erosion-resistant coatings in
steam turbine applications. The study by Li et al. [67] inves-
tigates the impact of various parameters on achieving low
erosion rates. They specifically focus on the effect of particle
size and impact angle on erosion rates of NiCr-Cr;C, coatings
applied to FV520B martensitic stainless steel. By varying para-
meters such as particle size (7, 10, and 14 mm) and impact
angle (12, 45, 60, and 90°), they demonstrate how different
combinations influence erosion resistance. This study pro-
vides valuable insights into optimizing erosion-resistant coat-
ings by considering parameters such as particle size and
impact angle.

5.3 Coating process

Determining the most promising coating process depends
on various factors such as the specific application, oper-
ating conditions, desired properties of the coating, and
cost-effectiveness. Table 3 presents several coating pro-
cesses implicated in SPE, including thermal barrier coating
(TBS), atmospheric plasma spray (APS), HVOF, AIP,
cathodic arc ion plating, filtered cathodic vacuum arc
(FCVA) technique, plasma spray-physical vapor deposition
(PS-PVD), plasma-enhanced magnetron sputtering, high-
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pressure cold spray (HPCS), solid power boronization, and
high-velocity air fuel (HVAF).

Based on reviewed studies, coating processes like APS,
HVOF, and physical vapor deposition (PVD) show promise in
providing effective protection against SPE. APS is utilized in
several studies for applying thermal barrier coatings (TBC)
and other protective coatings. It offers versatility in coating a
wide range of substrates and materials, making it suitable for
applications in gas turbines, steam turbines, and other indus-
trial components [65,72]. HVOF spraying demonstrates effec-
tiveness in depositing hard-metal coatings like CrsC, and
tungsten carbide (WC) with cobalt and chromium onto sub-
strates. These coatings exhibit high erosion resistance and are
suitable for protecting components in demanding environ-
ments [73-76]. Plasma-enhanced magnetron sputtering
(PVD) techniques offer precise control over coating thickness
and composition, making them suitable for producing wear-
resistant coatings like TiAIN. These coatings demonstrate
excellent erosion resistance, particularly in steam turbine
applications [77,78]. Table 3 highlights the key differences
and similarities between the HVOF, APS, and PVD coating
processes toward SPE.

Despite their advantages, each coating process has
inherent limitations that must be considered. Thermal
spray coatings, such as HVOF and APS, rely on line-of-sight
application methods, making it difficult to achieve uniform
coverage on complex 3D geometries like turbine blades [1].
The rough surface finish of these coatings necessitates
post-coating grinding, which can be challenging for intri-
cate shapes and may lead to material removal that com-
promises the coatings’ effectiveness [80,81]. Furthermore,
thermal spray coatings often exhibit significant fatigue
weaknesses, with reductions in fatigue strength up to
60%, which can reduce their longevity under operational

Table 3: Comparison of coating processes for SPE resistance [79]
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stresses [82]. On the other hand, PVD coatings, while pro-
viding precise control over composition and thickness, are
limited by their thinness (typically 1-10 um) and vulner-
ability to defects like pinholes. These defects can lead to
localized corrosion and compromise the integrity of the
underlying substrate, limiting the coatings’ effectiveness
in harsh environments [79,82].

While each process has its advantages and limitations,
APS, HVOF, and PVD stand out as promising techniques for
developing erosion-resistant coatings. Selection should be
based on thorough consideration of application require-
ments, material properties, and performance expectations.
Studies employing processes such as HVAF spraying, as
demonstrated by Matikainen et al. [68,73] showcase low
erosive rates attributed to superior coating density, lower
porosity, and improved bond strength. Additionally, coat-
ings produced via cathodic arc ion plating, as seen in the
study by Liang et al [77], demonstrate excellent erosion
resistance due to factors such as high-temperature stabi-
lity, resistance to SPE, and retention of high hardness even
at elevated temperatures.

Based on the reviewed studies, coatings with higher
ceramic content or carbide content, deposited using tech-
niques such as HVAF spraying or cathodic arc ion plating,
are suggested for achieving optimal erosion resistance.
Coatings with higher carbide content and microhardness,
such as WC with cobalt and chromium (WC-10Co,Cr), and those
incorporating hard particles like chromium oxide (Cr,05) and
boron carbide (B4C), offer enhanced wear resistance and pro-
tection against erosion. Incorporating these materials into com-
posite coatings, as suggested by Dzhurinskiy et al. [81], enhances
wear resistance, crucial for safeguarding machine components
in challenging environments. Furthermore, the selection of
coating composition should consider factors such as hardness,

Aspect

HVOF

APS

PVD

Coating material
Process temperature
Particle velocity
Adhesion strength
Coating thickness
Porosity

Surface finish
Application
Advantages

Disadvantages

Effectiveness against SPE

Metals, alloys, ceramics
Medium to high

High

High

Thick (100-500 pm)

Low

Rough

Wear and corrosion resistance
Strong adhesion, dense coating

Equipment cost, surface
roughness
High

Metals, alloys, ceramics
High

Medium

Medium

Thick (100-500 pm)
Medium to high

Rough

Wear and corrosion resistance
Versatile, can coat complex
shapes

Higher porosity, lower
adhesion

Medium

Metals, alloys, ceramics

Low to medium

Low to medium

High

Thin (1-10 pm)

Low

Smooth

Hard coatings, decorative finishes

Excellent control over coating composition and
thickness

Limited to line-of-sight deposition, higher cost

Medium to high
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toughness, and resistance to cracking, along with the specific
requirements of the application environment.

5.4 Enhancing erosion resistance through
advanced and alternative coating
technologies

The review highlights the efficacy of coating technology in
mitigating erosion rates, particularly SPE, across various
materials, notably in aerospace, automotive, and marine
industries. Advanced techniques like thermal spray coatings
and advanced polymer coatings show promising results in
reducing erosion impact on components and structures.
These technologies not only shield against erosive forces
but also enhance overall durability and lifespan.
Furthermore, ongoing research and development in coating
technology continuously advances erosion resistance, pro-
mising even more effective solutions in the future.

The study by Alajmi and Ramulu [83] aimed to eval-
uate various coatings, particularly graphene-based ones,
for their ability to reduce erosion, specifically SPE. It inves-
tigated the effects of coating type, layering, and particle
impact angle on wear resistance. Results showed that
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different coatings alter material wear rates; for example,
a single layer of H-146 graphene reduced wear by up to
19%. Increasing layers, such as using two layers of polyur-
ethane, improved wear reduction by up to 38%. Coatings
with smoother surfaces exhibited superior resistance to
SPE, as illustrated in Figure 11. Graphene-based coatings,
particularly when used in single layers or combined with
polyurethane, have shown potential for enhancing erosion
resistance. In previous studies, improvements of up to 19%
in material removal and 8% reduction in erosion depth
have been observed with single-layer graphene coatings.
Multilayer systems, such as those combining polyurethane
and graphene, demonstrated even better performance
under certain conditions, with up to 13% improvement in
material removal and 16% reduction in scar depth. How-
ever, in this study, the level of protection observed was
comparable to uncoated samples, suggesting that further
optimization or testing may be required to achieve more
substantial improvements. The study emphasized that
particle impact angle and duration influence coating effec-
tiveness, underscoring the importance of considering opera-
tional conditions when selecting coatings.

Similarly, the study by Padmini et al. [84] demonstrates
the superior erosion resistance of Inconel 738-coated speci-
mens compared to uncoated T11 steel at 700°C, particularly
evident at 30 and 90° impact angles. Coated specimens show

uncoated

Angle

30°

90°

Polyurethane

Angle Polyurethane - H-146

30°

45°

Figure 11: Optical photograph of typical erosion scar shape for uncoated and different coated specimens. Reproduced from Alajmi and Ramulu [83].
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up to three times higher erosion resistance, emphasizing the
protective benefits of Inconel 738 spray coating in high-tem-
perature environments, such as power plants. The study
underscores the coating potential to enhance the durability
of critical components like turbines and boiler tubes against
SPE. The deposited coating exhibits a defect-free interface,
dense structure, and higher hardness, essential for
improved erosion resistance against SPE. High-temperature
SPE tests reveal that the IN 738 coating outperforms T11
steel, with erosion resistance higher at 30° impact angles
but lower at normal impacts due to severe oxide layer frag-
mentation. Figure 12 provides visual evidence of the eroded
surface morphology, illustrating the coatings’ effectiveness
in mitigating erosion at various impact angles.
Additionally, the study by Yang and McKellar [85]
investigated nanolayered and multilayered coatings, parti-
cularly CrAlTiN (CrN/AITiN) and CrAITiN-AlITiN, for their
effectiveness in mitigating erosion damage to engine com-
ponents. These coatings, with tailored hardness and
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toughness, significantly outperformed the baseline CrN
coating in erosion resistance. The nanolayered CrAlTiN
coatings exhibited erosion rates as low as 25 and 16% of
the CrN baseline at 30 and 90°, respectively, while the
multilayered CrAITiN-AlTiN coating demonstrated even
lower erosion rates. The study aimed to evaluate how
altering layer architectures affected erosion resistance,
with findings indicating that increasing the number of
smaller layers enhanced coating strength against SPE.
This research underscores the significant protective impact
of layered coatings on engine parts exposed to abrasive
wear, offering insights into optimizing coating composition
for enhanced durability and performance in erosion-prone
environments.

Prasanna et al. [86] investigated the efficacy of HVOF
coatings in mitigating erosion in turbine alloys. They tested
Stellite-6, alumina-CoCrAlTaY, and CrsC,-NiCrNiCrAlY coat-
ings on titanium alloy, cobalt-based superalloy, and special
steel substrates, subjecting them to silica sand particles at

0 17.18%
Ni 49.12%
Cr 15.60%
Co 8.17%
Ti3.87%
Al 1.79%
W 4.27%

Figure 12: Erosion morphology of IN 738 coating at 700°C: (a and b) 30°, (c-e) 90° impact, and (f) EDX analysis. Source: by Padmini et al. [84].



DE GRUYTER

varying angles and velocities. Stellite-6 showed the lowest
wear rate, especially at a 30° impact angle, highlighting its
superior resistance to damage. The study emphasizes the
importance of coating selection based on operational con-
ditions, with HVOF coatings offering promising protection
against erosive wear, potentially prolonging turbine part
lifespan.

Matikainen et al. [68] compared Cr;C,-based coatings
sprayed via HVOF and HVAF methods for abrasion, dry
particle erosion, and cavitation erosion resistance. Coat-
ings with higher carbide content exhibited lower erosion
rates, particularly evident at a 90° impact angle, empha-
sizing resistance to particle penetration. HVAF-sprayed
coatings outperformed HVOF-sprayed ones, being harder,
tougher, and more resistant to various wear types. CrsC,-
50NiCrMoNb coatings excelled in resisting cavitation ero-
sion, while CrsC,-37WC-18NiCoCr coatings balanced wear
resistance and toughness well. The study duration for ero-
sion testing was 6 h for each sample. Figure 13 illustrates
significantly higher resistance of HVAF sprayed coatings,
especially CW and W coatings, attributed to higher particle
velocities resulting in increased peening and lower carbide
dissolution, reducing the formation of brittle heteroge-
neous coating structures and poor interlamellar bonding.

Chemical vapor deposition (CVD) is emerging as a
highly effective alternative coating technology for addres-
sing both SPE and WDE. CVD coatings are recognized for
their ability to form uniform, dense, and adherent layers
on complex geometries, making them particularly suitable
for turbine blades and other intricate components. For
instance, CVD W/WC coatings, composed of WC nanoparti-
cles in a metal tungsten matrix, have demonstrated
remarkable fracture toughness and high hardness [87,88],
providing exceptional protection against both WDE and
SPE. Testing has shown that these coatings significantly
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Figure 13: Maximum erosion rates after cavitation erosion test. Source:
Matikainen et al. [68].
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outperform uncoated samples and traditional protective
materials, exhibiting negligible damage even after pro-
longed exposure to erosive conditions [89].

While CVD coatings offer substantial benefits, it is
worth noting that previous reviews have highlighted a
limited number of studies specifically applying CVD tech-
nology for SPE protection. Research on the application of
CVD coatings for SPE has been relatively scarce compared
to their use in WDE, suggesting a gap in the literature that
could benefit from further exploration [90]. Despite this,
the available evidence underscores the potential of CVD
coatings in enhancing the durability and performance of
metal components across various industrial applications.
The uniform, pore-free nature of CVD coatings contributes
to their effectiveness against the impacts of solid particles,
thereby extending the service life of the equipment. Addi-
tionally, CVD-grown graphene coatings have been shown
to enhance corrosion resistance significantly, further
broadening the protective capabilities of CVD tech-
nology [91].

In the context of nanotechnology, recent advance-
ments in nanocomposite coatings, particularly those incor-
porating boron carbide (B4,C) nanoparticles, have shown
promise in improving erosion resistance. Studies have
demonstrated that the addition of nano-sized B4C particles
to aluminum matrix composites enhances hardness and
tensile strength, which are critical properties for resisting
erosion [92]. These findings align with the broader trend of
utilizing nanotechnology to develop coatings with superior
mechanical and corrosion-resistant properties, further
supporting the potential of advanced coatings in mitigating
SPE and WDE challenges.

6 Summary discussion

Steam turbines play a vital role in energy conversion, with
meticulously designed blades spanning LP, MP, and HP
sections to optimize efficiency, durability, and strength.
Despite this, threats like fatigue, corrosion, and erosion,
particularly SPE, pose significant challenges, hastening
blade degradation. SPE prevalent in HP regions gradually
wears down blades, necessitating ongoing research on
materials and coatings for protection. From 2013 to 2023,
there has been a significant growth in research related to
erosion, as evidenced by the steady rise in publications,
which increased by approximately 133%. In 2013, the field
produced around 150 publications, and by 2023, this
number had surged to 350. This growth highlights the
growing interest and relevance of erosion studies.
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The blades of steam turbines are susceptible to various
failure modes, including thermal stress, mechanical stress,
vibration effects, corrosion, erosion, fatigue, and creep.
Thermal stress, induced by temperature variations, can
lead to deformation and cracking, while mechanical stress
from steam pressure and centrifugal forces contributes to
blade fatigue. Additionally, corrosion, often triggered by
corrosive fuel elements, can result in alkali metal forma-
tion and subsequent blade corrosion. Fatigue failure
occurs when cyclic stresses exceed material fracture tough-
ness, exacerbated by factors like material quality and oper-
ating conditions. Creep, the gradual distortion of materials
under high temperatures and stress poses ongoing risks.
Erosion, prominently affecting turbine blades, results from
the abrasive action of suspended particles in steam flow,
leading to surface deterioration and performance loss.
Notably, erosion emerges as a leading degradation
mechanism, alongside erosion corrosion, underlining the
importance of proactive maintenance and optimization
efforts to mitigate blade failures and ensure turbine per-
formance reliability.

SPE poses a significant threat to HP steam turbine
blades, particularly in regions like control valve stems
and first-stage blades. During operation, solid particles
carried by steam collide with blade surfaces, leading to
erosion. Understanding SPE mechanisms is critical, with
factors like particle type, size, velocity, and impact angle
influencing erosion. Research by Laguna-Camacho et al
[37] and Shitole et al. [36] highlights material behaviors
under erosive conditions, emphasizing the importance of
particle characteristics and impact angles. Additionally,
turbine blade design and protective coatings significantly
impact erosion resistance, as demonstrated in studies by
Chen et al. [43] and Leyzerovich [46]. Materials like steel,
especially when treated, exhibit enhanced resistance to
erosion, while advanced computational modeling opti-
mizes blade designs for better performance. The complex-
ities of SPE warrant thorough investigation to develop
effective mitigation strategies and enhance turbine long-
evity and efficiency.

SPE significantly impacts the operation of steam tur-
bine blades, influenced by multiple factors, including
particle velocity, impact angle, substrate material, type of
erosive particle, and temperature. Higher particle veloci-
ties generally correlate with increased erosion rates,
emphasizing the need to minimize these velocities during
turbine operation. Additionally, the angle of particle
impact is a pivotal factor in determining the severity of
erosion. Particles striking at near-normal angles (90°)
tend to generate substantial material removal compared
to those impacting at shallower angles (less than 30°). At
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near-normal angles, the particles deliver a more direct
force to the surface, leading to increased material displace-
ment and, thus, a higher erosion rate. Conversely, at
shallow angles, particles may merely graze the surface,
resulting in less significant damage [74,98]. The relation-
ship between impact angle and erosion is influenced by
particle size: smaller particles at shallower angles result
in lower erosion rates, while larger particles at steeper
angles cause more significant damage. However, this rela-
tionship can vary depending on the material type for
instance, in ductile materials, maximum erosion often
occurs at shallow angles (30°), while in brittle materials,
near-normal angles (90°) typically lead to more significant
damage. Higher temperatures correlate with accelerated
erosion rates, highlighting the significance of addressing
temperature effects.

The impact of temperature on erosion further compli-
cates this relationship, as it is primarily associated with
metal softening at elevated temperatures [99]. In steam
turbines, components are routinely exposed to high
thermal conditions, causing metals to undergo a reduction
in hardness due to phase changes and thermal activation
of dislocation movement. This softening increases the sus-
ceptibility to erosion, as the material can deform more
readily under the impact of eroding particles. Conse-
quently, the wear rate of the material may increase signif-
icantly, making it more vulnerable to damage during
operation. Materials with superior hardness and resis-
tance, such as AISI 420 stainless steel, exhibit lower erosion
rates compared to softer materials like copper [37]. This
phenomenon underscores the importance of optimizing
impact angles and considering temperature as a critical
factor in erosion studies, especially for materials used in
high-temperature applications like steam turbines [100].

Additionally, understanding the characteristics of ero-
sive particles like SiC, quartz, and alumina is crucial for
minimizing erosion rates. The choice of erosive particles
and material samples in numerous research may not cor-
rectly represent actual circumstances for steam turbines,
resulting in distorted outcomes and deceptive trends.
Softer metals such as copper, which exhibit greater ducti-
lity, do not undergo the brittle failures observed in harder
turbine materials, resulting in lower erosion rates at 90°
impact angles, in contrast to turbine blades fabricated
from materials like stainless steel [31,101]. Likewise, the
employment of excessively hard particles such as alumina
or SiC, which are improbable in turbine environments,
skews the significance of results, as actual turbines are
majorly subjected to particles like quartz or iron oxides
[31,41,101]. Inappropriate material selections can substan-
tially affect erosion predictions and trends, resulting in an
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inaccurate depiction of SPE during actual turbine opera-
tions. Consequently, research employing more realistic
mixtures of erosive particles and tougher metals, such as
stainless steel in conjunction with quartz or iron oxides,
will more accurately replicate actual turbine settings and
provide more dependable insights for minimizing SPE
[3,31,41,101]. Optimizing these parameters is vital for mini-
mizing erosion rates in turbine blades and preserving tur-
bine component integrity and performance.

Figure 14 illustrates the distribution of publication
years for studies related to SPE in steam turbine blades.
It highlights specific data points such as substrate material,
erosive particle, particle size, particle flow rate, tempera-
ture, impact speed, and angle. Each bar color on the graph
represents parameter studies on SPE. The presence of spe-
cific materials used as substrate material and erosive par-
ticles is indicated by color-coding in light yellow and light
green, respectively, within each bar. This visualization pro-
vides insights into the temporal distribution of research
efforts in the field of SPE in steam turbine blades and high-
lights the variability in parameters across different publi-
cation years. Between 2013 and 2015, experiment-based
studies accounted for approximately 30% of the research.
In contrast, from 2020 to 2023, simulation and computa-
tional data approaches became dominant, comprising
around 70% of the studies. The parameters of impingement
angle and impact speed emerged as key research focuses
from 2013 to 2023, underscoring their crucial role in under-
standing erosive wear mechanisms across both experi-
mental and simulation-based investigations. The graph
integrates computational data, highlighting the limited
number of publications based on experimental studies
compared to the more frequent occurrence of simulation-
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based studies. While computational models are powerful
tools, they may not always capture the full complexity of
real-world scenarios due to simplifications and assump-
tions made during model development. By comparing
these two approaches, existing gaps in the literature can
be addressed while acknowledging the strengths and lim-
itations inherent in each method. This integrated perspec-
tive enhances understanding of erosion in steam turbine
applications and informs future research directions.

Recent advancements in coating technologies offer
promising solutions for mitigating SPE in various indus-
tries, including aerospace, energy, and manufacturing.
Coating compositions vary widely, ranging from YPSZ to
boride coatings, with application methods including APS,
HVOF spraying, and plasma-enhanced magnetron sput-
tering (PVD). These coatings exhibit diverse erosion resis-
tance properties influenced by factors such as material
hardness, porosity, microstructure, and resistance to
cracking. Experimental conditions simulate operational
environments, with studies examining parameters like par-
ticle size, impact angle, substrate material, and temperature
to optimize erosion resistance. Notably, coatings with higher
ceramic or carbide content, applied using techniques like
HVAF spraying or cathodic arc ion plating, show promise
in achieving optimal erosion resistance. Additionally,
layered coatings, such as CrAlTiN and CrAITiN-AITiN,
demonstrate superior erosion resistance compared to base-
line coatings. Overall, investing in advanced -coating
technologies holds significant potential for extending com-
ponent lifespan and enhancing performance in the face of
SPE challenges across diverse industrial sectors.

The graph from Figure 15 illustrates various coating
processes and parameters investigated from 2013 to 2023,

Erosive Particle [l particle Flow Rate [l Impact Speed
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(Zhang et al., 2017)
(Di et al., 2019)
(Cao et al., 2022)

(Vyas et al., 2021)

Simulation based studies

Figure 14: Distribution of research on SPE factors in steam turbine blades (2013-2023).
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Figure 15: Coating process distribution analysis for SPE (2013-2023).

revealing key trends and gaps in research. From 2014 to
2023, thermal spray processes dominated coating studies,
representing about 50% of the research, while PVD
accounted for roughly 30%. Coatings designed for extreme
conditions comprised around 20% of the studies, particularly
increasing in prominence post-2018, highlighting the growing
demand for advanced coatings in harsh environments.

Thermal spray processes, specifically HVOF, APS, and
HVAF, are thoroughly researched and often used for mate-
rials such as stainless steels and titanium alloys. Processes
such as cathodic arc deposition and AIP, which are part of
the PVD techniques, are commonly used. These processes
often involve the use of materials like YPSZ and TiAlN,
which are frequently studied. Coatings for extreme condi-
tions, such as TBC and environmental barrier coatings,
focus on materials like SiC and Inconel alloys. Current
nanotechnology research emphasizes the use of gra-
phene-based coatings, demonstrating a growing prefer-
ence for advanced materials. While APS, HVOF, and PVD
remain promising techniques for developing erosion-resis-
tant coatings, addressing their limitations is crucial for
optimizing their application. Furthermore, CVD coatings,
particularly those made from W/WC and graphene, present
an advantageous alternative that warrants further
exploration, especially in the context of SPE, to provide
robust protection against mechanical and chemical degra-
dation in demanding environments.

Essential factors for optimal performance include the
type of coating material, the thickness of the coating, and
the size of the particles. Impact speed, substrate, erosive
particle, temperature, and angle are also studied, though
less frequently. Studies have shown a substantial surge
after 2015, indicating a rising interest in this particular topic.
Contributions from various authors are noted across the
years. Processes like HPCS and plasma-enhanced magnetron
sputtering are not adequately represented. Although the
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coating material and thickness have been extensively
researched, there is a need for more complete research on
characteristics such as impact speed and erosive particles.
Further investigation is necessary for advanced applications
such as environmental barrier coatings and boride coatings.
Finally, incorporating more recent research would guar-
antee the inclusion of the most current improvements.
This review emphasizes the wide range of research con-
ducted on coating processes and factors, while also identi-
fying certain areas that require more exploration to
improve industrial coating solutions.

The novelty of this article lies in its key contributions
to the field of SPE in steam turbine blades. It highlights a
133% rise in erosion-related research from 2013 to 2023,
reflecting the growing importance of this topic. The article
critically evaluates the inappropriate selection of materials
and particles in many studies, advocating for more realistic
combinations, such as stainless steel with quartz or iron
oxide, to improve erosion predictions. Additionally, it com-
pares experimental and computational approaches, out-
lining their strengths and limitations. Finally, it identifies
research gaps in coating technologies, emphasizing the
need for further exploration of CVD coatings and under-
represented processes like HPCS. These insights provide
guidance for future research to enhance turbine blade
durability.

7 Conclusions and future direction

SPE is more complex than it may appear at first glance.
Addressing SPE in steam turbine blades requires a multi-
disciplinary approach, integrating insights from material
science, fluid dynamics, and engineering design. By staying
abreast of advancements in materials, coatings, and design
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methodologies, turbine maintenance and operation prac-

tices can be optimized to mitigate the adverse effects of

SPE, thereby prolonging turbine lifespan and improving

overall performance. For the past decades, hundreds of

brilliant researchers have engaged vigorously in erosion

science. After reviewing the resulting body of research,

several reflections on the past and future of erosion

research can be made:

= The failure of steam turbine blades can stem from a multi-
tude of factors including thermal stress, mechanical stress,
corrosion, erosion, fatigue, and creep. These issues arise
from the harsh operating conditions turbines endure, exa-
cerbated by corrosive substances in fuels and abrasive
particles in steam flow. Research emphasizes the detri-
mental impact of erosion, erosion—corrosion, and fatigue
on blade integrity and performance, highlighting the
urgent need for proactive maintenance and optimization
strategies to ensure consistent turbine operation over time.

= SPE poses a significant threat to HP steam turbine
blades, impacting both structural integrity and opera-
tional efficiency. Understanding SPE mechanisms,
including particle characteristics, impact angles, and
material properties, is crucial for effective mitigation.
Research highlights the importance of material selec-
tion, design optimization, and protective coatings in
enhancing erosion resistance. By comprehensively
addressing these factors, turbine lifespan can be pro-
longed, and operational performance optimized,
ensuring reliable and efficient turbine operation.

= The effects of SPE on steam turbine blades are influ-
enced by factors such as particle velocity, impact angle,
substrate material, type of erosive particle, and tem-
perature. Lower particle velocities, higher impact
angles, materials with superior hardness, and erosion-
resistant particles like SiC help minimize erosion rates.
Maintaining optimal temperatures further mitigates SPE
damage. Understanding and optimizing these para-
meters are essential for effective SPE mitigation,
ensuring prolonged turbine lifespan and enhanced
operational efficiency. Future research should capitalize
on advancements in computational modeling, materials
science, and interdisciplinary approaches to enhance
erosion-resistant materials and coatings. Emphasizing
sustainability and efficiency, there is potential to
explore eco-friendly materials and coatings, particularly
for renewable energy technologies. Interdisciplinary
collaboration and innovative technologies will continue
to advance SPE research and develop robust mitigation
strategies for various engineering applications.

= Thermal spray processes such as HVOF, APS, and HVAF
are extensively researched for materials like stainless

Solid particle erosion in steam turbines: Key factors == 25

steels and titanium alloys, while PVD techniques like
cathodic arc deposition and AIP often use YPSZ and
TiAIN. Coatings for extreme conditions focus on SiC
and Inconel alloys, with a growing emphasis on gra-
phene-based coatings in nanotechnology. Key perfor-
mance factors include coating material, thickness, and
particle size, though impact speed, substrate, erosive
particle, temperature, and angle related to SPE are less
studied. Comprehensive research on impact speed, ero-
sive particles, and advanced applications like environ-
mental barriers and boride coatings is needed, along
with incorporating recent studies to capture the latest
advancements.
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