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Abstract: Environmental degradation is developing due to
rising pollution from the depletion of raw materials and
the growing mandate for concrete goods. Investigators and
experts have focused on creating sustainable concrete uti-
lizing renewable elements. Volcanic ash (VA) is a pro-
mising supplementary cementitious material among these
minerals. Therefore, it is crucial to examine the attributes
of voids in aggregate and how they impact the performance
of concrete. VA from the Gini Chilas (Gigilat Baltistan) was
used to prepare specimens. Mixing regimes of VA concrete
with altering concentrations ranging from 0 to 40% replace-
ment was cast. Water-to-cement ratio was reserved persis-
tent for all the mixes. Chemical compositions of VA and
properties of concrete in relation to workability, density,
and compressive strength were carried out. In addition,
thermo-gravimetric analysis, scanning electron microscope
(SEM), and X-ray diffraction analysis were also examined.
The analysis of results reveals that VAwith 10% replacement
gives an adamant response. This is due to the natural poz-
zolanic effect that details the creation of additional dense gel
(C–S–H), and deviation of cracks is observed from SEM. VA10

also exhibits thermally stable behavior at temperature with

less percentage mass loss. However, VA up to 10% replacement
in cementitious concrete can exhibit better properties than
normal specimens.

Keywords: compressive strength, scanning electron micro-
scope, thermo-gravimetric, volcanic ash, workability, and
X-ray diffraction

1 Introduction

Concrete is often regarded as the predominant construc-
tion material, exhibiting a substantial global use estimated
to be in the billions of cubic meters worldwide [1–4]. More-
over, the outcome of cement is seeing significant increases
in direct correlation with the consumption of concrete [5].
Nevertheless, it is worth noting that the cement production
process, particularly during the grinding and clinker
burning stages, is associated with significant levels of green-
house gas emissions (GHGs) [6]. The manufacture of cement
is accountable for around 6% of global carbon dioxide (CO2)
emissions, thus contributing to the phenomenon of global
warming [7]. Furthermore, the production of cement is
responsible for 95% of the total CO2 production associated
with the manufacturing of one cubic meter of concrete [8].
The Portland cement (PC) industry is acknowledged as a
significant contributor to global CO2 emissions, accounting
for an estimated 5–7% of the total emissions [9–11]. In addi-
tion, the annual global production of cement falls between
2.8 and 4.1 billion tons. It is reported that the production of
PCs amounts to 4,000 million tons yearly and is projected to
increase to around 6,000 million tons by the year 2060 [12].
These figures mentioned above can be further diminished
through the augmentation of alternative materials in the
process of concrete manufacture [13–18]. Therefore, the
cement industry exhibits a rather high level of pollution
in the atmosphere. Moreover, it is imperative to utilize
financial strategies that can serve as viable substitutes for
cement. Therefore, the implementation of these approaches
results in a decrease in the utilization of cement within
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concrete mixtures [14]. Researchers conducted studies to
explore the potential of utilizing industrial by-products
and waste materials in concrete as a means of environ-
mental conservation to develop green concrete [19–25].
Therefore, to reduce clinker production and CO2 emissions,
supplementary cementitious materials (SCMs) such as fly
ash (FA) [26–28], silica fume (SF) [29–31], electronic arc fur-
nace slag [32–34], rice husk ash (RHA) [35–37], wheat straw
ash [38–40], and ordinary pozzolans are employed as substi-
tutes for cement. These materials lack inherent binding qua-
lities and are considered the most cost-effective alternatives
to cement [41]. Hence, the incorporation of these materials
can result in a decrease in the proportion of ordinary Port-
land cement (OPC) used in the manufacturing of concrete.
The utilization of SCMs in the manufacturing of cement con-
crete offers additional environmental advantages. This prac-
tice mitigates the accumulation of excessive waste in open
areas and landfills, which is known to contribute to envir-
onmental contamination and pose risks to human health.
Furthermore, the incorporation of their presence inside
cementitious composites (CCs) enhances various properties
in the matrix, as depicted in Figure 1.

Durable building material SCMs can originate after
manufacturing waste such as slag, FA, and ground granu-
lated blast-furnace slag, as well as cultivated waste such as
RHA and palm oil fuel ash [39]. The aforementioned SCMs
demonstrate a notable degree of pozzolanic reactivity and
fall under the classifications of natural pozzolans. Hence,
these materials possess the potential to serve as limited
substitutes for cement. This results in the attainment of
cement mortar with acceptable performance or even con-
crete with enhanced performance [9]. Hence, the utilization

of pozzolans as a substitute for cement in concrete blends
leads to a substantial reduction in GHGs that are sent into
the environment [1,2,42,43]. The utilization of natural pozzo-
lanas as a partial replacement for PC has been extensively
practiced in many applications. This is primarily attributed
to the presence of reactive SiO2 in natural pozzolanas, which
imparts several advantageous properties such as dimin-
ished heat generation, reduced permeability, and enhanced
resistance to chemical deterioration in the CC. Therefore,
it is possible to utilize abundant certainly occurring poz-
zolanic materials [3,44–46], such as volcanic ash (VA)
[47–49], volcanic pumice [50–52], and calcined clay [53–55],
as a viable substitute to fulfill the requirements of the con-
crete industry.

Volcanic concrete is an environmentally friendly mate-
rial that incorporates components derived from naturally
occurring igneous volcanic rock [56–58]. When volcanic
rock is crushed into various particle sizes, it can be utilized
as coarse aggregate, fine aggregate, or as a SCM in concrete
production. VA offers significant environmental advan-
tages compared to other SCMs, such as FA and slag. As a
naturally available material, VA requires minimal proces-
sing, resulting in lower energy consumption and reduced
carbon emissions. In contrast to FA, a byproduct of coal
combustion, and slag, a byproduct of steel manufacturing,
VA is not reliant on industrial processes, making it a more
sustainable alternative. Its natural abundance in certain regions
also reduces transportation needs, lowering the overall envir-
onmental impact. By partially replacing cement, VA helps
decrease CO2 emissions in concrete production, contributing
to more sustainable construction practices.

VA is a non-reactive siliceous pozzolanic substance
that, when mixed with lime and water, produces a cemen-
titious material with exceptional structural properties. The
substance can efficiently occupy the empty voids among
the bigger particles [57]. Thus, it diminishes the exothermic
reaction of hydration and undergoes a chemical reaction
with calcium hydroxide Ca(OH)2, resulting in the formation
of calcium silicate hydrate [56]. Several academic studies
have analyzed how ordinary VA affects the mechanical
and microstructural properties of mortar and concrete.
Sebayang [59] investigated the effect of the utilization of
VA in concrete and reported a significant improvement of
9.8% in compressive strength and 5.99% in tensile strength,
respectively. In addition, Karolina and Simanjuntak [60]
revealed that the workability of concrete is reduced with
an increase in the ratio of VA as a substitute for cement.
Hossain and Lachemi [61] demonstrated that a compres-
sive strength of 60 MPa was attained after 28 days when
20% volume of admixture (VA) was used as a substitute for
cement. Furthermore, their findings indicated that the
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Figure 1: SCM benefits in CC.
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optimal ratio for incorporating VA was determined to be
5%, regardless of the range of VA concentrations tested,
which spanned from 0 to 20%. Khan et al. [62] demon-
strated that the pozzolanic activity exhibited an upward
trend in correlation with the degree of fineness of the
material. Nevertheless, the use of heat treatment on VA
yielded unfavorable results. Abdullah et al. [63] conducted
a study that revealed the positive impact of volcanic
pumice stone ash on the compressive strength of self-com-
pacting concretes. This finding highlights the significance
of the fineness level of VAs to the mechanical properties of
such concretes. Al-Fadala et al. [64] investigated the effect
of VA with varying concentrations ranging from 10 to 30%
in cementitious matrix. The author reveals that the inclu-
sion of VA at a 10% replacement level in cement led to a
little decrease in quality. In contrast, the incorporation of
VA in cement at replacement ratios of 20 and 30% resulted
in notable decreases in strength as associated to the resistor
samples. Additionally, the incorporation of VA powder as a
partial substitute for OPC has been shown to result in
reduced water absorption, sportively, and void content, as
well as enhanced resistance to acid and sulfate assault,
chloride permeability, and other factors, when compared
to conventional concrete [65,66]. Al-Bahar et al. [67] discov-
ered that the substitution of 10–30% of OPC with VA leads to
a notable enhancement in both the mechanical and micro-
structural characteristics of cement paste. Moreover, the

durability properties of volcanic ash concrete (VAC) were
examined by Hossain and Lachemi [68,69]. Their investiga-
tion encompassed the evaluation of fresh, hardened, and
durability characteristics. The findings of their study indi-
cate that VAC exhibits superior durability capabilities in
comparison to the control concrete sample containing 0%
VA. Nevertheless, increasing the concentration of VA has a
malignant consequence on the strength of VAC. Celik et al.
[66] successfully formulated a high-volume natural pozzo-
lanic concrete, which involved replacing 45% of OPC. The
resulting matrix substantially exhibited a 28-day compres-
sive strength of 34MPa. Liu et al. [70] studied the impact of
VA on the thermal stability of asphalt. The author indicated
that the inclusion of VA led to enhancements in the mechan-
ical characteristics of asphalt mixtures. Previous research
studies have shown evidence that mechanical, chemical,
and thermal treatments can enhance the properties of nat-
ural pozzolans. Additionally, the significance of VA in con-
crete is illustrated by a scientometric graphic, as presented
in Figure 2. However, large-scale adoption of VA faces chal-
lenges, such as variations in its chemical composition, which
can affect performance consistency in concrete. Addition-
ally, in regions where VA is not readily available, transpor-
tation costs may hinder its widespread use.

The objective of this research was to examine the
impact of incorporating VA as an auxiliary for cement in
the production of a CC. The variable concentration of VA is

Figure 2: Scientometric diagram of VA.
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substituted with a range spanning from 0 to 40%. The
evaluation of fresh and hardened qualities is initially per-
formed through experimental tests, specifically focusing
on workability, density, and compressive strength. In addi-
tion, VAC specimens are subjected to a temperature range
of 0–900°C to assess the effects on the pozzolanic material.
The chemical analysis of VA concrete is performed using X-
ray fluorescence (XRF) and X-ray diffraction (XRD) analysis
techniques. Furthermore, a comprehensive analysis of the
mixes was performed using XRD and thermogravimetric
analysis (TGA) methods to assess the influence of VA on the
microstructure of the CC.

2 Materials and methods

2.1 Materials

For the manufacture of specimens, OPC Type 1 Grade 42.5-
N and natural sand conforming to ASTM C150 [71] and
ASTM C128 [72] standards were utilized. The VA used in
this study was sourced from Gini Chilas, located in Gilgit
Baltistan, Pakistan, as shown in Figure 3. This particular
source was chosen due to its accessibility, abundance, and
established history of local use in construction. Addition-
ally, it was selected based on the initial chemical analysis,
which indicated suitable pozzolanic activity for use in con-
crete mixtures. The chemical composition of the cement
and VA was analyzed using XRF, with results presented
in Table 1. Tables 2 and 3 show the physical properties of
the materials used in the VAC mix.

It is important to note that the properties of VA can vary
depending on the source due to differences in mineral compo-
sition, geographic location, and volcanic activity. If VA from
other regionswas used, the results of the concrete’smechanical

and durability properties could differ. Variability in silica, alu-
mina, and other oxide contents, as well as particle fineness,
could affect the pozzolanic reaction, leading to variations
in the concrete’s strength development, workability, and
overall performance.

2.2 Mix proportions and methods

A comprehensive set of 81 samples was prepared with dis-
tinct mix proportions. These formulations include a control
sample that exclusively utilized cement as a binder. A water-
to-cement ratio of 0.5 was employed for all the mixtures.
Table 4 provides comprehensive information regarding the
mix proportion and laboratory testing conducted on all the
formulations at various ages. The ingredients of the formu-
lation were mixed in a pan mixer. Initially, the mixer was
filled with both fine and coarse materials, which were then
followed by the addition of cement. A period of 1 min was
allocated for the dry mixing of the ingredients, with a rota-
tional speed of 180 revolutions per minute (rpm) at a slow
rate. Subsequently, a quantity equivalent to half of the total
volume of water was introduced into the mixture, with the

Figure 3: VA specimen.

Table 1: Chemical composition of cement and VA

Oxide VA (% age
by mass)

PC (% age by mass)

SiO2 53.69 21.5
Al2O3 17.43 6.00
Fe2O3 9.52 3.75
CaO 7.00 62.00
MgO 3.87 2.8
Na2O 3.57 0.2
K2O 0.86 1.00
SO3 0.16 2.75
Lime saturation factor 3.89 96.40
Silica modulus 1.99 2.5
Aluminum modulus 1.83 1.25
LOI 1.3 6.64

Table 2: Physical properties of ingredients

Characteristics Cement VA

Insoluble residue (% mass) 0.55 —

Specific gravity (g·cm−3) 3.15 2.67%
Specific surface area (m2·g−1) 0.83 —

Particle size (d50) (µm) 16.58 —

loss on ignition (% mass) 2.21 —

Soundness No expansion No expansion
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ongoing process of stirring being maintained at its original
velocity for an additional duration of 2min. Subsequently,
the addition of the VA was carried out, followed by the
introduction of the remaining water. The mixing process
was then extended for 3min, maintaining a rotational speed
of 360 revolutions per minute (rpm). Initially, the slump test
was conducted according to ASTM C143 [73], immediately
after mixing, to assess the workability of fresh concrete.
For compressive strength testing, 81 cylindrical specimens
(100mm × 200mm) were prepared, with nine specimens
for each mix. After demolding at 24 h, specimens were cured
at 23°C and 95% humidity. Compressive strength tests were
carried out at 7, 14, and 28 days, following ASTM C39 [74].

2.3 Test methods

2.3.1 Slump test for VAC

Slump tests were passed according to ASTM C143 [73] to
determine the consistency of the mixes. The workability of
fresh concrete was assessed by the slump test, which
involved utilizing a steel cone with certain dimensions: a
top diameter of 100mm, a bottom diameter of 200 mm, and

a height of 300mm. Consistency in the slump testing was
ensured by using the same water-to-cement ratio and
mixing procedures for all batches, regardless of VA con-
centration, with experienced personnel conducting the
tests to maintain accuracy.

2.3.2 Tests for hardened concrete

Hardened VAC was evaluated and compared with OPC con-
crete by conducting tests for dry density and compressive
strength following ASTM criteria [74,75].

2.3.3 XRD

XRD spectra of specimens were obtained by using a JPX
3522 JEOL with a sensitive detector. The finely ground sam-
ples of the specimens were placed in metal sample holders
and inserted into the diffractometer. XRD measurements
were conducted using Cu Kα radiation with a wavelength
of 1.54 Å, at 40 mA and 40 kV. XRD data were collected
using a continuous scan mode with 2θ angles ranging
from 0 to 160°. To ensure accuracy, calibration was per-
formed using a standard silicon sample, which is widely

Table 3: Physical and chemical properties of aggregates

Fine aggregate

Physical properties Chemical composition

Size (mm) — CaO 9.97
Specific gravity (g·cm−3) 2.64 SiO2 49.12
Water absorption (%) 1.62 Al2O3 2.48
Bulk density (kg·m−3) 1,546 —

Crushing value — Fe2O3 38.97
Fineness modulus 2.25 K2O 1.24

Table 4: Concrete mix proportions

Concrete mix composition

Mixes Cement (kg·m−3) VA (kg·m−3) Water (kg·m−3) Fine aggregate (kg·m−3) Coarse aggregate (kg·m−3)

Control sample 320 0 160 640 1,280
V5 304 16 160 640 1,280
V10 288 32 160 640 1,280
V15 272 48 160 640 1,280
V20 256 64 160 640 1,280
V25 240 80 160 640 1,280
V30 224 96 160 640 1,280
V35 208 112 160 640 1,280
V40 192 128 160 640 1,280
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accepted for calibrating XRD instruments. The calibration
ensured that peak positions and intensities were accurate
and reliable. While XRD effectively identifies crystalline
phases, it has limitations in detecting amorphous mate-
rials, which may be significant in VA. Additionally, small
quantities of crystalline phases might not be accurately
identified due to XRD’s detection limit.

2.3.4 TGA

TGAwas utilized to measure the quantity of calcium hydro-
xide (CH), identify other phases in the cement pastes, and
assess the extent of pozzolanic reactions. TGA was con-
ducted using a STA 8000 Perkin Elmer instrument from
the USA, which can measure mass changes as small as
1 μg. The apparatus was controlled using a dynamic heating
ramp of 10°C·min−1 between 30 and 1,000°C. The samples
were crushed to a size of 0.4 μm without any additional
preprocessing to prevent destabilization of hydrates. The
test was conducted in a nitrogen atmosphere provided at
a flow rate of 60mL·min−1. TGA was used to measure cal-
cium hydroxide (CH) content, identify other phases in
cement pastes, and assess pozzolanic reactions. The ana-
lysis was performed with a STA 8000 Perkin Elmer instru-
ment, capable of detecting mass changes as small as 1 μg.
The apparatus operated with a dynamic heating ramp of
10°C·min−1 between 30 and 1,000°C. Samples were crushed
to a size of 0.4 μm, and the test was conducted in a
nitrogen atmosphere at a flow rate of 60 mL·min−1. TGA
provides insight into the thermal stability of phases but
may struggle to distinguish between phases with similar
decomposition temperatures. Additionally, sample pre-
paration (such as crushing) could introduce artifacts,
potentially affecting the accuracy of the analysis.

2.3.5 Microstructural analysis of VAC

The concrete sample’ microstructure was analyzed with a
scanning electron microscope (SEM). SEM examination
was conducted at Peshawar University, Pakistan, using a
JEOL-JSM 5910LV microscope with a magnification range of
0× to 300× and a maximum resolving power of 2.3 nm. The
samples for SEM analysis of concrete specimens were
extracted from the fractured particles of specimens sub-
jected to compressive strength testing. The samples were
sliced to a diameter of 20 mm and a height of 10 mm. The
samples were kept in the laboratory under ambient condi-
tions for 7 days to ensure that they were well dry before
being coated with gold for SEM imaging.

3 Results and discussion

The chemical composition of unprocessed VA, as deter-
mined by XRF investigation, is presented in Table 1. The
principal elements found in VA are silica (SiO2), alumina
(Al2O3), iron oxide (Fe2O3), calcium oxide (CaO), and mag-
nesia (MgO). Silica has the highest weight content, with a
value of 47.02 wt%. The combined percentage of SiO2,
Al2O3, and Fe2O3 is approximately 70%, indicating that VA
meets the minimal criteria established by ASTM C618-15
[76] for natural pozzolans.

3.1 Workability

Figure 4 illustrates the feasibility of incorporating VA into
CCs. The data reveal that the slump of volcanic concrete
varied from 39 to 75 mm as the replacement level of VA
increased. Furthermore, Table 1 shows a decline in work-
ability as VA concentrations increased. This reduction
in workability can be attributed to the increased water
absorption capacity of VA due to its smaller particle size.
Additionally, VA exhibits rough-edged polygonal particles,
unlike the generally rounded particles found in cement.
This shape difference may result in reduced wetting and
increased inter-aggregate frictional resistance. As a result,
the reduction in free water content while maintaining a
consistent water-to-cement (W/C) ratio leads to decreased
workability, as VA absorbs more water, reducing fluidity.

To address this, several strategies can improve work-
ability in mixes with high VA concentrations. Adding

Figure 4: Slump test of intruded VA in concrete.
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superplasticizers or other water-reducing admixtures can
significantly enhance fluidity without altering the W/C
ratio. These admixtures counterbalance the increased
water absorption and frictional resistance by dispersing
the cement particles more effectively, thus improving
flowability [77]. Additionally, using finer VA particles or
pre-wetting the ash before mixing may mitigate work-
ability issues by reducing water absorption during mixing
[78].

3.2 Density

The density of concrete plays a crucial role in influencing
its mechanical properties and durability. Higher-density
concrete generally exhibits enhanced strength, reduced
porosity, and lower permeability to water and chemicals,
contributing to increased durability and longer service life.
As shown in Figure 5, the series of concrete mixtures con-
taining VA demonstrated slightly higher densities com-
pared to the reference concrete after a 28-day curing
period. This increase in density can be attributed to the
filler effect of VA, which fills the pores within the concrete
matrix, improving compactness by freeing trapped water.
Silva et al. [79] also highlighted the limited filler capacity
of materials used as cement substitutes, indicating that
beyond a certain threshold, further increases in density
may not occur. However, in this study, the VA-enhanced
particle arrangement contributed to the observed increase
in density, which in turn resulted in enhanced strength
and durability.

3.3 Compressive strength of VAC

The compressive strength data for concrete reinforced
with nano media at various time intervals are presented
in Figure 6. The compressive strength of the VA concrete
exhibited superior performance compared to the reference
sample, up to a concentration of 10%. The compressive
strength exhibits an initial increase followed by a subse-
quent drop in comparison to the control sample. The
observed increase in strength can be due to the presence
of reactive silica and alumina in VA, which have the poten-
tial to undergo pozzolanic reactions with calcium hydro-
xide (lime) generated during the hydration process of PC.
These reactions have a role in the generation of SCMs.
Consequently, this leads to an improvement in the overall

Figure 5: Formulation density.

Figure 6: Compressive strength of VAC.

Figure 7: SEM of VA with 10% concentration.
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structural integrity of the concrete material. Furthermore,
the particle size and distribution of VA have the potential
to influence the arrangement of particles inside the con-
crete mixture. An ideal configuration for packing can
result in enhanced density and heightened strength. Never-
theless, the presence of large quantities of tiny particles of
volcanic ash (VA) and unreactive silica might give rise to
complications, including heightened water requirements
and diminished workability. As a result, this leads to a
detrimental effect on the overall strength. Furthermore, the
SEM analysis of the V10 sample is illustrated in Figure 7. The
infiltration of VA occurs within an extremely compact and
dense C–S–H gel. The increased density of the gel structure
has a significant role in enhancing the overall strength of the
concrete. Additionally, deviations from the conventional
linear crack patterns have been noticed.

3.4 Analysis of XRD of VA-based concrete

The assessment of the impact of VA on concrete is con-
ducted by using XRD analysis, a technique that aids in
the identification and characterization of its crystalline
or pozzolanic properties, as illustrated in Figure 8. The
control sample depicts the presence of high Ca(OH)2 as
compared to the remaining formulations, as shown in
Figure 8(a). In addition, the presence of amorphous and
glassy silica in VA undergoes a transformation into cal-
cium–silicate–hydrate (C–S–H) upon interaction with por-
tlandite, a constituent of cement. During the process of
pozzolanic reactions, the ash particles undergo a combina-
tion with the Ca(OH)2 phase present in the cement matrix.
This combination results in the formation of supplemen-
tary C–S–H gels, as illustrated in Figure 8(b) and (c). The

Figure 8: XRD: (a) control specimen; (b) VA with 10% replacement; (c) VA with 20% replacement; and (d) VA with 40% replacement.
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augmentation of additional C–S–H gels in this production
process contributes to the enhancement of the concrete’s
mechanical strength. Therefore, the decrease in the pre-
sence of the portlandite phase within the cement paste
can be utilized as a reliable signal to assess the pozzolanic
capacity of different cement materials. The control concrete
sample demonstrates a significantly elevated Ca(OH)2 inten-
sity in comparison to the remaining samples. The reason for
this is that the control samples consist of a notable propor-
tion of cement, which plays a crucial role in the process of
hydration and the creation of Ca(OH)2. On the contrary, an
inverse relationship was observed between the fraction of
VA and the level of Ca(OH)2 in the remaining samples. The
observed reduction in Ca(OH)2 concentration can be attrib-
uted to either the inert properties of VA or the limited pre-
sence of cement in these particular mixes as demonstrated
in Figure 8(d). As a result, this phenomenon results in a
decline in compressive strength beyond the appropriate
dosage of VA.

3.5 Microstructure analysis of VA-based
concrete

VA has been identified as a pozzolanic material capable of
enhancing the strength and durability of concrete, as
shown in Figure 9. The control sample, illustrated in
Figure 10(a), exhibits fractures and voids, which lead to
reduced strength and density. These inherent flaws in
the microstructure compromise the concrete’s workability,
strength, and durability by creating pathways for the
ingress of water and corrosive chemicals, ultimately redu-
cing its lifespan.

In contrast, the microstructural improvement observed
when 10% of the cement is replaced with VA, as depicted in
Figure 9(b), highlights the formation of a compact and dense
C–S–H gel. The pozzolanic reaction between the reactive
silica in VA and calcium hydroxide generated during cement
hydration results in the development of supplementary
C–S–H, contributing to increased strength and durability.

Figure 9: VAC specimens: (a) control specimen; (b) 10% VA; (c) VA with 20% replacement; and (d) VA with 40% replacement.
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The enhanced gel structure reduces porosity, while the irre-
gular morphology and coarse surface of VA particles
hinder crack propagation. As cracks encounter the non-
uniform VA particles, they deviate from linear paths,
leading to improved resistance to cracking and enhancing
the overall structural integrity [80].

However, when the VA content exceeds the optimal
replacement level, as shown in Figure 9(c) and (d), the com-
pressive strength of the concrete decreases. This reduction
can be attributed to the presence of unreactive silica, a weak
interfacial transition zone, and the formation of voids in the
microstructure. Excessive VA particles may absorb more
water, leading to increased porosity and compromised
mechanical properties.

When compared to other SCMs, such as FA or SF, VA
exhibits a similar pozzolanic reaction but with distinct
characteristics. FA typically offers better workability due
to its spherical shape, while SF can enhance compressive
strength but may reduce workability. Although VA improves
durability and strength to a certain extent, higher concen-
trations can compromise workability, akin to the effects
observed with SF. However, VA’s rough texture and larger
particle size compared to SF can influence its effectiveness
as a filler material [81].

Additionally, the particle size of VA plays a significant
role in determining the microstructural properties of the
concrete. Smaller VA particles tend to exhibit higher pozzo-
lanic reactivity, which leads to more C–S–H gel formation
and increased strength. Conversely, larger VA particles may
act as inert fillers, reducing the effectiveness of the cemen-
titious matrix and increasing porosity. Achieving an optimal
balance between reactivity and packing density is crucial
for maximizing performance benefits.

3.6 TGA of VA specimens

The TGA quantified the Ca(OH)2 content in the specimens
by analyzing the weight loss during thermal decomposition
between 100 and 800°C, as shown in Figure 10. The TGA
data indicate that the controller mix exhibited the highest
concentration of portlandite (C–H) compared to the further
mixtures. Furthermore, specimens through a 10% volume
of VA exhibit a notable decrease in the portlandite phase
due to the high responsiveness of the well-amorphous
silica present in the specimens. This results in increased
ingesting of the C–H phase to produce more C–S–H phases
in the matrix. The VA sample shows a more significant
decrease in the portlandite (C–H) phase due to the pre-
sence of amorphous silica in the sample. This is due to
the reactive components such as amorphous silica. When
incorporated into concrete, these reactive components can
participate in pozzolanic reactions with calcium hydroxide
formed during cement hydration. This can lead to the for-
mation of additional cementitious compounds, which may
reduce the mass loss during TGA by contributing to the
densification of the concrete matrix. Furthermore, at lower
temperatures, the presence of reactive components in the
VA may contribute to a reduction in mass loss due to poz-
zolanic reactions. However, at higher temperatures, the
decomposition of VA components or interactions with other
constituents in the concrete mix may lead to increased mass
loss, as shown in Figure 10.

While TGA effectively quantifies Ca(OH)₂ and offers
insights into pozzolanic reactions, it may not fully detect
other phases in VA, such as unreactive silica or crystalline
quartz, which can affect concrete properties. Additionally,
minerals like feldspar and zeolites may not show clear

Figure 10: TGA of VA specimens in concrete.
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thermal transitions in the TGA range, potentially under-
estimating their impact on the concrete matrix [82].

XRD complements TGA by detailing the crystalline
phases in VA concrete, including portlandite, quartz, and
C–S–H. However, it may not quantify amorphous phases,
which are common in VA. Thus, using both techniques
together is essential for a comprehensive assessment of
pozzolanic activity.

From the above discussion, it can be deduced that VA
concrete exhibits enhanced thermal stability compared to
conventional concrete due to its lower porosity and denser
microstructure, resulting from pozzolanic reactions between
reactive silica in VA and calcium hydroxide during cement
hydration. These reactions create additional C–S–H phases,
improving the concrete’s structural integrity and thermal
performance.

In contrast, conventional concrete has higher porosity,
making it more susceptible to thermal degradation and
cracking under high temperatures. TGA indicates that VA
concrete experiences less mass loss at elevated tempera-
tures, highlighting its improved resistance to heat. Thus,
VA concrete is a more reliable choice for applications
exposed to high temperatures.

4 Conclusion

The current study aimed to assess the consequence of using
ordinary VA as an additional for cement in producing
environmentally friendly concrete. The impact of VA on
the mechanical characteristics was investigated. XRD and
TGA investigations were performed to study how VA impacts
the microstructure of the specimens. Below is the conclusion
reached from the experimental findings.
• The slump of the VAC decreases with increased concen-
tration ranging from 0 to 40%. This is due to the particle
size and shape, water demand, and pozzolanic activity.
As the concentration of VA increases, the amount of poz-
zolanic reaction taking place within the concrete mix
also increases. Pozzolanic reactions consume calcium
hydroxide and water, forming additional cementitious
compounds. This can result in a reduction in the amount
of free water available for lubricating the concrete mix,
leading to a reduction in slump.

• Concrete density significantly increased by substituting
cement with VA, thanks to its pozzolanic activity and
micro fillers. The combined impact of the pozzolanic reac-
tion and micro filling of VA enhanced the density character-
istics of concrete. A higher dose of VA negatively impacts
density because of the lack of flowability. Various researches

suggest different optimal dosage adjustments based on the
source of vitamin A. The normal optimal dose of VA varies
from 10 to 20%.

• The use of VA as a partial cement increases the compres-
sive strengths of the composite. This increase can be
attributed to the high pozzolanic reactions in the VA
with matrix. The addition of VA up to a concentration of
10% results in an improvement in compressive strength
compared to the control specimen. This improvement
could be attributed to factors such as pozzolanic activity,
particle packing, and enhanced densification of the con-
crete matrix due to the presence of VA. In addition, a
decrease in the matrix is observed after optimal dosage
due to unreactive silica, and excessive water demand.

• XRD examination indicated that the presence of 10% VA
led to a notable decrease in the concentration of calcium
hydroxide, attributed to its superior pozzolanic proper-
ties associated with the other mixtures.

• Microstructure SEM analysis reveals that VA particles
react with the CH to form a densified C–S–H gel. In addi-
tion, deviation of cracks is observed, which is a good sign
for strength and durability.

• TGA indicates that specimens with 10% VA exhibit a
notable decrease in the portlandite phase due to the
high responsiveness of the very tiny formless silica pre-
sent in the specimens. This leads to increased ingesting of
the C–H phase to produce more C–S–H stages in the
matrix.

5 Limitations, recommendations,
and applications

This study offers significant insights into the potential of
VA as an SCM, though it has several limitations. First, while
the reduced portlandite phase improves durability by low-
ering permeability, further research is needed to understand
its impact on long-term concrete performance, especially
under real-world environmental conditions. Additionally, the
experimental setup primarily focused on short-term perfor-
mance, which may not fully reflect VA concrete’s behavior
over extended periods. Modifying experimental procedures
to incorporate accelerated aging and environmental exposure
could provide a more comprehensive view of VA’s durability.
A key limitation relates to the VA’s mineral composition,
which may vary by region and influence performance out-
comes; future studies should consider this variability for
broader applicability. The potential environmental implica-
tions of sourcing and processing VA should also be assessed
to align with sustainability goals.
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Practical applications of VA concrete are promising,
particularly in sustainable construction. VA’s pozzolanic
activity contributes to reducing cement content, lowering
CO₂ emissions, and enhancing material durability. This
aligns with the industry’s broader goals to develop low-
carbon, durable building materials. Expanding this research
to evaluate VA in other CCs could further contribute to sus-
tainable construction practices. Future work could explore
the environmental life-cycle impact of VA-based concrete,
especially for infrastructure exposed to harsh conditions.
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