DE GRUYTER

Reviews on Advanced Materials Science 2025; 64: 20240077

Review Article

Zummurd Al Mahmoud, Mohammed Asmael*, Rosli Ahmad, Saeid Sahmani, Kamila Kotrasova*,

Maria Mihalikova, David Hui, and Babak Safaei*

Recent developments in ultrasonic welding of
similar and dissimilar joints of carbon fiber
reinforcement thermoplastics with and without
interlayer: A state-of-the-art review

https://doi.org/10.1515/rams-2024-0077
received February 26, 2024; accepted December 10, 2024

Abstract: Ultrasonic welding (USW) is utilized to join iden-
tical and non-identical materials, with and without a ther-
moplastic composites or thermoset composites coupling
layer, or with different shapes of energy directors or adhe-
sive materials. Due to its emerging structure, joining carbon
fiber (CF)-reinforced polymer has become imperative due to
the developed concerns in different industrial and
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manufacturing sectors. This review article covers all types
of joined CF-reinforced polymers, including similar/dissim-
ilar CF-reinforced thermoplastics or CF-reinforced thermo-
sets joined by USW, considering different types of USW (spot
welding, continuous welding). This review considers various
welding process parameters and their impacts on welding
quality, welding strength, and mechanical and microstruc-
ture characterizations of the welded joint. Also, improving
the USW joints and their challenges are discussed. The fab-
rication processes of the polymer matrix composite and
various polymers are addressed. In addition, the recycl-
ability of CF-reinforced polymer is highlighted. A key finding
from this review is that polyetheretherketone and both
types of nylon (PA6 and PA66) show high exceptional char-
acterizations, making them more favorable for developing
CF-reinforced thermoplastics over other types of polymers.
While a unique co-curing process must be completed for the
adhesive material before performing the USW, welding
energy is the most effective process parameter that
enhances the mechanical properties when using adhe-
sive bonding before USW.

Keyword: polymer matrix composites, interlayer, welding
quality, lap shear strength, spot welding

Abbreviations

AM additive manufacturing

AF aramid fiber

BO Bayesian optimization

CF carbon fiber

CFRP carbon fiber-reinforced polymer

CFRTP carbon fiber-reinforced thermoplastic

CFRTSC  carbon fiber-reinforced thermoplastic
composite

CFRTS carbon fiber-reinforced thermoset
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CEF/Ep
CNT
CUSW
CTT
DSW
DLS
ELF
ELP
ED
EMMA

Ep
FRC
FRTP
FRP
FE
FED
FSW
GA
GF
GFRP
GNP
HAZ
HHT
HFUSW
HNT
IPS
W
LSS
LW
ML
MF
MSW
MWCNT
NC
NF
NFRC
NSM
NN
NL
PBF
PC
PEI
PFRP
PMC
PCM
PMMA
POF
PVA
PVB
rCF
RF

carbon fiber/epoxy

carbon nanotube

conventional ultrasonic welding
cross tensile test

double spot welding

double-lap shear

Elium® film

Elium® particle

energy director

mendable polymer, poly [ethylene-co-
(methacrylic acid)]

epoxy

fiber-reinforced composites
fiber-reinforced thermoplastic
fiber-reinforced polymer

finite element

flat energy director

friction stir welding

genetic algorithm

glass fiber

glass fiber-reinforced polymer
graphite nanoplatelet
heat-affected zone
Hilbert-Huang transform
hollow fixture ultrasonic welding
halloysite nanotube

interposed sheet

induction welding

lap shear strength

laser welding

machine learning

mechanical fastener

multi-spot welding

multi-walled CNT
nanocomposite

nanofiller

natural fiber-reinforced composite
near-surface mounted

neural network

nonlinear

powder bed fusion
polycarbonate

polyetherimide

polymer fiber-reinforced polymer
polymer matrix composite
polymer-coated material
polymethyl methacrylate polymer
plastic optical fiber

polyvinyl alcohol

polyvinyl butyral

recycled carbon fiber

reed flour
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RTM resin transfer molding
RW resistance welding
SSW single spot welding
SE steam-exploded
S-USwW water-submerged ultrasonic welding
SVM support vector machine
TOF Time-of-flight
TPC thermoplastic composite
TP thermoplastic
TSC thermoset composite
UF ultimate failure
UFL ultimate failure load
usw ultrasonic welding
VaRTM  vacuum-assisted resin transfer molding
VMD variational mode decomposition
2D two-dimensional

1 Introduction

1.1 Ultrasonic application and ultrasonic
welding (USW) for polymers

USW is a speedy process of joining materials. It can be used
for joining alloy/composites and composite/composite. USW
is considered as a solid-state welding method that is defined
as a sustainable welding process [1]. It is worth mentioning
that the USW is one of the most promising fusion bonding
processes. Nonetheless, the fusion bonding technologies con-
sist of USW, induction welding (IW), and resistance welding
(RW) techniques [2]. The basic concept of USW is based on
the ultrasonic wave, which is same as any other ultrasonic
process machine (based on ultrasonic wave) applications.
Figure 1 illustrates the current applications of various ultra-
sonic machines for polymer industries. As shown in Figure 1,
the major applications of ultrasonic for polymers can be clas-
sified into four main categories, which are fabrication pro-
cess, welding, defect detection, and cleaning. However, each
classification can be further classified as shown.
Furthermore, the USW main principle is based on very
high frequency usually 20 kHz, associated with very low
amplitude at the joining surface interface of the adherends
to be welded. In the USW process, the vibrations are con-
verted to heat between the two joining surfaces, which
melt the thermoplastic composites (TPCs) and enable the
joining [3-6], where the vibration energy leads to a surface
asperity deformation, which disperses into heat. In conse-
quence, the heat melts the surface asperities, which then
flow, expanding the interfacial area, which permits the
molecules of the polymer chains to diffuse [7]. High
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Figure 1: Applications of ultrasonic in polymers.

amount of frequency in kHz in the oscillation of the USW to
the stacked specimens, frictional heat will be generated by
the plastic boundaries, which melt and form the joint [4]. A
schematic representation of USW machine with its compo-
nents is given in Figure 2. The generated frictional heat is
caused by the transmission of the mechanical vibration,
which helps in melting the TPCs causing them to flow,
which will cause the interfacial bond between the two
specimens to join. This heating mechanism is classified as
surface friction as well as viscoelastic friction [8,9]. Mainly,
the viscoelastic heating became governing when the tem-
perature reached the glass transition temperature, is the
reason of providing the absolute heating during welding
process [8]. As shown in Figure 2, the USW machine con-
sists of generator, transducer, booster, sonotrode, and
fixture. The generator converts the electrical power to
high electrical energy at 20-40 kHz. The transducer works
as a converter, which alters the high frequency electrical
pulses to a mechanical vibration. The amplitude of this
mechanical vibration is further increased or decreased by
the booster. In consequence, the mechanical oscillations
are transferred to the specimens by the sonotrode. How-
ever, the specimens remain stable by the fixture on the
anvil [10]. Besides, the welding process consists of a soli-
dification phase, which is a consequence of the vibra-
tional phase, in which the heat is generated. Further,
the vibration energy is transfererred to the sontrode,
which creates the welded zone by heating the surface [11].

Developments in USW of similar and dissimilar joints of CF-reinforced polymers

Ultrasonic
additive
manufacturing

Ultrasonic
Injection
modling

Ultrasonic
compression
modling

Primar welding
source

In solid state

5 - welding

welding source

The USW has the potential for extensive applications,
particularly in lightweight vehicle structures, owing to its
good strength and stiffness [12,13], as well as in the marine
industry [14]. The global market scale of USW technology is
demonstrated in Figure 3 [15,16]. As shown in Figure 3, the
applications of joining polymers by USW are much greater
than those of metals. Besides, a substantial increase in the
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Figure 2: The schematic of USW [20].



4 —— Zummurd Al Mahmoud et al.

@

Global Ultrasonic Welding Systems Market Share By Types, 2031

@ Plastic Ultrasonic Welders
@m Metal Ultrasonic Welders

(b)

2020 2

©)

DE GRUYTER

Global Ultrazonic Welding Systems Market Size, 2031 (USD Million)

Global Ultrasonic Welding Systems Market 2030

CAGR : 5.00%

é 560 Mn

<

| | |
o

@

2

v

3

c

v

S

v

o

2022 2023 2024

836.13

' I I I I I I |
2021 2022 2023 2024 2025 2026 2027 2028 2029 2030

Figure 3: The global market scale of USW technology: (a) The development of USW in polymers and metals and (b and c) the annual global market of

USW in various application sectors [15,16].

global market is observed, where in 2022, the market size
reached 550-560 million US dollar, while it is estimated to
reach 825-840 million US dollar in 2030. However, the first
publication regarding USW of TPCs was recorded in 1989
published by Benatar and Gutowski [17], where the proces-
sing information was highlighted, and the obtained out-
comes were significant. Nonetheless, the USW has many
advantages, e.g., it is a time-saving method and an econom-
ical technique for joining polymer composites [18], and
disadvantages, e.g., it is mainly used for welding small areas
and it can be used under some conditions for welding larger
areas [19]. Further advantages and drawbacks of USW are
illustrated in Figure 4.

From literature records, Sandeep and Natarajan [21]
presented a review that focused on investigating the recent
developed joining methodologies for carbon fiber (CF)-
reinforced polymer (CFRP)/Al-joined hybrid structures. Liu
et al. [22] presented a comprehensive review to examine the
metal/fiber-reinforced thermoplastic (FRTP) joined by USW.
Abbas et al [23] explored the developments in USW of
joining lightweight alloys. Furthermore, Pramanik et al
[24] studied the earlier available joining techniques that
were utilized in joining CFRP/AL Besides, Fan et al. [25] pre-
sented a review study focused on considering various joints
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Figure 4: The advantages and disadvantages of USW process.
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joined by implementing the ultrasound vibration. The dis-
similar joining of carbon fiber-reinforced thermoplastic
(CFRTP) with metals by laser welding (LW) has been reviewed
by Jiao et al [26]. Additionally, Acherjee [27] reviewed the
parameters, process monitoring, and quality attributes of
laser transmission welding used for similar and dissimilar
joining of polymer/polymer and polymer/metal. Moreover,
Li and Palardy [28] reviewed the methodologies, which are
currently used to monitor the damage caused by fiber-rein-
forced polymer (FRP) joints. However, Li et al [29] accom-
plished a comprehensive review that focused on examining
the mechanical features as well as the behavior of structural
health monitoring of carbon nanotube (CNT)-FRP compo-
sites. An evaluation between different types of joining
approaches used to join TPCs and thermoset composites
(TSCs) was published earlier. As findings, the USW was
found to be most suitable in some essential factors of
joining performance, processing time, minimal surface
preparation, in situ inspection production environment,
and reproducibility [30]. However, a short review study
has been accomplished by Forintos and Czigany [31], who
investigated the applications of CFRPs and highlighted the
electrical characterizations of the CF reinforcement. Zeng
et al. [32] inspected the impact of fiber interfacial and the
mechanical responses of CFRP reinforced with gelatin-
CNTs. In addition, the welding methodologies that were
implemented in joining polymers for biomedical applica-
tions were stated by Amanat et al [33]. Nonetheless,
Hamza and Jalal [34] accomplished a comprehensive
review that covered the PCs joined by friction stir pro-
ceeding. Asmael et al. [35] performed a review study that
investigated the enhancements in tensile features of the
CFRP joined by friction welding. Meanwhile, El-Sayed
et al. [36] presented a review study focused on friction
stir welding (FSW) in joining metallic materials. Wang
et al. [37] reviewed the TPCs reinforced with various types
of fibers and joined by USW. Zhao et al. [38] presented a
study that covers the recent progress in USW in joining
various fiber-reinforced polymer composites. Nagarajan
and Manoharan [39] presented a comprehensive review
that studied various types of joining and welding used in
joining metal with polymer in a hybrid structure. Besides,
Ni and Ye [40] reviewed various Al alloys joined by USW
where the macrostructure, microstructure, and mechan-
ical characterizations of the weldment were addressed.
Moreover, Bose et al. [41] accomplished a recent review
study which focused on the latest improvements in the
USW of polymers and polymeric composites that investi-
gate specific types of TPCs reinforced with CF and glass
fiber (GF). Besides, for obtaining superior mechanical
properties, Mirzaahmadi et al. [42] added TiO, and CuO
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nanoparticles to the polyvinyl chloride interface of the
ultrasonically welded GF-reinforced polymer (GFRP) at
optimum process parameters. However, Mahato et al
[43] presented a review paper exploring fibrous PC mate-
rials’ mechanical response (static and dynamic) under var-
ious environmental circumstances and mainly to define the
failure modes. Meschut et al [44] accomplished a compre-
hensive review that focused on joining by plastic deforma-
tion. Additionally, Luckachan and Pillai [45] performed a
comprehensive review for the purpose of investigating
eco-friendly polymers and their developed perspective.
Besides, the recent developments in eco-friendly sustainable
materials such as bamboo and wood and their modification
processes were investigated and comprehensively reviewed
by Paul et al [46]. Moreover, Alhijazi et al [47] presented a
comprehensive review investigating the latest improvements
in palm fiber composites. In a further study, Odesanya et al
[48] revised several types of natural fiber-reinforced compo-
site (NFRC) implemented in ballistic functions. Besides, based
on high demands on natural fiber such as bamboo, it is
essential to develop the bamboo material properties. Accord-
ingly, Sun et al [49] presented a comprehensive review that
explored the nanotechnology applications in improving the
bamboo material properties in different aspects. However,
Gandini and Belgacem [50] presented a review on the pre-
paration process for producing polymers generated from sus-
tainable resources. In addition, to overcome the defects of
NFRC, Hosseini et al. [51] presented a comprehensive review
that focused on exploring the enhancements of fiber/natural-
fiber treatment on the mechanical and physical characteriza-
tions of NFRC. Accordingly, several treatment processes were
discussed, such as NaOH, polyvinyl alcohol, steam-exploded
(SE) treatment, fungicide solutions, plasma treatment, distil-
late treatment, and chemical coupling agents. Nonetheless,
Rafiee and Shahzadi [52] presented a comprehensive review
on the investigation of the mechanical characterizations of
polymer reinforced by nanoclay. Hosseini et al. [53] presented
a comprehensive study that focused on exploring the beha-
vior of fiber-reinforced composites (FRCs) laminated with
CNT. Francisco et al. [54] presented a comprehensive review
addressing the enhancement of various nanocomposites
(NCs) (tubes, particles, and layers) on polyamide NCs. Gu
and Gu [55] reviewed the methodologies utilized in investi-
gating the microbiological degradation and the deteriora-
tion of numerous polymers with different grades of degrad-
ability. Anugrahwidya et al. [56] presented a comprehensive
review that focused on investigating the performance of
starch-based bioplastics embedded with fiber and nanopar-
ticles. S] and Natarajan [57] presented a review study that
focused on recently developed joining techniques for joining
Al to polymer/CFRP for hybrid lightweight structures.
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Figure 5: The annual global demand on CFRP in kilo tons [61].

Furthermore, Xiao et al. [58] explored the latest improve-
ments in the mechanical characterization of hybrid fiber
metal laminates reinforced polymers and their applications
in automotive industrial sector. A comprehensive review
has been accomplished to investigate the current techniques
for curing the deformation process of CF-reinforced resin
composites and their challenges. Also, Zhang et al. observed
that the significant parameters that affected the curing
deformation were variable and varied by changing the pro-
cess and environmental conditions [59]. However, Yu et al.
[60] performed a novel review study that investigates the
preparation processes as well as the regulations of cellulose
materials for developing cellulose/epoxy (Ep) composite
which overcome the disadvantages of CF/Ep composite such
as high costs. Furthermore, due to the global high demand on
CFRP as shown in Figure 5 where a yearly gradual increase
can be observed, Zhang et al. [61] presented a comprehensive
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Figure 6: The global estimation of CFRP wastes in 2050 from the aero-
nautical sector by region [61].

review that focused on the recyclability of CFRP. In addition,
the global estimation of CFRP wastes in 2050 from the aero-
nautical sector by region is predicted and plotted in Figure 6,
the maximum waste is estimated to be in Asia followed by
Europe. While, the lowest is estimated to be in Oceania.
Besides, a further analysis of capital investments in CFRP in
various sectors is illustrated in Figure 7. It is seen that highest
capital investment is recorded by aerospace and defense sec-
tors, while the lowest is in marine sector.

Meanwhile, this state of art review is considered as the
first comprehensive review that covers the joining process
of similar and dissimilar CFRP weldment produced by
USW, considering single, double, multi, and continuous
welding. In this context, the enhancement of process

Carbon Fibre Composites Market, By Product, (USD Million), 2018 - 2030

35,000.0

30,000.0

25,000.0

lon

20,000.0

USD Mill

15,000.0

10,000.0

5,000.0

0.0
2018 2019 2020 2021

2022 2023 2024 2025 2026 2027 2028 2029 2030

m Aerospace & Defence = Automotive ®mWind Turbines ®Sport & Leisure ® Civil Engineering ®Marine ® Others

Figure 7: The annual capital investments in CFRP in various sectors [62].
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parameters on the microstructure and mechanical charac-
terizations, and welding quality is discussed. Besides, it
highlights the influence of using energy director (ED) or
interlayer and the consequence of preheating and heat
treatment on the weldment strength and quality. The var-
ious fabrication processes and other welding processes are
also briefly addressed, besides highlighting the challenges
faced by USW.

1.2 Comparison of USW and other joining
approaches

The USW has become more attractive to use in different
industrial applications due to its several advantages over
regular welding processes such as FSW, shield metal arc
welding, etc. Apart from the USW advantages mentioned in
Figure 4, it also requires a very short welding time (a few
seconds) and does not require the usage of another mate-
rial as gas tungsten arc welding or between the interface as
required in other welding techniques such as RW, as well
as the welding strength is very close to the neat polymer
strength [63]. Additionally, the most unique advantage of
USW over other welding processes is that the potential of in
situ observation is automated through process data [64],
e.g., a strong relationship among the response of a micro-
processor-controlled welder and the physical variations at
the welding interface for USW using flat energy director
(FED) [65]. Furthermore, joining TPCs by USW has the
advantage of the absence of forging material on the welding
interface, such as metal mesh, and other welding features
like significant welding joint quality [64]. Accordingly, a
comparison study was performed between the strength joint

Max LSS Value (MPa)

N
o

17.5
T

Lap Shear Stress (MPa)
5 R 5 & &

o N & o ®

m Adhesive ELC_ELC (SAF305) M SC-ELC_FL-ELC

Figure 8: A comparison of the LSS between welded and adhesively
bonded laminate joints for C/Elium®, under USW conditions of 1.5,
3 bar, and 75% amplitude (48 pm) [66].

Developments in USW of similar and dissimilar joints of CF-reinforced polymers

—_— 7

by adhesive bonding and by USW, the joint was in between
C/Elium® [66]. The results showed that ultrasonically welded
composite joints had a 23% higher lap shear strength (LSS),
as shown in Figure 8. It has been found that the optimal
welding time for an ultrasonic welded junction was 1.5s,
compared to 10 min for an adhesively bonded joint. Besides,
it has been reported that it is necessary to perform a co-
curing process to coat the TSCs with a rich layer of TPCs for
the purpose of achieving a sufficient adhesion in between
TPC and TSC polymers for the welding process, such as USW
[67,68]. In addition, by implementing the adhesive joining
technique, numerous bonding defects may occur in the
bonded joints, which consequently affects the bonding
quality, such as porosity, inadequate adhesive, and cracking
[69]. However, the basic steps of adhesive bonding and types
of adhesive joints are shown in Figure 9. Nevertheless, the
quality of adhesive bonding can be established either by
physical breaking or by observing the number of adhe-
sive-bonded joints [70]. Additionally, by generating a hybrid
joining technique that consists of adhesive joining followed
by USW, the uncured adhesive bonding in the USW pro-
cess is uninspected due to the high damping property,
which will dramatically reduce the ultrasonic signal,
and subsequently, the inspection sensitivity [71]. How-
ever, this effect can be mitigated by squeezing the melted
adhesive out by using the pressure of the sonotrode in the
USW. The formatted weld nugget may use to overhaul the
partially adhesive bonded joints under the appropriate
USW process parameters [70]. Furthermore, Zhang et al.
[70] implemented the USW to repair a previous joint of
CFPAG6 by adhesive bonding.

Moreover, an evaluation between the strength and
stiffness of CFRTP and CFRTP joints by USW spot welding
and by mechanical fasteners (MFs) with double-lap shear
(DLS) and pull-through test had been carried out [72]. How-
ever, on comparing the results of LSS in MPa of APC-2
laminates (polyetherimide, PEI film) joined by USW, RW,
IW, MFs, adhesive bonding, and bulk heating, the results of
USW show to be the most significant joining process and
the most studied method on average compared to other
methods [73-76]. A recent review shows that, given the
capacity to transmit loads and create a homogenous junc-
tion that maintains structural integrity, adhesive bonding
is mostly preferred to mechanical joining due to the lower
cost and less assembly weight. However, fusion bonding
approaches such as USW, IW, and RW have great potential
for applications requiring quick processing times, such as
wind turbine blades, automotive bulkheads, aerospace fuse-
lages, and surfboards, which require large volumes of mate-
rial. The advantages of fusion bonding methods include lower
surface preparation necessities, recyclability, reprocessing,
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and enhanced integrity/durability over other joining pro- 1.3 Polymers and polymer matrix fabrication
cesses [76]. Furthermore, a comparison between the capital

investment costs of arc welding and USW is shown in Figure 10.  1.3.1 TP polymer

Besides, the USW consider as one of the sustainable welding

process. The sustainability criteria in welding is shown in The advantages of TPCs over other polymers are that they
Figure 11. are cost-effective in manufacturing, and have excellent
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impact resistance and recyclability [72,77-79]. Moreover,
consolidation under elevated/high pressure and heat after
welding through melting is a unique advantage for TPCs
[80]. Table 1 presents the properties of TPs used in the USW
process, followed by the most favorable types of TPs to
fabricate with CF and joined by USW. As observed from
Table 1, there is a considerable variation in the values of
density, Young’s modulus, processing temperature, melting
and glass transient temperatures of the TPCs, which are
based on the unique structure of each TPC. All mentioned
properties are classified as the most important properties
that influence the USW process since they directly impact
weldability, melting, crystallization, phase transformation,
and the thermal cycle. The importance of maximum opera-
tional temperature during USW is based on the purpose
and the nature of using the TPCs as a reinforcement of the
CF or as an ED or interlayer coupling, considering that the
melting must be generated in the ED or interlayer before
the adherent, which means that the melting temperature of
the interlayer is supposed to be less than that of CFRTPs.
Besides, the maximum operational temperature signifi-
cantly enhanced the material flow in the welding zone.
However, considering the density and Young’s modulus is
essential because it may affect the USW process factors,
such as required welding power and welding time. More-
over, the glass transition temperature gives an indication of
where the chains of polymer starts to move [81]. In addition,
the glass transition temperature is directly affected by the
crystallinity in semi-crystalline polymers [82]. Based on
these, the material properties of TPCs must be studied

Table 1: Properties of TP polymers employed in USW processing

Ref.

Melting

Processing
temperature (°C)

Glass-transition

Young’s modulus at room

temperature (GPa)

Abbreviation Density

Types of polymers

temperature (°C)

temperature (°C)

(kg'm3)

[98]

NA
130

85
10

97.9

0.0033
0.6-1.1

1181.33 £ 20.43

940-970

Elium

[99,100]

90
88
75

-100
-100
100

HDPE

High-density polyethylene
Low-density polyethylene

[100,101]

0.1-0.3
1.9-2.0

910-955

1,080

LDPE

[100,102]

125

Acrylonitrile butadiene styrene

copolymer

[103,104]
[100,105]
[106,107]

221

80-160
100-140

250
170

45

1.5-3.0
2.2-24
37
33

1,084-1,230
1,196

PA6
PC

yamide (Nylon 6)

ycarbonate

149

149
143
215
70

343

1,260-1,300

1.27

PEEK
PEI
PET

yetheretherketone

yetherimide

[108-110]

340-360
240

[100,111]

150

2.7-41

1,333-1,365
1,170-1,230

900-920
1,350

yethylene terephthalate
ymethyl methacrylate

ypropylene

[112,113]

130-160
170

80-100
85-120

218

105

2.2-3.8
2.

PMMA

PP

[100,114-116]
[117-119]

[120-122]

(=25)

280-285
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intensely before performing the USW process. Furthermore,
Elium is a novel acrylic TP resin developed by ARKEMA. The
advantage of Elium over other kinds of TPs is that it can be
cured at room temperature [63]. The mechanical features
of Elium® with various fiber reinforcements studied in var-
ious literature are fracture toughness [83], tensile [84],
flexure [85,86], impact [87,88], and vibration [89]. Also, their
mechanical properties are similar to TSCS’ mechanical prop-
erties. Shogren et al [90] explored the enhancement of
orientation on the microstructure and mechanical charac-
terizations of the polylactic acid (PLA)/starch composite fila-
ments produced by the extrusion (twin screw) methodology.
Chen et al [91] inspected the ability to enhance the tough-
ness of polyethylene terephthalate (PET), where the out-
comes showed a significant enhancement in the mechanical
properties. Additionally, the results of that study are consid-
ered as an initial step for future application of the PET.
However, by reinforcing the TPCs with CF to develop the
CFRTPs, the CF was found to develop the mechanical beha-
vior of polymers [92]. Likewise, Kord et al. [93] considered
the enhancement of multi-walled CNT (MWCNT) on the
dynamic behavior of PCs made of PP/reed flour (RF). The
outcomes show that the MWCNT has a negative effect on
some properties and a positive effect on other properties
simultaneously. However, the treated polyetheretherketone
(PEEK) by ultraviolet irradiation with carbon/Ep prepregs
has been used as a direct co-curing process between the
interfaces of TSCs/TPCs [94]. Conversely, Talbott et al [95]
recorded that due to reducing the PEEK’s crystallinity, the
tensile strength, shear strength, and modulus of elasticity
will all decrease. Besides, a review has examined the
mechanical behavior of CF/PEEK in biomechanical applica-
tions [96]. By using the PEI as a coupling layer for carbon/
PEEK, there may be a high-performance PEI-PEEK exploit
caused by the molecular inter-diffusion between the adhe-
sive and the adherend as a consequence of the total misci-
bility of PEI and PEEK over the melting temperature of the
layer [97].

Remarkably the TPCs became highly attractive over
TSCs in different manufacturing sectors, owing to their
high damage tolerance, cost-effective manufacturing, and
welding process [2,80,128]. Numerous fusion-bonding tech-
niques that are founded on altered heating mechanisms
such as ultrasonic, microwaves, laser, IW, FSW, and hot
gas and plates can be used to join the TPCs [80,129-131].
Anag [132] investigated the mechanical characterization
of similar/dissimilar polymers joined by FSW. Based on
the literature, the TPCs are considered a semi-crystalline
natural structure that enhances the mechanical features,
such as shear strength, stiffness, fracture toughness, the
interfacial strength of fiber/matrix, and chemical
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resistance. Besides, the industrial applications of polymers
and polymer matrix are becoming widespread in indus-
trial manufacturing, such as railway [133], automotive
[134], aerospace [135,136], elastomeric shape memory, and
its application [137,138], as well as biomedical [139]. Popp
and Drummer [140] performed joining process of carbon
fiber-reinforced thermoplastic composites (CFRTSCs)/steel
through infrared heating and undercutting pin structure.
Hussen et al [141] presented an experimental and devel-
oped analytical model to investigate the peeling strength of
a composite structure consist of multilayer hybrid textiles
and coated with PVC, that was joined by using USW pro-
cess. However, the most commonly used PC matrix-rein-
forced fibers are CF, GF, and aramid fiber (AF), as shown in
Figure 12 with their specifications and compared with TPCs
reinforced with TPC polymer fiber-reinforced polymers
(PFRPs) and their specifications [135]. Researchers and
industries show more interest in CF than other fibers due
to their superior mechanical characteristics. For modern
and next-generation structures, the CFRTPs are a signifi-
cant candidate and have higher productivity than the
CFRTSCs due to their fast formation by injection molding
and press molding. However, Wang et al. [142] investigated
the thermal characterizations and the fusion performance
at the interface of CFRTP (CFPEEK) enhanced by heat input
and joined through IW with CF subsector. Besides, Liu et al.
[143] studied the compression behavior and impact resis-
tance of CFPEEK laminates experimentally, followed
by repairing with hot-press fusion with various stacking
arrangements. The authors observed that 20-30% of devel-
opment was achieved in compression residual strength by
the repairing process.

1.3.2 Polymer matrix’s fabrication

The CFRP, TPCs and TSCs which joined by USW can be
fabricated in various approaches. In this context, a brief
discussion about the fabrication process implemented in
the preparation of CFRP and polymer matrix is presented
in this section. There are several methods to fabricate
the CFRPs, such as vacuum-assisted resin transfer molding
(VaRTM), which is considered as one of the fabrication
techniques with the lowest cost [144,145]. Moreover, Francis
et al. [146] presented a comprehensive review that focused
on enhancing disparity in the composition of material char-
acteristics and the performance of PEEK and then exposed
the association with additive manufacturing (AM) processa-
bility of such composites. Besides, the study highlighted the
challenges faced in the production of PEEK by AM. However,
despite the remarkable advantages of fabricating PCs by AM
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over traditional manufacturing processes in terms of mechan-
ical behavior, it still has some drawbacks. Darji et al [147]
presented an inclusive review that addressed the essentials
and sorts of current AM PCs. It also investigated the present
cutting-edge studies as well as progress. Besides, the gaps in the
mechanical properties of PCs fabricated over several AM
methods, such as powder bed fusion, material jetting, material
extrusion, sheet lamination, etc, were also highlighted.
Furthermore, in the prospective of producing polymer matrix,
which is created by embedding fibers, Figure 13 illustrates a
summary of the most utilized fabrication processes for TPCs
[135]. Furthermore, Iwata et al [148] employed a microstruc-
ture that includes a protrusion and is produced by AM to
enhance the CFRTPs joined with Al by solid-state approaches.
Pinto et al [149] recorded that due to the adaptability and
remarkable inherent qualities, two-dimensional (2D) materials
have become a highly potential class of additives in the field of
PCs, which in consequence allows the researchers to develop
various NCs that might be used in a wide range of multipur-
pose implementations. The effectiveness of these NCs strongly
depends on the integrity of the 2D materials, the relationship
with the polymer matrix, distribution, and the form when
implanted in the polymer. Additionally, one of the most essen-
tial key factors for achieving multipurpose applications in PC
NCs is how the nanofillers (NFs) are embedded in the polymer
matrix. These NCs are usually created through three various
technologies, as shown in Figure 14, where red, green, and
yellow signify the advantages and disadvantages of each pro-
cess. However, Azizli et al [150] presented a novel PA6/PLA
nanocomposite by utilizing the graphene oxide and poly ethy-
lene-butyl acrylate-glycidyl methacrylate with superior
mechanical characterizations. While a PLA reinforced with
halloysite nanotube (HNT) through melt-blending the PLA
matrix with the HNT was studied by Murariu et al [151].
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Furthermore, the generated polymer matrix’s mechan-
ical, physical, and microstructural characterizations were
investigated. The production of the polymer matrix com-
posites (PMCs) by utilizing microwave energy has been
revised by Naik et al. [152]. Meanwhile, Melentiev et al.
[153] reviewed the capability of employing polymer metal-
lization, counted as one of the AM process techniques for
producing polymers and PCs. Nonetheless, Gupta et al
[154] presented a review study for exploring the benefits
of producing CFRPs by utilizing the near-surface mounted
(NSM) methodology. Additionally, it has been observed that
the NSM method influences the shear strength, fatigue resis-
tance, durability, and flexural capacity of the CFRPs. Besides,
it highlighted the bonding performance and failure mode of
the CFRPs. However, the most commonly utilized geome-
trical structure is the sandwich composite structure owing
to its advanced energy absorption capabilities and mechan-
ical properties, which depend on the core and face sheet
material characteristics as well as the strength between the
core-inner face sheet as recorded by Patekar and Kale [155].

Furthermore, various reviews were published in the
field of investigating the fabrication process utilized for pro-
ducing polymer matrix. For instance, Miranda Campos et al.
[156] investigated the TPC matrix formed by implementing
the resin transfer molding (RTM) method. Moreover,
Eratbeni and Rostamiyan [155] developed a novel model of
sandwich panels made of CFRPs with rhombus cores. Also,
the achieved outcomes of the vibrational analysis perfor-
mance of the novel sandwich structure were compared
and validated arithmetically and experimentally with the
traditional elliptical sandwich structure. Besides, the CFRTPs
are appropriate for mass-produced products and high-end
production [6,157-159]. Additionally, by comparing the
CFRPs with conservative metals, it is observed that CFRPs

Carbon-/Glass-/Aramid-Fiber-reinforced
Thermoset Polymers (i.e., CFRP, GFRP, AFRP)

Carbon-/Glass-/Aramid-Fiber-reinforced
Thermoplastic Polymers (i.e., CFRTP, GFRTP, AFRTP)

Thermoplastic Polymer Fiber-Polymer Matrix
Composites (i.e., PPCs or PFRPs)

(a) (b)

e.g,CFRP  Toray

* High-cost carbon fibers
¢ High modulus and strength
¢ Lightweight

e.g.CFRTP

2L |

* High-cost carbon fibers
* Lightweight
e Formability

Thermoplastic

(4
() Polymer Fiber

Thermoplastic
Polymer Matrix

PPC or PFRP

* Low-cost polymer fibers
¢ Ultra-lightweight
* Recyclability
* Formability and ductility

Figure 12: The most commonly used PC matrix reinforced fibers with their specifications and compared with (a-c) TPCs reinforced with TPC polymer

fiber (PFRPs) specifications [135].
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have comparatively higher tensile strength and stiffness,
outstanding corrosion properties, impact as well as lower
densities [160]. Sawpan [161] stated that while embedding
the FRP into the water, the composite thermal and mechan-
ical characterizations are exposed to vary owing to the dif-
fusivity of water molecules and ions into the polymer
matrix. An occurrence of hydrolytic reaction, a reaction
between sodium ions, which is one of the solution compo-
nents, and hydroxyl ions, will be generated for electrical
charge balancing, which will cause an osmotic condition,
as a consequence, a considerable pressure will be generated
that will cause degradation in the mechanical features of
CFRP [162] as well as GFRPs [163]. Moreover, Cheng et al
[164] analyzed a chain reaction of a cross-linked network in
CFRP by reaction kinetics models of CFRP to define the
degradation of CFRP immersed in supercritical fluids. It is
observed that the CFRP deterioration was caused mainly by
the scission of the C-C, C-0, and —O- bonds in the long-
itudinal chain region and the C-N bond in the cross-linked
segment of an Ep resin curing system.

Pressure and Heat

%W fabnic
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1.4 USW for TPC and TSC

In spite of all welding techniques that may be used in
joining TPCs, such as FSW, LW, RW, and electromagnetic
welding [165-168], the USW accomplished advanced bene-
fits for welding the TPCs including reliability; cleanliness;
harmlessness, which allows in situ monitoring; and less
welding time [169,170]. Additionally, in certain circum-
stances, it is possible to perform the joint by USW at a
temperature below the melting point of the weldment
while maintaining a high welding quality distinct from
other welding methods [171]. Joining polymers by the
USW has been prevalent and used in various industrial
applications for many decades [172-175]. Furthermore,
there are several differences between the joining process
of TPCs by USW and the joining process of metals by USW
[176,177]. For instance, Abbas et al. [178] performed a dis-
similar metal joint Al/Cu by USW while considering
increasing the welding contact area. Besides, a study inves-
tigated the USW of plastic optical fibers (POFs), which are

Pu‘ymcvlabnc @ Composite film
Polymer fabric "@C«nw&&lm
(c) =%
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Mod Polymer fabric @' Polymer fabric Composite fim
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Matrix , ot Pressure and Heat Pressure and Heat
< e Matrix
me A 2 o Mold | ed
(d) & e ject
mte
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Powder and solution Mold (i.c., fibers)
impregnations, matrix Reinforcoment (ie., fibers)
infusion, and injection Pressure and Heat
molding Fiber creel Roller Pressure and Heat Moid
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(e) E%ﬁﬁ (9) Infused Matrix
Moid Reinforcement
Matrix solution (ie., fiders)
; Fiber as i
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Figure 13: The most utilized fabrication processes for TPCs: (a) Film stacking, (b) hot compaction utilizing polymer fabrics only, (c) jot compaction
utilizing composite films; (d) powder impregnation, (e) solution impregnation, (f) injection molding, (g) matrix melt impregnation or infusion, (h) AM

via fused deposition molding; and (i) fiber intermingling [135].
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Figure 14: The various technologies for producing polymer NCs, addressing their major advantages (green) and disadvantages (red): (a) in situ

polymerization, (b) solvent casting, and (c) melt compounding [149].

made of polymethyl methacrylate polymer (PMMA) joined
with CFRPs fabricated by using VaRTM (Ep resin)/ther-
moset plastic. It has been noticed that the POFs melted
and firmly welded to the CFRP, and it experienced the
deformation of the CFRP. While no changes were noticed
in the CFRP, it remained in the same state without melting
[179]. Nevertheless, the USW compared with other fusion
bonding techniques, such as adhesive bonding and MFs, by
using the APC-2 laminates (PEI film) system has been exam-
ined [30,180]. Bonding TPCs by TPC films as hot melt adhe-
sive by fusion bonding has been examined; with high
interest in USW technology, the bonding was accomplished
for similar and dissimilar materials [2]. Meanwhile, Biswal
et al [181] utilized the USW to join vitrimer composites with
GF and CF. Sadeghi et al [182] joined GF/PA6 by USW
through using FED to concentrate the interface heat, where
the optimum welding time was found to be 1.8 s at which
the welding strength reached 24.46 MPa. Moreover, the
welding process of dissimilar materials is more sensitive
than welding similar materials, as a primary necessity, the
melting temperature for both materials must be identical
with a temperature variation less than 20°C [183]. The
interest in dissimilar welding TPCs to TSCs and TPCs to metal
has been widely studied by many researchers [184-190]. The
dissimilar USW joins metal to TPCs, and TPCs to TSCs [185].
However, as a demonstration in USW, the strength of the
composite interface is correlated with the molten polymer
flow [17]. A rich coupling layer of TPCs must be included in
the un-cured TSCs, owing to the fact that TSCs by itself is not
weldable; so the coupling layer must be added to achieve
weldability [5]. As mentioned in the literature, the curing
reaction can be done only for TSC resins, but the process

was referred to as (co-curing) [191]. Furthermore, several
publications focused on finding a strong method to connect
the TSCs with the coupling layer during the co-curing pro-
cess [94,191-193]. The polyethersulfone, PEI, and polysulfone
are examples of TP resins and share a typical amorphous
nature. Besides, they have also been reported as a compa-
tible common Ep system [193-195]. Elsewhere, at appro-
priate process parameters, the interface between ultrasonic
oscillation and TPCs will result in vibration energy that dis-
perses as heat, which elevates the temperature of the plastic
to a suitable level to endorse fusion bonds between the
workpieces [9]. On the other hand, a novel study on hybrid
welding of CFRTP established that the location of failure and
the final thickness of the weld line were significantly influ-
enced by the welding technique used as well as the initial
thickness of the TPC film. The welding procedures were
found to be made more accessible by thicker TPC films
[196]. Liu et al [197] investigated the nonlinear (NL) friction
performance of CFPA6/Al joined by USW. Lionetto et al. [198]
performed a joining process of CF/Ep/Al alloys by using
hybrid USW with single-spot. Besides, Shi et al [199] per-
formed a dissimilar joint by using the USW through joining
CF/PA66 to 6061A1 by using ED made of PA6, where the effect
of various process parameters and the impact of ED crystal-
linity on the welding joint strength were examined. Similarly,
Kalyan Kumar and Omkumar [200] joined the CF/PA6 by USW
while implementing interfacial coating instead of single ED,
where the interfacial coating layer behave as an insulator,
which avoids the galvanic corrosion in the joint and the fret-
ting damage. Furthermore, Huang et al [201] employed a
hybrid joining technique, combining the plastic deformation
and chemical bonding to join CFRTSs with thin metal sheets.
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Figure 15: A graphical representation of the interface of the polymer-polymer bonding processes: (a) molecular bonding, (b) chain interdiffusion, and

(c) chain entanglements [206].

Reisgen et al [202] implemented a novel technique for
embedding metallic elements through the PMCs to join metals
to polymers with FRC using traditional joining methods.
Furthermore, by investigating the welding performance of
the semi-crystalline polymers, Xue et al. [203] revealed that
the chain mobility of semi-crystalline polymers remarkably
decreased, since in autohesion process, the interdiffusion of
polymer chain and the crystalline structures’ presence are
considerably limited. On the other hand, Lameéthe et al
[204] explored the polymer dynamics subjected to the PEEK
matrix composite welding. The obtained results show that the
essential factors that influence the interface strengthening
are the crystallization and the interdiffusion. Additionally,
Kurtz and Devine [205] reported that when the polymer sur-
face cool rapidly by the injection molding components, a thin
layer of amorphous structure will form at the surface, which
is further explained by Awaja [206] to have a remarkable
influence on the self-honding progressions, since the crystal-
linity content of the surface layer affects the inter-diffusion of
molecules. For example, the graphical representation of the
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@

interface of polymer—polymer bonding processes is illu-
strated in Figure 15. Moreover, it has been reported that the
crystallinity highly influenced the interfacial shear strength
of CF/polyphenylene sulfide (PPS) and CF/PEEK [207,208].

1.5 Recyclability of CFRPs

As the global market demand increases, capital invest-
ments as well as the wastes of CFRP are increasing
annually, which cause the necessity of recyclability of
CFRPs to become essential. The waste of CFRP is consider-
ably important due to challenges and difficulties of it is
huge volume [209]. Besides, the maximum amount of
CFRP wastes is from aerospace industries [210]. In addition,
it is necessary to recycle this type of waste considering the
cost-effectiveness and environmental impact [211]. The
CFRP wastes can be classified into two groups, which are
new scraps and old scraps [212]. However, the necessity of
recyclability of CFRPs is also due to the great amount of

Mechanical Recycling

Crushing, grinding, milling and/or
shredding

Thermal Recycling
Pyrolysis, fluid bed process

Chemical Recycling

Solvolysis (using or supercritical
fluids and other solvent)

()

Figure 16: (a) The CFRP life cycle and (b) the most used recycling methods for CFRP [215].
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consumed energy that is required to fabricate 1kg of CFRP
which is around 28 MJ [213]. The life cycle and the most
used recycling method for CFRPs are shown in Figure 16.
Also, further classifications of CFRC waste and scrap man-
agements are shown in Figure 17. The mechanical recycling
technique considered efficient in managing the increas-
ingly great volume of CFRP waste based on grinding the
CFRCs into minor pieces [214]. Nonetheless, the amount of
materials, which are processed by the mechanical recy-
cling, can be utilized as a partial reinforcements in further
productions, which in consequence will restrict the combi-
nation in new materials [209]. Meanwhile, it is recom-
mended to use the chemical recycling for long fibers
[215]. However, with the recent progress in recycling man-
ufacture field, it was noticed that the recycled carbon
fibers (rCFs), achieved by implementing the solution degra-
dation or pyrolysis methodologies, has lower resin content
and good adhesion to the resin which subsequently aug-
ment the mechanical characterizations of the CFRP [216].
Additionally, researchers show interests in studying
mechanical and electrical properties and the environmental
impact of cementitious composites reinforced with rCFs.
Recently, Vidal et al. [217] proposed the enhancement of
binders made of ionic dynamic networks on the processing,
properties as well as recyclability of CF/Ep. Though each
recycling process has it is own advantages and limitations
and its own specific properties such as energy demand in
mechanical recycling [218], fiber recovery and their retain
characterizations [211], global impact and cost analysis must
be considered before starting the recycling process [212,215].
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There are many factors that restrict the recyclability of
CFRP, such as the initial steps before recycling process,
namely, identification, assembly, and separation are a con-
siderable challenge [219], the difficulty of having the same
significant mechanical properties of CFRP after recycling
process [220], the cross-linked combination between the CF
and TSs lead to more difficulties in treating the waste [221].
Further limitations facing the CFRP recyclability are illu-
strated in Figure 18. However, the recycling approaches of
CFRP are promising in terms of reducing the greenhouse
gas emissions, resource depletion, and energy usage [214].
Besides, the financial feasibility is directly associated with
the consumed energy cost and raw material cost.

2 Types of USW and types of joints
in USW

Mainly, the joints of polymers by USW can be achieved in
two techniques: with and without ED. In both techniques,
the direction of ultrasonic vibrations is average to the
welded surface, which is unsuitable for a flat surface.
Therefore, in the first type of joint by USW, a sharp wedge
protrusion, which is ED, is needed, where it connects the
outer surfaces of the welding piece to the other welding
piece outer surface. Although shear joint is the second type
of joint by USW, in this type of joint, the welding joint
processes can be proceeded without the ED, and the
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Figure 17: The waste of CFRC and dry CF scrap management routes [214].
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Figure 18: The limitations of CFRP recycling.

direction of ultrasonic vibration is directly parallel to the
coupling surface. Also, in this type of joint, the frictional
shear force causes heat generation in the mediator to be
welded [175]. Figure 19 shows schematic of shear and butt
joints in USW. However, the ED in butt joint can be designed
in various geometries, and Figure 20 shows some examples
of ED shapes [222].

2.1 Types of USW machines and welding
tools

Commercially, a variety of USW machines are available;
the main differences in USW machines are energy output,
maximum force, amplitude, and range of frequency, although
all these parameters are adjustable. The USW machines

Shear Joint Butt -l(lin

Figure 19: The schematic of shear joint and butt joint in USW.
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generally consist of the generator, transducer, booster, and
sonotrode [223-226]. Figure 21 illustrates the USW machine
components’ structure and schematic [227]. Mainly, all USW
machines provide the same variable adjustable process para-
meters, although there are some differences in their range.
However, the USW machines are classified into two types
based on the oscillation direction as shown in Figure 22
[228]. As realized from Figure 22(a), the oscillation direction
in polymers joining is perpendicular to the welding zone,
where the high vibrational frequency transmission causes a
heat generation at the interface which melts the TPCs and
makes the TPCs to flow and form the bond between the two
specimens to be welded [185]. Besides, from Figure 22(b), the
oscillation direction in metal joining (similar joint or dissim-
ilar metal to TPC) is parallel, which influences the interaction
area between the sonotrode and the specimens, in which the
friction action at the surface makes the solid-state bond to

Energy director
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Figure 20: Schematic of various shapes of ED in USW: (a) single triangle shape, (b) round/semi-circle shape, (c) multi triangle, and (d) flat film [222].
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Figure 23: Schematic of SSW joints using three dissimilar Sonotrodes. The grey semi-transparent parts specify the cross-section area of each

sonotrode: (a) D = 10 mm, (b) D = 20 mm, and (c) D = 40 mm [231].
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Figure 24: Schematic of DSW joints using two dissimilar sonotrodes. The grey semi-transparent parts specify the cross-section area of each
sonotrode: (a) a sequential spot welding with sonotrode D = 10 mm; and (b) an instantaneous spot welding [231].

form the joint without melting the metal material [229,230].
Nonetheless, a tabular classification based on the type of USW
machine used in joining polymers is presented in Table 2
without using an interlayer between the two welded
specimens.

Furthermore, the welding tool in USW process, known
as sonotrode or horn, and it has an impact on the perfor-
mance of USW processes, welding parameters, and welding
quality. However, owing to the high expense of the sono-
trode, only a few studies focused on examining the effect of
the welding tool. The welding quality and the welding pro-
cess are affected by the distance between the sonotrode
and the interface of the working piece; owing to these
joints categorized into two types: (1) Direct ultrasonic
(near-field), the distance of a maximum of 6 mm and (2)
indirect (far field the distance is greater than 6 mm, which
may reduce the amount of energy reaching the interface
[175]. Besides, a unique study has investigated the enhance-
ment of changing welding tools on process parameters,
overall welded area, LSS, and fracture of CF/PPS [231].
The samples were separated into two groups: single spot
welding (SSW) welded the first group samples by using
three different sonotrodes with 10, 20, and 40 mm dia-
meters, as shown in Figure 23. The first and second group
samples were welded by double spot welding (DSW) with
three different sonotrodes 10, 20 and 40 mm diameter as
shown in Figure 24 [231]. Furthermore, Yang et al. [232]
joined CF/PEEK by USW using sonotrodes with 10 and

20 mm diameters with different ranges of spherical radius.
Besides, the joint’s microstructure, fracture characteristics,
and tensile-shear properties were examined. The findings
demonstrate that joining with a spherical surface anvil can
efficiently concentrate welding energy. As a result, the
weld scatter was observed to decrease. The influence of
spherical radius on the weld formation and the area of
scattered welds are shown in Figure 25. For both large
and small sonotrodes, a remarkable quantity of scattered
welds was observed on the fracture surface by using a flat
anvil, and these results were significantly validated. Figure
25 demonstrates the welding energy and spherical radius
enhancement on the joint failure load. A significant varia-
bility in the failure load for flat anvils has been revealed,
which suggests that the weld quality is quite unsteady. A
lower quantity of energy is required to produce over
welds, and the energy concentration effect is superior for
spherical surface anvils with smaller radii, which implies
that the stability time will be shorter for the smaller radius.
The spherical surface anvil has increased stability and
mechanical qualities compared to the flat anvil [232]. Addi-
tionally, the sonotrode displacement and duration directly
impacted the weld quality. As a result, an in situ inspection
approach based on target sonotrode displacement and
duration has been developed to assess the weld
quality [233].

Moreover, an investigation of the microstructure (frac-
ture morphologies) of short CF/PEEK joined without ED by
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Figure 25: The Measured scattered weld area: (a, c) sonotrode with small diameter 10 mm, (b, d) sonotrode with large diameter 20 mm and the joint

failure load at dissimilar welding energies and spherical radii [232].

using different sonotrodes at various welding energies
(600-1,600) ], concluded with remarkable results, has
been carried [232]. The edge of the sonotrode may cause
a stress concentration which caused an approximately
annular weld shape and the weld quality was not good.
As shown in Figure 26, the fracture morphology is consis-
tent over the whole weld. For a standard weld, the primary
fracture mechanisms were adhesive fracture and fiber-
matrix debonding. However, as a result of the LSS test
and ultimate failure (UF) of CF/PPS joints by USW under
different diameter sizes of sonotrode, the ultimate failure
load (UFL) was considerably improved by around 86% by
using a sonotrode with D = 20 mm, and further improve-
ment has been obtained by using a sonotrode with D =
40 mm. More extraordinarily, the LSS observed reduced

by around 22% for sonotrode with D = 20mm and D =
40mm for SSW samples. Besides, the averaged LSS
achieved by using 20 and 40 mm diameter displayed super-
ficially greater scatter with 13 and 11%, in contrast, sono-
torde with 100 mm diameter achieved 3%. Furthermore,
the reduction in LSS denotes a decline in the load-carrying
efficiency of the SSW joints. This indicates that the total
welding quality obtained by utilizing the sonotrode with D
= 20mm and D = 40 mm SSW joint was lower than that
welded by using the sonotrode with D = 10 mm counter-
parts, as shown in Figure 27 [231]. Nevertheless, the sono-
trode with D = 40 mm provides more significant energy
efficiency due to its additional inspiringly enhanced mag-
nitude, almost 140%, of the spot-welding area. Further-
more, the SEM micrographs have been employed to
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weld zone at 1600 J. [232].
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Figure 27: UFL and LLS of the SSW joints formed by diverse sonotrodes at
the optimal displacements [231].

examine CF/PPS SSW welded failure modes using different
sonotrode sizes to evaluate the welding quality. It was
observed that the deep fiber imprints on polymer resins
and the bare fiber bundles depend on the fiber matrix
featured [231], which indicates that high welding quality
was achieved [3]. Figure 28 presents the SEM details of the
fracture surface welded by a sonotrode with 20 and 40 mm
diameter at 1,500 N, 1,000 N's™. In Figure 28(a), the fiber
was damaged directly and reduced the load-bearing ability
of the welded joints. In Figure 28(b), the voids that
appeared by using sonotrode with D = 40 mm SSW joints
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are thought to be one of the features that adequately
describe overheated welds as stated by Gao et al and
Zhao et al [170,234]. Besides, that considerably reduces
the bonding region which could effectively support the
load. Jongbloed et al [235] studied the impact of sono-
trode with rounded geometry on joining TPCs by USW.
It is revealed that significant welding quality can be
achieved by using rounded sonotrode, while reducing
the required heat at the welding interface since the direct
local exposure of the weldment to sonotrode is less.

2.2 Enhancement of spot number in USW
(single, double, and multi)

There are three main types of spot joints in USW: SSW,
multi-spot welding (MSW), and DSW. The TPCs joined by
SSW have similar characteristics of shear-strength joints
with single MF of identical size [72]. An example of the
difference between the SSW and DSW in the USW process
is demonstrated in Figure 29(a) and (b) [170]. However, in
the MSW in USW, consecutive welding has the potential to
be composite-friendly and has fast-processing viable alter-
natives to MFs for TPC structure and CFRTP [170]. The main
challenge of this type of USW is that each single spot has its
unique boundary conditions. Also, the number of spots has
an impact on the distribution of vibration among the

Figure 28: SEM details and fracture surfaces of CF/PPS SSW of (a) sonotrode with D = 20 mm and (b) sonotrode with D = 40 mm welded at the

corresponding optimum displacements [231].
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Figure 29: A schematic of an example of welded joints; (a) The single spot, (b) the double spot, and (c) the schematic of multi-spot USW [170].

Figure 30: The surface of fracture and the SEM for optimum displacement controlling for SSW and DSW of CF/PPS; (a) the optimal displacement
controlled in SSW, (b) the optimal energy controlled, (c) the DSW under optimal displacement controlling, (d) the spot 1 and (e) the spot 2. The scales
are 5mm (for stereo-microscopy) and 10 pm (for SEM) [170].

joining interface. Figure 29(c) depicts a multi-spot USW
schematic [170].

Comparison of the fracture surface through SEM of the
SSW with specimens joined by the DSW for optimum dis-
placement after the mechanical testing is illustrated in
Figure 30. In the SSW joints for both optimum displace-
ment and optimum energy control, bare fiber, deep fiber
imprints on the matrix, and torn fibers were detected as
the key features on the fracture surface, corresponding to
the primary failure mode, which is fiber-matrix debonding
[170]. A previous study claimed that the weld qualityhighly
affected by the fiber matrix debonding [3]. Furthermore,
for DSW, the features of the joints were the same as for
SSW: deep fiber imprints, torn fibers, and bare fibers.

Moreover, Zhao et al. [236] provided a comparison between
SSW, DSW and MSW in USW as an efficient substitution of
single, double, and multi-MFs. As shown in Figure 31, the
LSS has been implemented to obtain the failure and load
capacity for each type of joint. After performing the LSS,
the samples were examined, and it was determined that all
the spot-welded joints had a first-ply failure, as shown in
Figure 32. It is noticed that the average welded area in DSW
was less in the further examples in the four-row welded
joints because of the small spacing between the spots. This
can be owing to the contact between melted and unmelted
ED during the welding process since it is identical to the
double-row welded joints with the least inter-row distance
[236]. The study was followed by a further finite element



DE GRUYTER

EMSW joints BMMF joints

16000 — T —

—
-
=
=3
=

12000

10000

8000 1

4000 1

Load carrying capability (N)

2000 1

Number of spots/fasteners

Figure 31: The number of rows that make up the load-bearing capacity
of multi-row spot-welded and mechanically fastened junctions with

70 mm overlap length is present in the samples with 2, 3, and 4

rows [236].

(FE) investigation to analyze the mechanical performance
of single-lap TPC joints welded together by the USW [237].
Besides, cohesive zone elements were utilized to estimate
the welded areas. A comparison among the numerical
outcomes and the actual data served as the initial step
in validating the provided FE model. The numerical
outcomes offer prospective directions for the structural
design of TPC joints by USW and are used in airplane
construction.

The CF/PA6 joined by adhesive bonding was further
repaired by USW and studied by Zhang et al [70]. The
fracture microstructures of the adhesive-bonded joints
were observed to comprehend the reason for the scatter
in joint strength. The fracture surfaces of the examined
joints together with different adhesive coverage range at
the overlap area are shown in Figure 33, which shows that
each joint displayed an adhesive failure mode, demon-
strating the weak bond amongst the adhesive and the
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adherend. Additionally, after curing, the adhesive coverage
area transformed from a rectangular form to an irregular
form, changing the actual bonding area. As a consequence,
the strength of the joints varies. Besides, Figure 34 roves
that the weld area increased dramatically as the sonotrode
force increased with an oscillation duration of 0.9s. The
expansion in the welded area has considerably improved
the joint strength. However, when the joints were sub-
jected to a sonotrode force below 935 N over an oscillation
time of 1.2 s, considerable melting and outflow of molten
materials were seen at the faying surfaces (Figure 34d),
otherwise, the top of the healed joint developed a signifi-
cant sonotrode indentation.

3 Enhancement of USW parameters
and pretreatment process on
microstructure characterizations
and mechanical behavior

One of the main essential outcomes of any welding process
is the welded joint quality and the contract of the welding
process; according to this, many studies have investigated
the influence of vibrational amplitude [17,65], welding
force, welding pressure [259], holding time [259], welding
time [259,260], ED shape [3,260], vibration time as well as
power [64,238,261]. The USW process parameters have
been investigated to find the optimized parameter values
[170,262]. In addition, since the USW parameters affect the
mechanical properties and microstructure characteriza-
tion, this section covers the mechanical and microstructure
observations. Based on the literature, the welding quality
of CFRTP and CFRTS joined by the USW is measured based
on the mechanical properties like shear strength, tensile
strength, modes of failure, and the morphology of the

Figure 32: The SEM details of welded CF/PPS show the first-ply failure of fracture surfaces for 2, 3, and 4 SW joints [236].
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Figure 33: The adhesive effect coverage on the tensile test adhesive-bonded failure modes of 2.3 mm thickness CF/PA6 with 30 wt% fiber: (a) 25%, (b)
50%, (c) 75%, and (d) 100% adhesive coverage [70].

weldment. Moreover, owing to material failure, design Furthermore, the weld fracture surface can be processed
failure can be prevented, and the superior material can to detect the welding quality [255]. In this context, Miiller
be guaranteed by studying the mechanical properties. et al [263] investigated the characterization of welding
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Figure 34: The impact of various process factors used in USW on failure modes of restored adhesive-bonded 2.3 mm thick CF/PA6 composite with an
adhesive coverage of 50% at the overlap area, (a-c) welding time of 0.9 s and sonotrode force of (a) 312 N, (b) 623 N, (c) 935 N, and (d) 935 N for 1.2 s.
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quality of joined metal by USW through vibrational ana-
lysis, and various robust models were developed for var-
ious material parameters. Moreover, Gaurav and Singh
[264] addressed several parameters that enhanced the
fatigue behavior in composite FRP. The factors that trigger
this behavior in composites are reinforcement substance
fiber alignment or stacking pattern, polymer matrix, fiber
content, testing circumstances, and others. Besides, the
damaging process developments at the microscopic level
and the loading condition factors consist of stress ratio,
multiaxial stress, mean stress, and testing frequency. The
final welding strength of a joint is controlled by fibers in
the welded province, which leads to a decrease in the
volume of the melted polymer matrix and impacts the re-
entanglement of molecular chains in the polymers [240].
However, the LSS is used frequently to test the welded
CFRTPCs or CFRTSCs joined by USW, while in case the welded
specimens are metallic, the tensile test is used [265-267]. Sig-
nificantly, the LSS has been used widely for convenience and
for evaluating joint shear strength [268].

3.1 Welding energy

By investigating the CF/PEEK joined with SSW USW with
respect to modes I and II, the results show that by using
constant welding energy, the supreme critical strain
energy release rates (GIC and GIIC) were achieved [269].
Likewise, while investigating samples with dissimilar sur-
face roughness, a significant correlation has been noticed
between welding energy and welding strength [270]. On
the other hand, the adherents’ stiffness and thickness con-
siderably impact the amount of required welding energy
[64]. Furthermore, it has been indicated that using the
welding energy to control parameters is more suitable
than using vibration time [64,269]. Zhi et al. [271] found
that the welding energy affects the weld indentation, joint
strength, tensile strength, and welded area. The results of
these relationships are presented in Figure 35. In a further
investigation, an FE model has been generated to study the
stress and welding indentation, and it has been observed
that the welding energy directly affects the vibrational
stages of the welding process [269]. Besides, Zhang et al.
[272] found that increasing the welding energy above the
optimum value will have the opposite effect on the weld
strength and will no more be beneficial. Since designing
the welding joint in USW of CFRT is considered to be one of
the essential steps, Wang et al. [273] explored the micro-
structure and the fracture characterizations after per-
forming the tensile test for welded CF/PA66. Besides, the
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obtained results reveal that the structure surface behaves
as an ED, which in consequence significantly decreases the
dispersion and arbitrariness of the weld dispersal, which
emphasizes the weld quality and guarantees more efficient
weldment compared with those of unstructured surface.

Furthermore, the LSS has been obtained by two
approaches, LSS1 (maximum load over the entire overlap
area) and LSS2 (maximum load over the actual welded
area), which were measured for cross-ply laminate, and
the outcomes show that even when the energy increased
over 450 ] without using ED, the welding quality was unaf-
fected. Meanwhile, this increase only impacts the welding
efficiency. Figure 36 presents the results of welded areas
with and without ED under various welding energies [6]. In
addition, by measuring the relation between the UFL in the
LSS test and the welded area, it is noticeable that in SSW
and DSW, increasing the welded area causes a remarkable
increase in the UFL and vice versa [170].

According to the literature, the fracture surface can be
used to forecast the welding quality following the LSS of
joined CF/PAS, the partially melted joint bead of the over-
welding was examined, whereas the melted material has
been ejected [255]. Because the polymer—polymer interface
curing of CFRTP for the under weld was the predominant
finding in the microstructure analysis, the interfacial
matrix fracture has been observed individually, as shown
in Figure 37(a). More fibers shift into the weld region as
they are welded, which results in more pullout fibers, as
presented in Figure 37(b). However, excessive welding
caused part of the polymer chains to break into gases,
leaving the weldment with significant porosity, as shown
in Figure 37(c). Figure 38 shows the supreme shear load
with diverse preheating temperatures and welding condi-
tions, and the outcomes without preheating are involved as
a baseline. The extreme shear load initially rises with
rising welding energy when the preheating state is
assumed to be constant.

Nevertheless, at a critical point, it reduces (1,000] in
this case), as presented in Figure 38 [255]. The welded joints
go through stages which are under-welded, good-welded,
and over-welded by rising the welding energy [274]. How-
ever, by studying the influence of welding energy on the
microstructure of CF/PA6 with 40 wt%, joined by USW, the
microstructure investigation of the welded part shows a
close relationship between the mobility of the fiber and
matrix inter-diffusion. Furthermore, under welding
occurred at low energies (Figure 39) at 200]. The weld
zone is dominated by melted polymer, with hardly any
visible fibers. According to Figure 39 at 400 ], when energy
rises, the weld region expands, and as polymer chains pass
across the welded region, more random fibers are
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Figure 35: The impact of welding energy on the joint strength, weld indentation, and welded area of the CF/PA66 [271].

observed. Referring to Figure 39 at 600 J, when the joint is
over melted with excessive energy, some pores were cre-
ated that encroach the area amongst the polymer and the
fibers, changing the distribution and arrangement of the
fibers from the original material [274].

tWeld area and performance features like LSS are two
factors that can be utilized to quantify weld quality. Figure 40
depicts the correlation between weld energy, welded area,
and welding strength. Three weld quality zones can be estab-
lished by defining the desired weld strength to three regions:
an under weld (region I), a normal weld (region II), and an
over weld (region III). Figure 40 demonstrates that when weld
energy increases, the weld area asymptotically grows, and
LSS has increased before decreasing. Any definition of a
“normal-weld” region must include the location of the max-
imum shear strength. Nevertheless, it is necessary to decide
where to position the boundaries of regions II and III [250].
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The USW has been utilized to join the TC910 (CF/PA6)
with and without implementing the ED by using the control-
ling mode. Besides, at each welding energy value the welded
area and the indentation of the sonotrode were explored. As
an outcome, as shown in Figure 41, the twill fiber loads were
instantly decreased, followed by a rise to the values men-
tioned in Figure 41. The same trend can be observed in all
different values of welding energy with/without FED.
Because, the failure progressively spread from the borders
of the joints, identical fracture surfaces were detected with/
without FED [6]. By replacing the cross-ply fiber with twill
fiber with the PA6-3KT1 (CF/PA6) shows that the maximum
load is more significant when using FED. The obtained
results of both fibers were similar for LSS and the fracture
results were similar to the results that cross-ply fiber iden-
tical fracture surfaces obtained were detected whether with/
without FED, as shown in Figures 41 and 42 [6].
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Figure 36: Welded area of (a) cross-ply laminate joints for LSS and (b) twill woven laminate joints for LSS [6].
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Figure 38: Experimental results of maximum shear load with various
preheating temperatures and welding conditions, also the outcomes
without preheating are included as a baseline [255].

A recent study found that the shear strength in the
welded joint at very high welding energy decreased due
to the generation of pores [274]. An FE model following the
experimental exploration using ABAQUS was accom-
plished to apply uniaxial pulling forces to the welded cou-
pons, where a connector comprises two reference points.
The CF/PA6 joined by USW under seven various levels of

welding energy for examining the assessment of welding
attributes without ED and the polymer morphology in the
cross-section shown in Figure 43(a). Also, the evaluated
fracture surface of the weld area is presented in Figure
43(b). It proves that particular pores were presented in
the bonding layer following critical welding energy at
1,000 J. Additionally, Figure 43(c) illustrates the expan-
sion of the pores at 1,600] of welding energy. It is
observed that the pores begin to form within the
bonding layer and in the coupon volume, further con-
firming that overheating during USW is the main reason
for the pores to form and not the trapped gas. The
bonding effectiveness of the joint decreased because
the pores appear in the bonding layer [252]. More infor-
mation about variations in USW parameters and their
enhancements on mechanical properties, welding
quality, and welding strength are presented in Tables 2
and 4.

3.2 Welding time

It has been defined that the structure of the welded specimens
has a remarkable effect on welding time [269]. By examining
the LSS and fracture failure of static welding by USW SSW to
examine the similarity between SSW and continuous USW,
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Figure 39: The microstructures cross sectional evolution through the welded area of CF/PA6 [274].

Figure 44 shows the results of LSS values consistent with the
SSW process. For 80 pm and 500N, the strength steadily
increased to a high interval, ie, 36 MPa for a vibration time
of 415-565 ms. By maintaining the vibrational amplitude at
80 um and rising the welding force to 1,500 N, the same strength
is obtained in less vibrational time of 260435 ms [165].

Upon investigating the CF/PEEK and the enhancement
of welding time on the welding strength of the joint with
and without ED, the results show that gradually rising
welding time will increase the welding strength until the
welding time reaches its optimum value. However, the
welding strength decreased after a further increase in
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Figure 40: The LSS and weld area variation with weld energy determined by microstructure investigation [250].
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Figure 42: PA6-3KT1 (CF/PA6) twill fiber load vs displacement with/without FED and fracture surface with FED [6].

welding time, followed by voids and large cracks [256]. An incessant gap at the interface of the joints was noticed
Above all, it has been shown that by studying the relation because the 0.7s ultrasonic time was insufficient, and the
between welding time and the LSS with and without using heat generated in the interface was insufficient to melt the
the ED, the LSS drops to half of its value without using ED. interface entirely, as illustrated in Figure 46(a). The gap length
Figures 45 and 46 demonstrate the joint morphology without at the interface gradually reduced as the ultrasonic action time
ED vibration times of 0.7, 0.8, 0.9, 1.0, and 1.1 s, respectively. extended to 0.8-0.9 s, as illustrated in Figure 46(b) and (c).
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Figure 43: (a) The microstructure cross-sectional area of the weld zone of CF/PA6 at 1,000 J, (b) the resultant fracture surface, and (c) the dispersal of
the pores in the welded coupon of CF/PA6 at welding energy of 1,600] [252].
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Functions

Vibration stage

Effects

Provide welding energy

Welding energy

(-) Insufficient welding energy

Determine the intensity of relative motion Welding time (+) Void formation

Determine the frequency of relative motion Vibrational (+) Degradation of polymer
amplitude

Provide intimate contact Frequency (+) Distortion in fiber orientation

Transport the ultrasonic vibration

Welding pressure

(-) No slip at the interface

(+) Damage the substrate

(+) Squeeze out the melted composite

Solidification stage

Allow the welded parted to be fully cooled

y Holding time

(-) Insufficient cooling

Facilitate the welded parts to form the bond

y Holding pressure

(-) Insufficient pressure to hold melted
welds

(+) Squeeze out the melted composite

Pretreatment
Reduce the AT Preheating More effective with a higher welding energy
Improve thermal stress in joints
Preheating the interface to concentrates the welding
energy
Change the specific properties Moisture »{ Negative effect

Note: The (+) sign means high value and (-) sign means low value.

Nevertheless, as demonstrated in Figure 46(d) and (e), the
excessive ultrasonic duration can also result in cracks and
voids at the joint’s HAZ. The width size of the HAZ rose from
0.2 to 0.42 mm once the welding time extended from 1.0 to 1.1 s.
However, an interface with strong bonding was achieved at
1.1s ultrasonic action time. Additionally, throughout the HAZ,
more substantial voids and cracks were scattered, also the
largest porosity area only reached 0.003 mm?.

The energy dissipation in the TPCs has been enhanced
by longer welding time [272], where longer welding time
cause to reduce the joints’ void formation [275]. However,
at an elevated temperature, a degradation in the TPCs and
fiber distortion in its orientation may occur due to a very
long welding time [276]. Meanwhile, longer holding time
is reported to enhance the welded joints’ strength by
allowing the part to cool down fully [276]. Welding the
polyoxymethylene (POM) to PMMA through a coupling
layer of PLA in a very short time generated weak friction
heat for various welding pressures. Besides, all welded
strengths were low at a welding pressure of 0.1 MPa. The
highest welding strength was 38 MPa and measured at a
welding time of 4 s and a welding pressure of 0.2 MPa. The
ideal welding strength at 0.3 MP and 4 s of welding duration
was 47 MPa. However, the strengths were first improved and
then reduced similarly at 2, 3, and 4 s, as shown in Figure
47(a) [277]. Additionally, after welding PMMA to POM by USW
by using the PLA layer, the tensile test was accomplished, and
as an outcome, shown in Figure 47(b), the minimal stresses
and strains of POM, PMMA, and interposed sheet (IPS), with

POM and PMMA recording yield strengths of 61 MPa and
65MPa, respectively. POM showed ductile performance
with an 85% minimal strain, while PMMA displayed brittle
features with a 10% nominal strain. Only 43 MPa and 5% were
the nominal strength and strain of the IPS, respectively. The
rupture surface image of the IPS is shown in Figure 47(c),
where it is possible to realize the contact between the trans-
parent PLA and opaque POM. In other words, the sime-crys-
tallinity might be more interesting as compared to the color.
However, due to their transparency, the interface of PLA and
PMMA was difficult to observe from the photos. There is no
evidence of phase separation, which would indicate that
PMMA and PLA were also compatible with POM. All of the
materials were suitable for welding, and the IPS made of the
three polymers successfully joined POM and PMMA [277].

The relation between vibration time and LSS of joined
CF/PPS similar welded by USW with triangular ED has been
tested. The results indicate that the LSS as a function of the
vibrational period increased until the optimum value of
vibrational time, as shown in Figure 48. Also, at an approx-
imation vibrational time equal to 217 ms the LSS reached
around 30 MPa, and by increasing the vibration time to 520
+ 58 ms, the LSS increased as well to 37.1 + 1.3 MPa. It is
worth mentioning that the required vibration time to
reach the extreme strength by using triangular ED is lower
than the required vibrational time when using FED [278].
The numbers in the graph designate the stage in the
welding process in which the specimens for mechanical
investigation were achieved.
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Figure 44: Average LSS OF SSW at different welding/vibration times at various welding forces and welding amplitudes. The bars denote plus and

minus [165].
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Figure 45: LSS of samples with and without ED [256].

Considering the welded interface of POM to PLA joined
by USW as a microstructure observation through the polar-
izing microscope at 4 s welding time and 0.2 MPa welding
pressure, as presented in Figure 49 [279]. There are differ-
ences in the crystalline forms of PLA and POM; the crystal-
line form of PLA is smaller than that of POM. However, the
POM crystalline is identical to the IPS crystalline. Addition-
ally, the two sides of the interfaces melt and produce mole-
cular inter-diffusion due to IPS ultrasonic vibrations.
According to Figure 49(a), the pressure employed during
welding causes the melted polymers to force out of the
interfaces. As a result, if the welding pressure was signifi-
cantly high, some of the melted IPS polymers were forced
out of the interfaces, breaking the IPS and stopping the
friction among the two weld matrixes. The IPS thickness
was altered to be between 40 and 50 um, as shown in

Figure 49(b). The IPS was separated into two shapes, parti-
cularly along the interfacial direction, as shown in Figure
49(c) and (d). The crystalline forms of PLA are more sub-
stantial for the weld line on the PLA side referred to as the
mixed layer of PLA and IPS. This inter-diffusion layer sur-
rounds the weld for PLA and IPS molecules. The crystalline
morphologies were comparable, and the interface is fuzzy
for the POM and IPS weld lines, as shown in Figure 49(d). In
contrast to the other blend layer, the POM and IPS blend
cannot be easily noticed by the polarized microscopy [279].
Furthermore, the relation between joint strength and
welding time for the similar joined CF/PA66 without ED
with 30 wt% CF has been examined, and the microstruc-
ture characterization was defined [127]. It has been
observed that the pores found in the areas between the
fusion zone, the HAZ, and the severe weld indentation on
the surface of the upper workpieces reduced the loading
capacity of the USW joints and led to the early fracture of
the welded carbon/nylon 66 composite. The balance
between the beneficial impacts of the weld area and the
detrimental effects of the weld indentation and porosity at
the fusion zone determined the strengths of the ultrasonic
welds. Figure 50 presents the impact of the sonotrode pres-
sure and the welding time on joint strength. Meanwhile,
Figure 51 shows the microstructure observation [234]. Zhi
et al. [243] studied the impact of welding time on peak load
and welded area; both values show a linear increase until
welding time reaches 2 s. After that, both values remained
constant. This outcome is accurate in case that circular
conventional USW and hollow fixture USW (HFUSW)
were utilized. Additionally, if the square conventional
USW and HFUSW were used instead, the peak load and
welding area would increase to the optimum welding
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Figure 46: Morphology of the welded CF/PEEK without implementing ED at various vibrational time: (a) 0.7 s, (b) 0.8, (c) 0.9, (d) 1.0s, and (e)
1.1s [256].
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Figure 47: (a) The welding strength at different welding pressures and various welding times; (b) nominal stress vs nominal strain for PMMA, POM,
and IPS; and (c) the SEM images of the IPS fracture surface after the tensile test [277].
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Figure 48: The LSS as a function of vibrational time [278].

time, which is almost 1.75 s, followed by a decrease in both
values. Furthermore, Alexenko et al. [280] joined PEI/CF by
USW without using ED at various welding time. The
obtained results show that by rising the welding time
from 0.4 to 0.8s, has no significant changes in LSS were
it reached 42 and 48 MPa, respectively, although the micro-
structure of the fusion zone has been noticed to fundamen-
tally change. Besides, the experimental test was followed
with numerical simulation, which shows that the thickness
of prepreg and the ratio of PEI/CF did not cause a signifi-
cant impact on the tensile strength stress—strain diagram.
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Figure 50: The observation effect of sonotrode pressure and welding
time on the strength of the CF/PA66 without ED [234].

However, Calabrese et al. [281] performed LSS to explore
the welding strength of CF/Ep joints by USW through opti-
mizing process parameters, especially welding time and
sonotrode pressure. Meanwhile, the welding process was
accomplished by including electrospun veils which consist
of either nylon or polyether into the outer layers of the
laminated composite. A remarkable impact of the TPCs
interlayer was achieved, although by implementing the

PLA

Interface

IPS/PLA o & "%
blend A

Figure 49: Polarizing microscopy images of the welded interfaces of POM/PLA joints [279].
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nylon, greater mechanical strength was obtained. Addi-
tionally, this type of joints has promising application in
sports automotive, in which the reliable and rapid welding
part is fundamental. More information about variations in
USW parameters and their enhancements on mechanical
properties, welding quality, and welding strength are pre-
sented in Tables 2 and 4.
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3.3 Welding force and pressure

In a displacement-controlled USW of complete overlaps, a
plateau in displacement has been obtained due to
employing a constant welding force, where it occurred
just before the optimum stage [64,65,238]. In contrast,
some studies hold the welding force constant [72].

Upper workpieces

Carbon fiber

Carbon fiber *

‘ Lower workpieces ’-—Faying interface

Figure 51: The observation of the effect of welding time (a) 1.7 s, (b) 2.1s, and (c) 2.5 s on the microstructure of the CF/PA66 without ED [234].
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However, it has been proven that varying the welding
force and vibrational amplitude affects the vibrational
time and dissipated power significantly [65]. Furthermore,
increasing welding force or vibrational amplitude leads to
greater dissipated power combined with more significant
and quicker heating rates at the welding interface conse-
quently, the vibrational time decreases for a travel value
[64]. Overall, the combination of high vibrational ampli-
tude and force limits the supreme size of the welded
area due to increased power in a short welding time [65].
A further investigation studied the relationship between
different travel, welding force, and amplitude and their
impact on the LSS presented in Figure 52 [64].

The USW technique has been used to create a dissimilar
joint of CF/PEEK-CF/Ep by implementing a coupling layer of
PEL The relation between welding force and vibration into
the other welding process parameters and welding quality
was examined. The obtained outcomes reveal that reducing
the vibrational amplitude or the welding force will rise the
essential heating time which is required to achieve the
optimal welding strength, since the heat generation rates
reduced. Besides, the reduction in amplitude or welding
force increases the exposed temperature of CF/Ep in the
welding process. Nevertheless, during the welding circum-
stances which produced the highest welding strength, local
symptoms of thermal degradation were discovered in the
CF/Ep adherend. Nevertheless, these changes were not sub-
stantial enough to be shown as impacting the welded joints’
maximum LSS. Figure 53 demonstrates the impact of sono-
trode displacement on the LSS for arrangements welded at
various welding force. As indicated in Figure 53, reducing
welding forces caused the process to move toward minor
displacement values. This change had a substantial impact
on the 400/86 setup. Meanwhile, the reduction in LSS in the
1,200/86 configuration was less noticeable than the values
recorded in 800/86 and 400/86 at the maximum points.
Hence, the maximum points are 0.28 mm displacement for
800/86 and 0.18 mm for 400/86. Furthermore, Figure 54 pre-
sents the concerning variations in the welding force in 1,200/
86 and 400/86 and the impact of reducing welding force on
the generated temperature at the welding interface. The
generated temperature improved at a similar step, and the
800/86 configuration temperature improved expressively
[282]. Nonetheless, that study shows that both ED as well
as the coupling layer expert a squeeze flow, as verified
through the reduction in thickness and a slightly wavy
edge among both the polymers as shown in Figure 55 which
presents the cross-section micrographs. Since the heat gen-
eration rates were identical at all conditions, and the tem-
perature curves were overlapping until almost 250 ms into
the welding process Figure 54 [282].
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Figure 52: Average LSS vs travel for the different sets of amplitude and
force [64].

Koutras et al. [245] examined the degree of crystallinity
at the welding interface of USW CF/PPS joints by exploring
the effect of welding amplitude and force. The results
prove that the cooling rates at the center of the overlap
of the joints dropped from 41 to 16.9°Cs™* with moderately
low welding force of 300 N and vibrational amplitude of
51.8 pm, contrary to great welding force of 1,000 N and
vibrational amplitude of 86.2 um. The decelerate heat gen-
eration below 300N and 51.8 um was attributed to the
lower cooling rates. In addition, at lower welding force
of 300 N and vibrational amplitude of 51.8 um increased
the crystallinity to moderate levels and the crystal perfec-
tion. However, great welding force of 1,000 N and vibra-
tional amplitude of 86.2 um primarily formed amorphous
PPS and imperfect crystals. Besides, reduction in cooling
rates and longer melting time with lower welding force
and vibrational amplitude, which favored the circum-
stances for strain-induced crystallization to take place,
were guaranteed. Moreover, the combined static (welding
force) and dynamic (vibration amplitude) strains
throughout the USW process led to the cyclic strain, &,.
In addition, it can be assumed that only the dynamic
strain will significantly affect heat generation because it
is numerous orders of magnitude lower than the static
strain [283].

By studying the factors that affect joint strength, Liu
et al. [259] reported that the welding pressure is less crucial
than other parameters on welding strength. However,
Zhang et al. [272] testified that the significant welding pres-
sure cause to have acceptable interfacial contact for
joining which accordingly reduce the welding strength sig-
nificantly. Another investigation reported that a drop in
the overall strength was detected when increasing the
welding pressure significantly, which destroys the TPC sub-
strates and crowds out the molten matrix from the contact
area, which becomes delicate [276]. Nevertheless, the
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Figure 53: The impact of sonotrode displacement on the LSS evolution in the 1,200/86, 800/86, and 400/86 configurations [282].

holding time of pressure has no effect on the welding effi-
ciency of high-stiffness material [12].

In addition to the parameters mentioned earlier, travel
replaces vibrational time with the displacement of the sono-
trode, which is considered one of the parameters of the
vibrational phase. In travel, as a function in a range of
0%-100%, the thickness of ED will decrease, though the
complete melt and maximum squeeze of ED occurred before
reaching 100% travel. Figure 56 presents a comparison by
SEM of welded CF/PEI between different percentages of

1000 1500 2000 2500

0 500

travels: 20, 40, 60, and 80% [64]. At a travel of 20%, it is
observed that there is a deep fiber imprint on the post-
welded ED, and there were no patches of intact ED. Besides,
at 40% of travel, broken fiber bundles were observed on the
fracture surface. Furthermore, it is noticeable that there
were resin flashes and kinking of the uppermost layers of
the lower substrate at the edge of the overlap, combined
with porosity at 60 and 80% travel. Likewise, at short tra-
vels, significant patches of intact ED and shallow fiber
imprints on the post-welded ED were observed [64].

—1200/86
——800/86 ||
400/86 |

3000 3500 4000 4500 5000 5500

Time (ms)

Figure 54: The enhancement of reducing force on temperature progress at the interface between the PEI coupling layer and CF/Ep adherend
(0.28 mm displacement in the 1,200/86 and 800/86 cases, up to 0.18 mm in the 400/86 case). The diagonal arrows specify the end of the vibration.
While, the vertical arrows specify the end of the USW welding process [282].
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Figure 55: The cross-sectional micrographs of illustrative samples of CF/PEEK with PEI ED at diverse force/amplitude patterns and diverse displa-
cement caused in supreme LSS. The displacements values are (a) at 0.24 mm, (b) at 0.24 mm, (c) at 0.16 mm, (d) at 0.24 mm, and (e) at 0.24 mm. The

arrows specify the resin-rich weld line [282].

For the purpose of examining the fatigue behavior of
the carbon/Elium®, a stress ratio (R) = 0.1 was adjusted at
elevated temperature and 5Hz, while considering the
optimum value of LSS. Figure 57 presents the results of
LSS and the S-N curve for several cycles of failure for
both adhesive and the welded formation [63]. Figure 58
shows the microstructure after mechanical failure with
the naked eye and SEM test formation [63].

Additionally, Figure 59 displays maximum LSS values
and load—displacement curves for various welded setups of
weldment CF/Elium®-CF/Ep; with the absence of a coupling
layer, a carbon/Ep laminate shows a supreme LSS of 5.02 MPa

at a welding condition of 3 s and 5 bars of weld pressure. The
weaker link between the adherents, which led to the pure
adhesive failure, is the reason for the reduction in the
welding strength. Besides, Elium® composite welded to Ep
composites with co-cured Elium® film (ELF) has revealed
significantly lower LSS readings of 3.16 MPa. The failure
modes justify the drastic reduction in bonding strength. The
film was entirely de-bonded from the Elium® particle (ELP)
rather than being cohesive or between adherents; the failure
occurred between the ELF and the ELP adherend [284].
However, based on the observation from this review,
the shortage in results obtained by investigating the impact



DE GRUYTER

of welding force on welding strength and quality may be
due to the reason stated in literature studies. More infor-
mation about variations in USW parameters and their
enhancements on mechanical properties, welding quality,
and welding strength are presented in Tables 2 and 4.

3.4 Vibrational amplitude

The impact of vibrational amplitude and welding force on
CF/PPS welded by USW has been studied. The results show
that a reduction in the cooling rate was caused by setting
the low vibrational amplitude and welding force, which
leads to slowing down the heat generation. As a result, a
substantial HAZ is generated [245]. Moreover, a consider-
ably high welding strength may result by employing high
vibrational amplitude, which produced further energy on
the weldment, leading to increased strength [285]. Addi-
tionally, it has been revealed that the deformation of fibers
at the fracture surface decreases with the reduction in the
amount of vibrational plausible amplitude [64].

By investigating the fracture surface through SEM
after the DLS of CF/PEEK joined with USW by using spot
ED, a post visual examination of the welded specimens
revealed that the fracture surfaces contained a circular

Developments in USW of similar and dissimilar joints of CF-reinforced polymers
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welded junction on the overlap. As illustrated in Figure
60(a), there was no additional damage visible, and the
remaining overlap was undamaged. Besides, the SEM inves-
tigation confirmed intralaminar failure in light of the excel-
lent bond produced by the welding technique. Such failure
mechanism is illustrated in Figure 60(b) and (c) by tearing
the outermost laminate ply’s fiber bundles and debonding the
fiber matrix. Figure 60(d) shows a further magnification of
(¢) to provide a more explicit observation of the separation
of the fibers from the TPC resin, which denotes the debonding
of the fiber matrix [72].

The exploration of crystallinity on the interface of
ultrasonically welded CF/PPS joints has been reported by
examining the vibration amplitude and welding force
effects on the level of crystallinity on the welding interface.
The outcomes show that the USW process parameters sig-
nificantly influenced the degree of PPS’s crystallinity and
crystal perfection. Besides, low welding force of 300 N and
vibrational amplitude of 51.8 ym increased the crystallinity
to an adequate level along with the crystal perfection.
However, great welding force of 1,000 N and vibrational
amplitude of 86.2 ym primarily formed amorphous PPS
and defective crystals. In addition, from the DSC thermo-
grams and the WAXD diffractogram, it was evident that a
semi-crystalline structure was achieved in the PPS, even if
the crystal perfection and crystallinity degree were not as

Figure 56: SEM detail of CF/PEI joint at 300 N; 86.2 pm; and 20, 40, 60, and 80% travel [64].
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Figure 57: Adhesive and welded formation results: (a) LSS vs elongation

great as in the original conditions of the PPS EDs (ie.,
before USW) Figure 61 shows the impact of USW process
parameters on the crystallinity of the PPS ED [245].

The microstructure of CF/PA6 welded by USW without
ED using a servo-driven welder has been examined.
Besides, the SEM results before and after the welding pro-
cess are presented in Figure 62. The cross-section of a weld-
ment while being welded under standard conditions using
a servo-driven welder is illustrated. Intimate contact
between the two surfaces exists after the two workpieces
proximity to joint, as shown in Figure 62(a). The fibers
were still securely encircled by the matrix during that
time because the components at the interface had not yet
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and (b) fatigue test results [63].

started to melt. The polymer chains spread over the inter-
face as the temperature rises, and the surface becomes less
smooth (shown in the yellow hox). As the joint was created
under the ultrasonic, as depicted in Figure 62(b), the visible
interface among the workpieces vanished, and more fibers
were exposed as the interface material melts [248]. In addi-
tion, this welding process was run at various conditions of
process parameters; the relation between parameters and
the weld characteristics using a servo-driven welder is pre-
sented in Figure 62(c). Furthermore, research focused on
studying the welding quality of CF/Ep to CF/PEEK joined by
USW with and without a coupling layer of joining PEEK,
taking into consideration two welding parameters, which

(b)

ELC_FED (0.5mm ELF)

30 )

SEM Top-Adherend EL:

=13
D @ stress of 5.68 MPa

Figure 58: The adherends failure at 5.68 MPa: (a) ELC_IED, (b) ELC_FED, (c) adhesively bonded (SAF 30 5), and (d) the SEM of ELC_IED top

adherend [63].
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Figure 59: (a) Load vs displacement and (b) the maximum LSS of all the welded configurations [284].

Broken fibre bundles
—“Jand fibre imprints

Figure 60: The fracture surface of CF/PEEK at (a) optical and SEM detail, (b-d) for USW spot welding after DLS tests. Welding parameters: 600 | energy,
1,500 N welding force, and 60.8 ym peak-to-peak amplitude [72].
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are vibrational amplitude and welding force, was carried
out. The results show that these combination of parameters
have an impact on preventing the thermal degradation of
Ep resin owing to the short heating time [190]. In the case
of TPCs/TSCs welding, a delay in the degradation in TSC
adherents may be caused by a very short heating time.
The heat which generates adhesion was caused by the
reduction in heat transformation from TPC coating to
TSCs. Brito et al. [247] found that the peak load increased
linearly with the increase in amplitude in joining the CF/
PA66 under the effect of moisture on the USW. However, by
studying the effect of increasing moisture absorption with
increasing amplitude, the welded area and peak load were
decreased. According to the authors, the vibrational ampli-
tude may be affected by using misaligned adherents as well
as other USW process parameters. However, Villegas [65]
stated that the magnitude and the duration of power con-
sumption were affected by the vibration amplitude during
all USW process stages; either low/high welding force was
utilized.

Three welding samples per alignment, up to 0.28 mm,
have been examined by Tsiangou et al. [282], to determine
the impact of reducing amplitude on temperature at the
interface amongst the PEI coupling layer and CF/Ep
adherend. The variation in temperature at the interface
in between the CF/Ep adherend and the PEI coupling layer,
in welding setups with various welding forces and vibra-
tional amplitudes is shown in Figure 63. The temperature
raised at an almost identical pace in the 1,200/86 and 1,200/
70 configurations regardless of variations in the vibra-
tional amplitude. The temperature generally rose more

Effect of process parameters on crystallinity degree
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Figure 61: The standard DSC measurement of the calculated crystallinity
degree of PPS ED films. The ED film with moderate crystallinity processed
by low vibration amplitude and low welding force. But predominantly
amorphous ED films were produced by the high vibration amplitude and
high welding force [245].
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slowly in the 1,200/60 setup than in the other two config-
urations. In contrast, the maximum average temperature
value was recorded at 800/86 equal to 339 + 27°C. In addi-
tion, it should be noted that the most extraordinary tem-
peratures were mainly attained just after the vibrations
were turned off, which is compatible with the theory that
the temperatures were caused by heat conduction
through the PEI coupling layer. Furthermore, Wang
et al. [286] considered the enhancement of welding ampli-
tudes on CF/PEI joint properties, and the temperature
measurement field has been analyzed. Acceptable
welding quality has been obtained at the optimum ampli-
tude value. However, the PEI resin of the joints’ interface
melts significantly when the amplitude increases exces-
sively. More information about variations in USW para-
meters and their enhancements on mechanical properties,
welding quality, and welding strength are presented in
Tables 2 and 4.

3.5 Impact of pretreatment process (heating
time and heat treatment)

The preheating process enhances welding quality and joint
quality. Besides, it has an extraordinary benefit whereby
preheating for a longer time causes the maximum shear
load followed by the reduction due to the porosity gener-
ated by the over-welded welding layer [255]. Furthermore,
the decomposition in the CFRTP can be eliminated, and the
temperature gradient can be reduced by the preheating
process for the inter-substrates [239]. Likewise, the fatigue
performance and the thermal stress in the joint produced
by welding were improved by performing a preheating
process before joining with USW [287]. Hargou et al. [254]
performed a fractographic study of the laminates of the CF/
Ep/mendable polymer, EMMA joined by USW. The results
indicate that the EMAA changed from solid to porous fila-
ments, as shown in Figure 64(a). Besides, the shown por-
osity indicates that the raised temperature in the welding
of laminates was sufficient to start the condensation reac-
tion between both the Ep and EMAA phases, which leads to
the development of gas-filled pores inside the filaments.
However, USW produced substantially fewer and smaller
pores compared to oven heating in the EMAA (Figure
64(b)). The reason for this discrepancy was that there
was a shorter accessible time through welding for the reac-
tion process to generate volatiles, which permeate from the
Ep-EMAA interface (where the reaction happens) into the
filaments, where it is essential to condense the volatiles to
produce the pores.
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Figure 62: SEM of CF/PA6 of the weldment cross-section under servo-driven welder: (a) The initial unmelted interface, (b) the welded joint, and (c)
under typical circumstances with the following characteristics: 600 ] of welding energy, 90% of the maximum amplitude, 0.5 mm-s™ of plunging
speed, and 200 N of trigger force. Positive displacement value indicates that the sonotrode is moving downward [248].

As a significant part of the relationship between vis-
coelasticity and temperature, the preheating treatment
directly affects the USW parameters. Consequently, it
enhances a superior microstructure characterization and
mechanical properties such as tensile test and failure. The
preheated CF/PA66 has been investigated, and the impact
of various preheating temperatures on the welded area
and peak load of the joints in various welding times under
0.15 MPa was inspected and illustrated in Figure 65. As the
welding time changed, the preheated and as-welded (i.e.,
non-preheated) welds both followed a similar pattern. In
particular, the welding area first increased and then began
to plateau, whereas the peak load first improved with the
welding time and then reduced. It anticipated that as the

preheating temperature increased, the ideal welding time
for the joint with the highest ultimate tensile strength
dropped. For workpieces prepared at different tempera-
tures of 25, 75, 125, and 175°C, the ideal welding time was
found to be 2.1, 2.1, 1.5, and 1.3 s, respectively [239]. In
addition, various preheating temperatures were employed
to evaluate the fracture surfaces of the broken workpieces
CF/PA66 joined by USW. The outcomes are displayed in
Figure 66. The macrostructure and microstructure of the
cracked workpiece surface heated to 25 and 125°C were
identically compacted. In contrast, some pores were dis-
persed throughout the workpieces, which were heated to
75 and 175°C. Besides, it has been revealed that the occur-
rence of porosity in the workpiece reduces the mechanical
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Figure 63: The variation in temperature at the interface in between the CF/Ep adherend and PEI coupling layer affected by the reduction in amplitude

(three welding samples per configuration, up to 0.28 mm in all cases). The vibration’s end is indicated by diagonal arrows. the end of the vibration is
indicated by vertical arrows as the end of the welding process [282].

Figure 64: (a) Various magnifications of the delamination fracture surface of a mendable laminate (from left to right: 100x - 1,000x - 10,000x). An

EMAA filament is visible in the magnified region, and the porosity is shown clearly (Right side) caused by volatile formation. (b) Porous structure in the
EMAA phase following the curing by oven heating [254].
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properties of CF/PA66. As a result, joints with preheating
temperatures of 75 and 175°C obtained relatively lower
tensile strengths than workpieces with no pores. These
properties might be associated with the joints’ temperature
history during welding [239]. Moreover, small voids were
noticed in the faying interfaces of the workpieces pre-
heated to 25 and 125°C. However, for those treated at 75
and 175°C, the small voids expanded into huge pores
marked as porous regions. Many techniques assist in redu-
cing and eliminating the fracture toughness. For instance,
the annealing heat treatment process for CFRPPS tapes to
CFRPP laminates has been shown to substantially reduce
the welded interface’s fracture toughness [288].

In a recent study by Qu et al [289], the uttermost
appropriate composite post-treatment method routed
between the ultrasonic-assisted reinforcement and
annealing methodology has been determined. The study’s
primary objective was to enhance crystallinity, prevent
and decrease the inescapable voids within the printing
procedure, and improve its general mechanical character-
istics. Furthermore, increasing the crystallinity may
decrease the PEEK fracture toughness [290]. Besides, it
has been presented that the fracture toughness of PEEK
increased by a drop in crystallinity [291,292]. The tensile
test has been performed to explore the moisture impact on
the mechanical properties of CF/PA66 joined by USW [239].
The welded interface between the two welded workpieces
was examined for dry and wet specimens to compare the
moisture effect. It has been revealed that in the tensile test
results, the quantity of voids in the weld joint decreased
the loading capacity when the water absorption reached a
specific point (ie., above 1.7wt%). Moisture absorption
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Figure 65: The relationship between welding time on peak load and
joints welded area of fabricated preheated workpieces under different
temperatures [239].
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damaged the weld microstructure together with the com-
posites’ mechanical qualities. As an outcome, the joints
created using specimens that absorbed a partially small
amount of moisture exhibited workpiece breaking, while
the junctions created using specimens that ingested a con-
siderable amount of moisture fractured during the tensile
test due to the degraded weld joint.

On the other hand, the microstructure at the faying
interface became loose, and the mechanical characteristics
declined, even though the weld area of the wet joint fell
less than the peak load with the increased water absorp-
tion. Consequently, the change in the weld area was inde-
pendent of peak load [239]. Li et al [293] explored the
enhancement of quantum heating on the USW for joining
polymers with double-vibrator parameter. Furthermore,
Barkley et al. [294] explored the correspondence of inter-
facial and surface temperature through disparity spot USW
for joining TPCs. More information about variations in
USW parameters and their enhancements on mechanical
properties, welding quality, and welding strength are pre-
sented in Tables 2 and 4.

3.6 General contribution of process
parameter in USW

From the literature, many factors play a key role in con-
trolling the welding quality of USW such as preheated or
pretreatment methods and process parameters during
both vibration and solidification stages. The impact of
these factors is given concisely in Table 3 [37].

By studying the welding quality of CF/PA6 welded by
USW without ED utilizing a servo-driven welder, the pro-
cess parameters were found to have a direct relation with
bonding efficiency and the overall welded area. Figure 67
illustrates the connection between the welding area and
bonding effectiveness. It is observed that the strongest
bond is produced when the welding region is near the
sonotrode contact area. At vibration amplitude of 50-70%
and minor amount of welding energy (i.e., 200 ]), materials
were insufficiently melted when the welding area is small
compared with the contact area. The increase in welding
force brought on by great trigger force of 1,000 N and plun-
ging speed of 1.2 and 1.5 mm's~* would squeeze roughly
some molten materials out of the weld region. Besides,
when the welding area is larger than the contact area, it
results in reducing the bonding effectiveness. Additionally,
the welding time and the quantity of melted materials are
influenced mainly by amplitude. However, only the first
three stages and fewer melted components were visible at
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Figure 66: Morphology of CF/PA66 of the fractured surface for upper work pieces with various preheating temperatures after the fatigue test [239].

low energy and vibration amplitudes, resulting in a rela-
tively limited weld area. In comparison, great energy can
melt additional materials. However, because welding takes
a long time, excessive melted materials might be squeezed
out [248].

Welding process factors, weld characteristics, and
joint behavior are essential to evaluate the weld quality
and are all related. The degree to which a weldment satis-
fies its practical necessities is the definition of weld quality.
Weld attributes are a weldment’s visible traits, while weld
performance is a weldment’s internal qualities. The weld
quality can be circuitously defined by weld qualities and
joint behavior, such as weld area, the morphology of the
weld zone, and extreme LSS, founded on the relationship
of the previous four sets of variables [250]. Figure 68 shows
the correlation between weld quality, characteristics, and
joint performance. Overall, the ideal heating time and the
optimum frequency in USW were found to be 3-4 s and
20-40 kHz, respectively, in large-scale consideration [295].
An increase in welding strength was reported due to high
vibrational frequency, which also increases material vibra-
tion [296,297]. Moreover, it is anticipated that USW will
always have a very high instantaneous strain rate due to
the nature of the process, which involves a very high strain
due to the high vibrational frequency. It has been estab-
lished that a substantial strain rate affects the crystalliza-
tion of the polymer [298-301], as a further enhancement of
the strain rate.

4 Improvement of USW process by
ED and interlayer

The heat generated in the overlapped welded area is a
difficulty caused by the high-frequency stress; this heat is
due to vibrational energy. The ED works as heat dissipa-
tion, where it molds to initiate melting [302]. It is possible
to use a tie layer (an interlayer made of substrate material)
instead of ED in the USW [303,304]. The ED consists of resin
protrusions on the welding surfaces, and it is artificial [64].
Table 4 presents a tabular classification based on the type
of USW machine used to join different types of CFRP with
an interlayer between the two welded specimens. How-
ever, the ED is usually made of TPCs such as PEI, PE,
PEEK, or PSS. Besides, it is generated in different shapes.
For example, previous studies presented a beneficial influ-
ence of the PPS film and its composite crystallinity on the
tensile characteristics [305,306]. Although interpreting the
difficulty of introducing ED, as in USW, on sheet compo-
nents (between the two specimens to be welded) is consid-
ered one of the main limitations of fiber-reinforced mate-
rial [73]. However, this process is compatible with adding
polymer-coated material in dissimilar welding [307].
Figure 69 shows a graphical diagram of contact initiation
and propagation for USW with/without ED [240]. Further-
more, Singh Rana et al. [308] utilized the USW to join speci-
mens made of sustainable polymers and design by printed
molded by implementing EDs with various geometries.
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Moreover, it has been shown that there are some dif-
ficulties in the USW process in the absence of ED or inter-
layer in between the specimen [30]. The ED usually has
incredibly higher viscoelastic heating and tremendous
strain during the welding process than the bulk material;
the reason is owing to the small cross-section of ED [309].
Furthermore, the stability of welding quality depends on
ED [309]. The ED, used in TPCs welded by USW, is made of
traditional molded matrix resin on the consolidated adher-
ents in a second production step [269,310]. Meanwhile, the
geometry of ED is one of the critical factors that may affect
the USW technique besides vibration amplitude and
welding time [259]. Linear ridges with semi-circular, rec-
tangular, and triangular cross sections are the shapes of ED
due to plastics industry procedures [311]. Nonetheless,
Khatri et al. [312] investigated the efficiency and welding
quality of joining PEEK fabricated by AM with CF/PEEK and
joined by USW by implementing various shapes of ED. It
has been observed that the circular ED obtained greater
failure forces associated with mesh-shaped counter-
parts ED.

Furthermore, the welding process and its results are
highly affected by the orientation of the ED, and its shape
[12]. The ED surface is usually made of resin protrusions
which helps to perform the weld, and the welding quality is
directly influenced by the shape and size of ED as well as
the morphology of these resin protrusions [3]. In addition,
it has been revealed that by increasing the geometry com-
plexity of ED and it is surface to have an optimum ED
design, well cause to enhance welding quality [313]. Koya-
nagi et al [314] investigated CFRP joined by USW using an
ED associated with a numerical model. An ED made of
poly-vinyl-butyral (PVB)/graphite nanoplatelets film has
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recently been produced and employed to join CF/Ep by
USW by Cilento et al. [315]. Besides, a modern ED made
of stainless steel mesh has been utilized in USW for joining
CF/PA66, and the enhancement of ED mesh size on the
welding quality has been investigated [316]. Moreover, it
has been observed that a smaller wire diameter of the
mesh ED and great wire spacing lead to good welding
quality. Li et al [316] explored the CF/PA66 joined by
USW by implementing an ED made of stainless steel with
mesh geometry, as illustrated in Figure 70. Besides, it
revealed that a higher amount of pore defects in the joint
were obtained by small wire spacing. However, a wire
which has a great diameter causes the absence of fusion
defects. Also, the energy concentration effect was reduced
by a large mesh area. Moreover, it has been revealed that
the damage in the fusion zone can be reduced to minimal
and eliminate thermal degradation by implementing var-
ious types of PEI ED [317].

Korycki et al. [318] examined the effect of ED thickness
on joint quality and thermal diffusion during USW of CF/
PEEK. The PA6 film has been employed as an ED to join
cold rolled steel with CFRTP by USW [319]. Also, the authors
addressed the effects of preheating temperature and
welding energy on the joint characterizations (microstruc-
ture and mechanical). The heating of FED was excited by
the surface friction, which results in time variation to melt
the ED [8]. A fragile weld line identical to the thickness of
resin-rich regions within the adherents in TPC/TPC welding
has been observed because the most molted ED is squeezed
out of the overlap welding [64]. The adhesion and displace-
ment of ED and FED during USW were investigated
[320,321]. Furthermore, to attenuate the upshot of adverse
fiber location at the interface, it has been recommended to
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Figure 67: The relation between bonding efficiency with welding area and process parameters effects [248].
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Figure 68: Relationship between welding quality, welding characteristics, and joint performance.

utilize an ED made of TPCs, which emphasizes the material
weldability [302]. On the other hand, the ED may have
some weaknesses, like limited reduction in fiber
[234,252,322], although it provides good weldability and
welding quality with using ED. Figure 71 presents a sche-
matic of welded layers with an FED [244]. The impact of
using ED made of PVB NCs for joining TSCs by USW has
been investigated by Cilento et al. [323].

Furthermore, a joint was performed with using ED,
where the ED has melted and performed the joint in
between the two pieces, after the ED melts, solidifies and
cools down. The ED melts due to the generated friction heat
by the effect of ultrasonic vibration [172]. In addition, the
reason for melting the ED without distortion in the micro-
grooves is that the ultrasonic amplitude and applied force
were lower than that needed for ultrasonic hot embossing.
Nonetheless, Wang et al. [324] investigated the weldability
of CF/PA6 as well as PA6 joined through a servo-driven
USW with/without using ED. For the purpose of examining
the impact of the ED on welding process parameters in
joining CF/PPS and joining CF/PA6, the qualitative exami-
nation of displacement during the joining process is pre-
sented in Figure 72. When the triangular ED melts, the
sonotrode descends rapidly. When the material melts at

the faying surface of the triangle, it descends slowly.
Also, in the CF/PA6 30 wt.% welded without using ED, it
was detected that the power increases grow abruptly and
then remains stable with minor variations [37]. Further-
more, incase of applying two differnet types of ED as 4T ED
and FED to join CF/PPS similar vibration time, welding
energy, LSS and maximum dissipated power were
obtained. Also the obtained results of FED were similar
to triangular ridges moulded on one slack stripe of neat
resin and triangular ridges moulded on the surface of the
bottom adherend. Besides, the sonotrode displacement was
analysed, it was shown that the sonotrode hold its initial
position before starting its gradually descending [260].
However, since ED is not used for USW of CFRTP, the sono-
trode descends linearly vertically at a constant speed.

An investigation on a unique zero-flow welding
method for continuous USW of TPC plates has been carried
out. The suggested method produced robust welds before
the squeezing flow starts at the welded interface. The out-
comes demonstrate the viability and point to the possibility
of rapid high-strength welding between TPC plates. In addi-
tion, the relation between LSS and welding speed for 60,
80, and 100 mm-s~* has been examined. The outcomes show
that, overall, the LSS values at 60 mm-s™" are greater than
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Figure 69: The heat generation and propagation flow in USW toward welding with/without ED [240].

those at 80 and 100 mm-s [325]. For investigating the
mechanical properties of CF/PEEK joined by USW through
implementing a spot ED, a double LSS was performed, and
the outcomes were likened with MFs results; the fiber-
matrix debonding failure for the welded specimen causes
naked fiber bundles and resin-rich pockets to become evi-
dent on the uppermost ply of the adherend. However, the
first ply is the only part of the adherend with this intrala-
minar damage, while the remainder of the layers were unaf-
fected. In contrast, matrix cracking and delamination
severely destroy the laminate structure of the MFs joint.
The part’s upper side deforms due to the Hi-Lok® fastener
head penetrating it. A full description of the through-the-
thickness damage is given by the cross-section micrographs
of the welded samples, as illustrated in Figure 73 [72].

Tao et al. [256] compared the morphology observation
of a weldment processed with and without ED by using
FED and noticed a considerable reduction in the HAZ width
at identical welding time and in the number of cracks,
which is due to the melting of the ED absorbing a parti-
cular amount of heat and decreasing the impact of heat on
the matrix. Accordingly, using FED increases the joints’
strength with rising the PEEK resin gratified, and improves
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the attentiveness of ultrasonic energy at the interface.
Besides, the ED directly affects the fracture surface, as
shown in Figure 74.

Some variations were noticed by comparing the micro-
graph results of the fracture surface of cross-ply laminate
with and without FED. Figure 75 presents the fracture sur-
face of cross-ply with FED after the LSS; fibers are observed
in Figure 75(a), the fiber bundle is parallel to each other,
and the fracture is considered narrower without FED, and
the absence of fractured fibers (Figure 75(b)—(d)). A slip in
the fracture surface caused by the pull-out of the fibers at
the edge of the free-edge side at point D of the welding area
was observed. Moreover, at point E, there is a flat fracture
surface. However, at point F the fracture befell at the edges
of the grip side and the middle of the welded area, this
fracture mode is similar to the fracture caused without
FED [6]. Additionally, an FE model was developed to
examine the fracture mechanism of cross-ply laminate
with and without the FED. Where the CF/PEI joined as a
similar welding with FED, the heating phenomena and
thermal degradation were examined. The analysis of the
fracture surface during ideal welding indicated matrix
degradation symptoms, resulting in less consistent quality.
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Figure 70: (a) 2000XD USW machine, (b) the welding process schematic, and (c) the stainless steel mesh ED [316].
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Moreover, it is probably caused by a higher heat genera-
tion rate in the substrates and ED and higher temperatures
close to the ED melting temperature [238].

A further investigation studied the CF/PEI similar
welding using a different configuration of ED by changing
the orientation parallel to the plates, perpendicular to the
plate, and two EDs parallel to the plate [3]. Besides, trian-
gular EDs were molded into laminated composite surfaces
using a hot platen press. LSS samples were created to
examine the effects of numerous ED configurations and
the EDs’ orientation concerning the load. It is revealed
that several transverse EDs were significantly effectively
filling the overlap area once they melted, resulting in
minimal damage to the fiber at the welding. The effect of
changing ED geometry and the configurations on the
welding quality were studied. As a finding, the multiple
EDs improved the overlap welded area without hindering
the resin flow. As well as, by using multi-EDs, a remarkable
reduction in fiber distribution in the outer layers of the
weldment was observed. However, the parallel ED config-
uration provided more welded area scatters than the trans-
verse EDs [3]. Furthermore, the high number of scatters
makes studying the ED configurations on mechanical prop-
erties more difficult. Nevertheless, Wang et al [326]
employed the genetic algorithm and neural network to
optimize the process parameters and predict the weld
strength, including welding time and pressure of USW
that were implemented to join CF/PEL Moreover, Villegas
and Palardy [278] explored whether using triangle ED in
USW instead of FED may significantly shorten the required
heating time to reach supreme weld strength. The signifi-
cant finding was that, in the particular scenario, the tri-
angle ED did heat up, melt, and collapse almost twice more
quickly than the FED, and this difference was substantial.
However, the integrated triangle ED did not require signifi-
cantly longer heating time to reach the optimum weld
strength compared to FED. However, a published review
found that many studies joined the TPCs to the TSCs by using
an interlayer made of TPC films as an interlayer or coupling

Sonotrode

Energy director
Upper adherend

| Lower adherend
Anvil

Figure 71: Principle of USW TPCs with an FED [244].
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layer [37]. Furthermore, the PEI has been used as an inter-
layer to couple different matrix’s of CFRTP based on its
unique characteristics under the co-curing process
[193-195]. The porosity produced by resin sublimation created
in C/Ep adherents after welding is concluded by comparing a
study that used 50 pm thickness of PEI interlayer vs another
study that used 250 um [192]. Nevertheless, when using PEEK
as a coupling layer for dissimilar joints by USW, it is usually
not soluble in uncured Ep systems owing to the high chemical
resistance [5,94,190]. Additionally, Wang et al. [327] explored
the enhancement of welding time on the welding quality of
CFPEEK, by using an ED which was manufactured by imple-
menting the ultrasonic embossing. The obtained outcomes
show that using the ultrasonic embossing helps on concen-
trating the welding energy which decreases the dispersion
and randomness of the weld distribution as well as enhances
the failure load by 30% compared with joining without using
ED. Furthermore, Rubino et al. [328] developed a TPCs hybrid
interlayer to join GFRP by USW. Figure 76 represents the
graphic demonstration of the manufacturing route and the
USW set-up. Meanwhile, Tian et al. [329] explored the effect of
pre-pressing ring on the welding quality of USW in joining
short CF/PA6 composite.

Generally, the size, geometry, and the number of
implemented ED have a direct impact on welding, since
the ED affects the resin flow and heat generation [256].
Besides, the welding strength was found to be influenced
by the ED much more than vibrational time and welding
force [330]. Some of the most effected properties by ED are
illustrated in Figure 77. However, apart from the men-
tioned and discussed studies, the literature is rich with
further investigations which focused on overcoming the
drawback of the traditional EDs for enhancing the welding
quality. For instance, Jongbloed et al [331] developed a
compliant mesh ED made of woven polymer to enhance
the uniformity of the weld. The obtained results reveal that
the developed mesh ED enhances the LSS and the weld
uniformity. Furthermore, Brito [332] recorded the best
welding results by the combination of increasing welding
force with implementing a discontinuous ED film. How-
ever, the impact of ED is varied as long as the material of
specimens to be welded is varying. For instance, in some
cases, the triangular ED can achieve more favorable results
than FED in welding polyethylene [333]. Moreover, recently
Bose et al. [334] implemented the developed methodology
of water-submerged USW (S-USW) with three various types
of ED to join CF/PA. This methodology enhances the
welding strength as well as mitigates the material degrada-
tion that may be caused by the rapid heating which occurs
during the traditional USW process. Besides, the obtained
results by using the S-USW with a semi-circular ED
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Figure 72: The variation displacement and power during USW for diverse surface settings: (a) CF/PPS with using triangular ED (vibrational amplitude =
86.2 um, holding force = 500 N); (b) CF/PPS with using rectangular ED (vibrational amplitude = 86.2 pm, holding force = 500 N); (c) CF/PA6 without

using ED (vibrational amplitude = 36 pm, holding force = 200 N [37].

recorded 16.4 MPa as welding strength, while it reached
14.3MPa and 14.69 by using the traditional USW with tri-
angular and rectangular Eds, respectively. In a further
investigation accomplished by the same authors, Bose
et al. [335] implemented the S-USW to join PVC/PVC and
PP/PP. The obtained results show that the LSS of PP/PP
and PVC/PVC increased by 21 and 39%, respectively com-
pared with the results obtained using traditional USW.

5 Challenges

The main throwback of USW is that it is still limited in
assemblies with considerable overlap area [238]. Likewise,

one of the most remarkable challenges of USW is that for
each new welded spot, a new set of boundary conditions
must be reset [170]. Implementing the USW process is till
limited since there is no significant quantitative evaluation
methodology for defining the bonding strength [339].
Joining assemblies with huge overlaps by USW is still
defied and limited [238]. The ultrasonic amplitude in the
USW is inhomogeneous as usual over the sonotrode area,
which makes the unfilled molten polymer more challen-
ging on large areas near micro-cavities. Furthermore, the
energy output of piezo stacking, driven in resonance for
achieving high amplitude in the USW, controls the sono-
trode; this significantly controls the overall contact area
processed in one step [172]. In the case of joining TPCs
either in similar/dissimilar joint USW, a dimness in the

Bare fibre bundles

Figure 73: The micrographic cross-sections of spot-welded joint of CF/PEEK after DLS tests. The scale bar for 2 mm is presented in the top figure. The
below images are the magnification of the parts in the white boxes of the top one [72].
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Figure 74: The fractured surface morphology of (a) CF/PEEK joint without using ED at 0.9 s, (b) region A with high magnification, (c) the joint with FED

at 0.9s, and (d) region B with high magnification [256].

Figure 75: The fracture surfaces of cross-ply laminate joint of CF/PA6
with implementing FED after LSS [6].

composite structures’ assembly, which tends to fail first,
may present. This means the damage must be detected to
prevent local degradation and evade a catastrophic failure
[77]. Although owing to great heat generation at the inter-
face throughout the USW process, the thermal degradation
of the thermoset substrate is a severe dilemma to be deter-
mined [37]. Besides, damage growth occurs in the interface
between the weldment components that are joined by SSW
of USW [340]. Moreover, the physical mechanisms of the
USW are still under debate, subsequently predicting the
optimum sets of process parameters that led to optimum
welding quality and welding strength remains a challenge
[341]. Besides, determining the optimum amount of the
reinforced wt% to be added to the polymer matrix which
effects the welding strength is challenging, for instance, by
increasing the GF above 20 wt% in PP matrix the welding
strength was reduced [342]. Additionally, Tirband et al
[343] enhanced the welding quality of GF/PMMA and GF/
PP, respectively, by using the laser surface treatment
approach where the obtained results show a superior
interaction between the coupling layer and the treated sur-
face parts were achieved. In addition, avoiding the trapped
air and restricting the melted polymer flow during the
USW process are challenges that can be avoided by imple-
menting an optimum ED design [344]. However, finding the
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optimum ED for each specific USW is an essential concern.
Furthermore, increasing the energy may cause a slight
reduction in the LSS [345]. Moreover, the necessity of
higher fiber content for sufficient energy focusing in the
ED is a considerable challenge in USW for acousto-ultra-
sonic composite transducers, by comprising a piezocera-
mics materials in reinforced polymer matrix [346]. Like-
wise, finding the optimum welding temperature is
essential since increasing the temperature reduces the
required welding time, in contrast the molecular diffusion
rate limits the welding process at high temperature [347].
However, it has been reported that the ultrasonic vibration
treatment as a post-processing approach can improve the
joint strength in applications that require medium to high
welding strength at optimum process parameters [348].
Apart from the mentioned advantages and disadvantages
in Figure 4, Figure 78 presents further advantages and
limitations of USW process.

In order to improve robustness and reliability and to
develop continuous welding of complex and more signifi-
cant parts, there is an essential need to develop a consis-
tent FE models with the up-clambering of using USW in
industrialization [325]. Some studies developed an FE
model to study different mechanical properties such as
stress distribution and stress-strain, although FE analysis
of CFRTP is still considered slightly limited. In addition,
mathematical modeling and numerical examination
remain deficient [22]. Nonetheless, by investigating the
thermal coupling during USW process by developing FEM
by Zhang and Li [349], it was found that the main reason
for bond formation in USW is the severe restricted plastic
deformation. Furthermore, the accurate and realistic mock
of the vibration and heating performance of TPCs in the
USW process was allied with excessive difficulties. In cer-
tain, the solution by essential frequency and temperature
that dependes on mechanical stiffness and damping
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behavior in the high-vibrational frequency range are inef-
ficiently, which cause to have limited numerical expecta-
tion of the weldability in the progress of USW technique
[350]. Additionally, there is an essential demand for
optimum specimen’s geometries as well as further pro-
gresses in the assessment routine to enhance the analyz-
able temperature range combined with the quality of the
generated material. The developed model based on reverse
engineering approach is shown in Figure 79.

Moreover, Yang et al. [351] examined the contact per-
formance and the temperature characterization in USW of
CF/PA66 by developing a mathematical modeling as shown
in Figure 80, through implementing the harmonic balance
methodology. The obtained results show that in NL contact
and heat generation there was a certain separation
between the specimens and the friction heat generated in
the earlier welding stage, while in viscoelastic heating, no
significant separation was recorded. Besides, increasing
welding time and vibrational amplitude produced a
remarkable increase in the temperature of the welding
surface. However, by analyzing the spatial and temporal
temperature enhancement during the USW of FRTP
numerically as shown in Figure 81, the obtained results
show that there is an essential need to focus more on the
viscoelastic heating since it increases the polymer matrix
temperature to the decomposition temperature [352].

To investigate the welding quality by using the vibra-
tional signal, Zhu et al. [353] employed variational mode
decomposition and Hilbert-Huang transform (HHT) to
acquire the HHT spectrum, where a support vector
machine (SVM) model has been developed and trained by
using the Bayesian optimization (BO) algorithm as shown
in Figure 82 to define the optimal parameters for weld
quality categorization and recognition. The outcomes
reveal significant performance, accomplishing 95.35%
accuracy rate. This designates that there is remarkable
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Figure 76: The schematic of the procesing route of manufacturing process of TPs/TSs hybrid composite to USW of the fabricated laminates [328].



72 —— Zummurd Al Mahmoud et al.

The effects of ED

Mechanical Weldment Through welding Microstructure

properties interface

Mitigate adverse
Enhance tensile fiber orientation
characterizations

shear strengh
characterizations

Enhance lap =

Improve overlap
welded area

Reduce fiber
o distribution in
the outer layers
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potential for virtual detection of CFRTP welding quality
through ultrasonic vibration signals.

Furthermore, despite the overall advantages of poly-
mers, such as mechanical properties and lightweight, they
also have some drawbacks. For instance, the major draw-
back is that it is not simple eco-friendly, where researchers
and organizations have expressed tremendous concern
about the development of non-recyclable plastics in the
environment by developing plastic that is recyclable or
biodegradable.

For recyclability purpose, utilizing biodegradable poly-
mers have several environmental benefits such as redu-
cing carbon dioxide emissions regeneration of raw mate-
rial, and biodegradation [354]. Some of the commercial
polymers such as PA6, PA66 were found to be biodegrad-
able and were proved under the SEM, FTIR, and EDS ana-
lysis [355]. However, the PA66 can be replaced by the bio-
based polyamide 56 (PA56) [356]. Besides, the PBS is also
completely biodegradable [357]. Moreover, polyesters such
as PET can be replaced by natural polymers such as poly-
saccharides (wood, pectin’s chitosan, and gum) and animal
and plant proteins (collagen, soya, gluten, gelatin, casein,
and whey). Besides, the PLA can be produced by both nat-
ural resource (rice, corn, sugar beets, etc.) and chemical
resource. In contrast, PEEK is an example of non-biode-
gradable and is unfeasible to recycling [358]. Nonetheless
the biodegradation process is enhanced by numerous fac-
tors such as the morphology structure of the polymer, the
molecular weight as well as the chemical treatment process
[359]. In addition, the key features of biodegradable poly-
mers are, the potentially undesirable mechanical qualities,
the high rate of decomposition and their primarily
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hydrophilic nature. Meanwhile those features can be
enhanced by mixing natural and synthetic polymers
[360,361].

6 Discussion

Diverse types of joining techniques can be employed to join
similar and dissimilar CFRPs. One of the best-developed
techniques is the USW. The joining occurs due to the heat
generated by the vibrational amplitude and ultrasonic
wave. The heat is generated between the interface layer,
and it reaches these points by the welding tool known as
horn/sonotrode. Usually, an ED, interlayer, or coupling
layer, is used between the two layers (adherend) and
must have a melting temperature inferior than the melting
temperature of the polymer matrixes. The parts that need
to be joined are exposed to an ultrasonic vibration.
Remarkably, viscoelastic heating is the most significant of
the various heating mechanisms in the USW. The friction of
the plastic molecules rubbing against one another is to
blame. As more deformation is produced, more heat will
be generated.

Moreover, USW welding machines are similar, with
some differences, such as frequency value or range and
the geometry of the sonotrode. The USW machines for
joining polymers have two main classifications which are
continuous welding and the spot welding which are
further classified as single, double, and multi. However,
only a few studies investigate the impact of sonotrode geo-
metry on enhancing the welding process parameters and
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the quality of welding. The range of process parameters,
including power, energy, holding time, welding time,
vibration time, holding time, vibrational amplitude, and
frequency, are different based on the type of USW
machine. Furthermore, accurate joint designs are ideal
for concentrating ultrasonic energy at the welding inter-
face. The USW process features are also strictly connected,
demonstrating unusual sensitivity to the holding and

tolerances of the components required to weld. The
mechanical test shows that by comparing the LSS findings
of coupling layers made of PEI and PEEK, both have the
same thickness in dissimilar welding of CF/Ep and CF/
PEEK, both materials show nearly comparable LSS values.
In contrast, the USW process did not lead to any substantial
damage in the mechanical properties in the interphase or
the adherend in dissimilar welding. Based on the
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Figure 81: The numerical modeling by using the explicit finite difference method for various spots in USW: w is the angular frequency, Z; is the applied
displacement amplitude, F,, is the applied static weld pressure, uy is the interfacial slippage amplitude, p(7) is the friction coefficient, & is the resolving
strain amplitude, g, is the interface pressure amplitude, T is temperature value, £”,(7) is the matrix loss modulus, E¥m(T) is the matrix complex
modulus, ¢(7) is the composite specific heat capacity, k is the thermal conductivity of the composite, and E*¢(7) is the composite complex mod-

ulus [352].
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literature, some welding processes are controlled by other
process parameters, such as welding energy, which may
affect the required welding time and vibration time. Also,
some parameters impact welding strength and mechanical
properties more than the rest of the USW process para-
meters such as, welding time and welding force.
Meanwhile, some parameters, such as frequency, are con-
sidered as a constant in most studies. However, raising the
vibration time may cause an additional concentration of
heat at the interface, and the temperature would reach the
melting temperature of the polymer matrix. Moreover, an
adequate flow in the resin at the interface was noticeable.
Consequently, the interfacial bonding formed the inter-
mediate between the two specimens of base materials by
the resin fusion. Simultaneously, extreme heat can also be
applied to the CFRP matrix. Owing to the significant var-
iance amongst the thermal expansion coefficients, the
voids appeared at the interface of the polymer resin and
the CF and cracks. Consequently, in many cases, the
bonding cannot be achieved without using ED or interlayer
in USW. The energy-controlling mode is recommended for
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welding strength, and the displacement-controlling mode
is preferable for welding quality. Nevertheless, one of the
most significant essential rewards of USW, above short
welding time, is that it is an environmentally benign
method, and the joined welded pieces, after the USW, do
not require any additional cleaning or treatment. Due to
the nature of the process, which entails a very high strain
due to the high vibrational frequency, USW is expected to
have a very high instantaneous strain rate, which will
affect the crystallization accordingly. Furthermore, the
unique influences of fiber types and matrix scatterings
on USW weldability are still unclear, and owing to the
numerous physical properties of various materials, USW
may have a more substantial impact on mechanical beha-
vior and welding strength than others, including their
melting and acoustic features. Besides, the weldability of
various materials is identical.

The USW is a very effective method for joining
CFRTPCs and CFRTSCs, whether by single or multiple
spot welding. It can fabricate joints in comparably quick
cycle times, and they are distinguished by performance
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that is equivalent to or better than that of mechanically or
adhesively fastened joints. In order to achieve either
growing welding pressure in a very short welding time
or vice versa, a longer duration with less welding pressure
is required; in this manner, the USW technique creates the
entire joint between the layers. However, welding with
high welding pressure and a short welding period causes
insufficient heat dispersion, which prevents the acquisition
of any anticipated junction. Furthermore, modern USW
has made displacement-controlled welding possible, and
this technique has numerous advantages over time,
including energy-controlled welding. The surface friction
causes the ED to heat up, and the time it takes to melt the
EDs can vary. Unwelded portions occasionally have shiny,
smooth mating fracture surfaces, which was indicative of
an adhesive failure at the welding interface, which was
caused by the interaction of rapid heating and relatively
low temperatures in the overlap’s center. While there is a
large variety of resin volumes for which welds with a rea-
sonable strength level can be achieved, an excessive quantity
of resin at the welding interface causes a reduction in welding
strength, as proven by previous studies. As an observation
from the literature, most researchers have used PEEK, PEI,
PE, Nylon (PA6, and PA66), and a few studies investigate the
CFRTP (Elium®) and PPS. There are still some restrictions
since when heating the polymers, poisonous gases can be
generated; besides, despite the developed interest in natural
fiber owing to its eco-friendly advantages, no records have
been found on welding natural FRPs by USW.

7 Conclusion

This state-of-the-art review investigates the similar and
dissimilar welded CFRP by the USW technology and dis-
cusses the welding process parameters and the pretreat-
ment impact on the performed joint’s mechanical properties
and microstructure characterizations, while highlighting the
recyclability of CFRPs and the fabrication process of
polymer matrixes. Besides, the improvement of USW pro-
cess by using ED and the challenges of USW were also
addressed. The USW is considered as the fastest joining pro-
cess, capable of joining either metal matrix/polymer matrix,
polymer matrix/polymer matrix, or metal/metal. The main
principle of USW is to transfer the vibrational motion into
heat between the two adherend surfaces.

Based on the literature reviewed, the most favorable
PCs matrix to be used in USW are CF/PEEK and Nylon (CF/
PA6, CF/PA66); where significant mechanical and micro-
structure observations were noticeable, above other types
of CFRP in similar/dissimilar welding. Moreover, using an
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appropriate type and orientation of ED enhances the
welding process, weldment strength, and weldment
quality. However, some restrictions must be considered
while choosing the ED, such as its melting temperature,
which must be less than the melting temperature of the
CFRP to be welded, and optimum design geometry of ED.

There is a direct relation between the number of spots
and welding strength and quality in all types of welded
matrices. While the geometry of the sonotrode primarily
affects the welded area, limited studies concentrated on
studying the consequence of changing the geometry of
the sonotrode on welding strength and quality due to its
high cost, which may lead to unclear information about the
effect of sonotrode geometry as the process parameter.
Most studies that focused on investigating the impact of
changing process parameters considered single or dual
parameters as variable, and the remaining process para-
meters had constant values, in order to make the investi-
gation easier and finding the optimum values in a more
straightforward manner. Based on this perspective, the
welding energy, vibration amplitude and welding time
are the most critical parameters that enhance the weld-
ment performance and welding quality.

The welding strength was found by investigating the
mechanical properties through a mechanical test.
Commonly, only two types of mechanical tests are pro-
cessed: LSS or tensile tests. However, only a few studies
were interested in a fatigue test. There are no recorded
data about further mechanical tests, such as hardness or
impact tests. The microstructure observation found the
welding quality, usually through the SEM, after failure or
fracture. Besides, the FE analysis and mathematical mod-
eling are still limited. Additionally, the welding quality is
directly influenced by material qualities and the temperature
distribution within the welded adherend. Nonetheless, there
is still an essential need for optimum EDs for similar and
dissimilar joints by USW. A review of ML for ultrasonically
welded CFRP may be considered in upcoming work. The
vibrational and thermal tests of the joined CFRP were not
considered in this review and can be covered in further work.
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