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Abstract: Three-dimensional (3D) printing technology can
be used to fabricate layer-by-layer regular porous polydi-
methylsiloxane (PDMS) structures with excellent superhy-
drophobic ability and mechanical stability. However, for
engineering applications, the design must consider the
structure and superhydrophobicity of the resulting mate-
rial. In this study, we propose an approach to regulate the
mechanical properties of PDMS by adjusting the layered
pattern, such as by changing filament orientation with 30°,
45°, and 90° angle steps and using staggered structures
with a half-shifted spacing. A finite element analysis was
conducted to investigate how the layered pattern influ-
enced the tensile and compressive properties. The results
reveal that a layered, staggered design can modulate the
compressive properties of the porous PDMS, particularly
the ratio between the compressive moduli of the sample
without and with staggered structures could reach as high
as 686% when the layering angle is 0°/90°. The tensile prop-
erties are better regulated by the filament angle rather
than by the staggered design and improve as the raster
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angle of the filaments increases. This occurs when the upper
and lower filaments tend toward orthogonality. Thus, the
required layered pattern can be selected, enabling the inte-
grated design of mechanical properties and function in 3D-
printed porous PDMS.

Keywords: mechanical properties, 3D printing, PDMS, super-
hydrophobic, wettability

1 Introduction

Superhydrophobicity is a unique type of wettability cate-
gorized by the contact angle of a spherical (or near-
spherical) water droplet on a solid surface. In particular,
superhydrophobic surfaces have a water contact angle (WCA)
of >150° [1-3]. Flora and fauna, such as lotus leaves [4], water
striders [5,6], dragonflies [7], and butterflies [8,9], possess
inherent hydrophobicity [10-12]. The superhydrophobic
surface wettability of various surfaces primarily depends
on their low surface energy chemistry and unique micro/
nanostructures. Polydimethylsiloxane (PDMS) is a widely
used material owing to its low surface energy [13,14] and good
physical [15,16], chemical [17,18], and biomedical properties
[19-21]. Previous methods, such as impregnation [11,22],
spraying [23], chemical/physical etching [12,24], the sol-gel
method [25], and the template method [26], have been
employed to establish structural features of PDMS and its
composites at the micro/nanoscales. These typical methods
often involve many deficiencies, such as complex multi-step
processing [27], use of solvent [22], or low precision in con-
trolling the micro/nanostructures [24,28]. To achieve special
surface wettability, such as anisotropy surface wettability or
superhydrophobicity, techniques including UV lithography
and femtosecond laser etching have often been adopted to
form structures with asymmetric geometric character, such
as fibers or grooves [29,30]. The formed structures can be
widely applied according to their excellent properties, such
as antifouling [31-36], waterproof protection [37], selective
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pattern printing [38], self-cleaning [39], liquid transfer [40],
fog collection [41], and oil/water separation [42-44].
However, simultaneously achieving superhydrophobicity
and good mechanical stability is challenging, and the fabrica-
tion of robust superhydrophobic materials with micro/nanos-
tructures remains difficult. Recently, three-dimensional (3D)
printing technologies have attracted attention in micro/nanos-
tructure construction owing to certain advantages, including
their flexible design and fabrication of highly complex struc-
tures for various applications, such as wound healing [45,46],
heart valves [47], self-healing [48], microfluidics [49,50], and
scaffolds [51,52]. Among these technologies, direct-write 3D
printing can be used to prepare complex structures of dif-
ferent materials by designing an “ink” formulation and con-
trolling the 3D printing process [53-55]. In our previous work,
the final surface wettability and physical structure of the
PDMS “ink” filament could be well controlled via the regula-
tion of the 3D printing parameters, such as filament diameter
or filament spacing, to obtain a regular porous PDMS material
with excellent superhydrophobic ability and mechanical sta-
bility [53,55,56]. Adjusting the 3D printing parameters of the
porous PDMS structure not only modulated its superhydro-
phobicity but also significantly impacted its mechanical
properties. However, the optimal approach to regulate its
mechanical properties while ensuring excellent superhydro-
phobic properties for its engineering application remains to
be discovered. To date, limited studies have reported an inte-
grated structure—function design of porous PDMS materials
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with excellent superhydrophobic ability and mechanical
stability via 3D printing.

In this study, we extended preliminary experiments to
regulate the mechanical properties, such as compressive and
tensile properties, of superhydrophobic PDMS by designing
layered and staggered structures and varying the filament
angles without changing the superhydrophobic properties
(that is, without modifying the filament diameter and spa-
cing) [54]. The findings of this article will provide gui-
dance for the physical structural design and preparation
of mechanically stable, superhydrophobic regular PDMS
materials by 3D printing. Moreover, this work can be used
to further guide integrated structure—function design for
applications in diverse fields, such as artificial skin and
bioprosthetic heart valve materials in biomedicine and in
energy and electronics applications.

2 Methods

2.1 Fabrication of superhydrophobic PDMS
using 3D printing

In this study, the x—y plane and z-direction were defined as
the in-plane and height direction of the 3D-printed PDMS,
respectively (Figure 1a). The customized high-viscosity

Figure 1: 3D printing of porous PDMS with a cross-hatched structure. (a) Schematic representation of the extruded filaments written on the substrates
with the tooling path. (b) Fabrication of porous PDMS on the 3D printing platform. (c) PDMS foam sample with superhydrophobicity fabricated by 3D
printing. The insert image is the profile of water droplets (5 pL) on the porous PDMS surface, with a WCA of approximately 151.5°.
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PDMS ink was extruded through the nozzle of the 3D
printing (direct-ink writing) system in the form of fila-
ments [53]. The filaments were printed layer by layer
according to the planned lay-down patterns at the corre-
sponding printing speed to form a porous cross-hatched
structure (Figure 1b). The 3D-printed structure was then
cured and molded by placing it in an oven at 125°C for
24 h. Finally, the sample was peeled off from the substrate
for further characterization. The PDMS surface had a fila-
ment diameter and filament spacing of 0.37 and 0.8 mm,
respectively. It had four layers with 90° angle steps between
two successive layers. When water droplets were placed
onto the porous PDMS surface, they remained spherical,
indicating that the surface showed good superhydrophobi-
city, with a WCA of approximately 151.5° (Figure 1c).

2.2 Design of the 3D-printed porous
structure

Based on our previous work [57] and the classical Gibson-
Ashby model for porous materials [58], the porosity (¢) of
the 3D-printed PDMS sample had a direct impact on its
mechanical properties, shown in Eq. (1). As the material
porosity ¢ increased, its compressive or tensile modulus
(E") gradually decreased.
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Table 1: Model design parameters for the 3D-printed PDMS

Structure-function design of 3D-printed PDMS == 3

where Eg and E” are the modulus of elasticity of the solid
and 3D-printed porous PDMS, respectively; C and n are the
fitting coefficients; and ps and p* are the density of the
solid and 3D-printed porous PDMS, respectively [55].
Particularly, ¢ was correlated with the diameter (d),
center-to-center spacing of the filaments (I), and height of
the adjacent printed layers (h). According to the geometry
of the porous PDMS fabricated by 3D printing, the solid
volume V; of the model was extracted by the software
and then divided by the volume V (length x width x height)
of the rectangular model. Finally, the model porosity ¢ of
the PDMS sample was calculated using the formula ¢ =
1 - V3/V. The results are theoretical and presented in Table 1.
As previously reported [53], the superhydrophobicity
of 3D-printed porous PDMS was optimal when the filament
diameter and spacing were 0.37 and 0.8 mm, respectively
(Figure 1c). Therefore, we set the filament diameter d to
0.37mm. Because the superhydrophobicity of the porous
PDMS fabricated by 3D printing was primarily controlled
by the top-layer structures of the porous PDMS [54], this
study focused on the integrated structure and mechanical
property design of the porous PDMS fabricated by 3D
printing for superhydrophobic engineering. Even if the
3D-printed PDMS foams had the same porosity (same
values for filament diameter, filament spacing, and layer
height), the mechanical properties could still be regulated
by adjusting the layer pattern (e.g., filament orientation
and staggered structure) [59,60]. To demonstrate the uni-
versality of our strategy for modulating the mechanical
properties, such as compressive and tensile, through the

Model number Filament diameter (d) (mm)

Filament spacing (/) (mm)

Raster angle Porosity () (%)

0/30-0.6
0/45-0.6
0/90-0.6
0/30-0.8 0.8
0/45-0.8

0/90-0.8

0/30-1.0 1.0
0/45-1.0
0/90-1.0
S-0/30-0.6
S-0/45-0.6
S-0/90-0.6
S-0/30-0.8 0.8
S-0/45-0.8

S-0/90-0.8

S-0/30-1.0 1.0
S-0/45-1.0

S-0/90-1.0

0.37 0.6

0.37 0.6

0°/30°/60°/90° 34.4
0°/45°/90°/135° 34.4
0°/90°/180°/270° 344
0°/30°/60°/90° 48.5
0°/45°/90°/135° 48.5
0°/90°/180°/270° 48.5
0°/30°/60°/90° 57.8
0°/45°/90°/135° 57.8
0°/90°/180°/270° 57.8
0°/30°/60°/90° 344
0°/45°/90°/135° 344
0°/90°/180°/270° 344
0°/30°/60°/90° 48.5
0°/45°/90°/135° 48.5
0°/90°/180°/270° 48.5
0°/30°/60°/90° 57.8
0°/45°/90°/135° 57.8
0°/90°/180°/270° 57.8
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design of specific layered patterns, the filament spacing
parameters were adjusted to 0.6, 0.8, and 1.0 mm. The
raster angles were adjusted with 30° (0°/30°/60°/90° for
four layers), 45° (0°/45°/90°/135° for four layers), and 90°
(0°/90°/180°/270°) angle steps for a typical and gradual
change of the intersection angle between two successive
layers. The working parameters are shown in Table 1.
The superhydrophobic properties of the porous PDMS
fabricated by 3D printing were primarily related to the
filament spacing and diameter of the top layer [53,54].
Therefore, the mechanical properties were regulated by
adjusting the lay-down patterns, and the spacing and diameter
of the filaments remained unchanged. The architectures were
designed by plotting filaments with angle steps of 30°, 45°, and
90° between two sequential layers, denoted 0/30, 0/45, and 0/90
configurations [61], respectively (Figure 2a—c). For the stag-
gered pattern, every other layer was shifted orthogonally to
the filament direction by half the spacing relative to the pre-
vious, yielding cross-hatched structures, labeled S-0/30, S-0/45,
and S-0/90 configurations, respectively (Figure 2d-f). Notably,

z
b
x  S-0/30

S-0/45
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the pore architecture depended on the filament orientation
and layer stagger. For example, a filament deposition angle of
90° created quadrangular pores (Figure 2c and f), whereas
angles of 30° or 45° generated polygonal pores (Figure 2a, b,
d, and e).

2.3 Finite element (FE) analysis models

For porous PDMS, compression and tension are the two
most common mechanical stress states; thus, this study
used these two stress models to evaluate the relationship
between layer parameters and the mechanical perfor-
mance of the porous PDMS fabricated by 3D printing. To
further reveal the mechanism of strain and internal stress
distribution in the 3D-printed PDMS with a cross-hatched
structure under compressive or tensile load, the design
models mentioned in Section 2.1 were created using FE
analysis in ABAQUS. The PDMS filaments were cylindrical

(©)

90°

|

S-0/90

Figure 2: 3D-printed porous PDMS with cross-hatched structures. These printed patterns were labeled according to the 3D printing angle of the two
successive layers: (a) 0/30, (b) 0/45, and (c) 0/90 configurations and (d) 0/30 (S-0/30), (e) 0/45 (S-0/45), and (f) 0/90 (S-0/90) shifted patterns.
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Figure 3: Effect of layered configurations on the £, of porous PDMS fabricated by 3D printing with filament spacings of (a) 0.6, (b) 0.8, and (c) 1.0 mm.

apart from those of the first layer, and a total of four layers
were constituted with six filaments per layer (Figure 2).
The upper layer of the cylindrical filaments was rotation-
ally stacked at a set angle with respect to the neighboring
lower layer. Since the value of the print layer height para-
meter was smaller than the diameter of the PDMS filament,
there was an overlapping region between the upper and
lower print layers. The overlap area of the top and bottom
layers was smoothed by a Boolean operation, and the
porous PDMS model was treated as a single entity [55].
Free boundary conditions were imposed on these models.
To study the compressive and tensile properties of the
porous PDMS, we applied displacement loads in the z
and y directions of these models, respectively. In addition,
the mechanical properties of the porous PDMS fabricated
by 3D printing were analyzed using the Mooney-Rivlin
model [55,62], as expressed by the following equation:

(a) 0/30-0.8
Tensile (+)
+0.01
E -0.01
3
= -0.21
-0.35

Compressive (-)

1
U=Colh -3)+Cu(l, - 3) + FU - 1), )]
1

where U is the strain energy of the materials, C;y and Cy;
are the fitted material coefficients, D, is the compressibility
of the material, I; and I, are the first and second invariants of
the strain bias, respectively, and J is the elastic volume ratio
[55]. Based on the constitutive model, the measured compres-
sive nominal stress—strain data of the PDMS cylinder, with a
diameter and height of 29.5 and 12.5 mm, respectively, have
been modeled with the relevant parameters Cyy, Coy, and Dy
[55]. These three fitted parameters, which were accessed by the
analysis program in the FE software ABAQUS following our
previous publication [55], were 0.203741993, 0.08319049733, and
0.177210526, respectively.

In addition, due to the superelastic characteristics of PDMS
materials, these 3D-printed foams had a large mechanical
deformation capacity in both compression and tensile

Figure 4: Stress distribution graphs in the x-z section of the models at 10% compressive strain: (a) 0/30-0.8, (b) 0/45-0.8, (c) 0/90-0.8, (d) S-0/30-0.8, (e)

S-0/45-0.8, and (f) S-0/90-0.8.
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directions, which was sufficient to meet the engineering design
requirements. The compression and tension properties can be
found in the following section.

3 Results and discussion

3.1 Effect of layered patterns on the
compressive properties of
3D-printed PDMS

Figure 3 shows the z-axis compressive modulus E. of the
different porous PDMS samples with crosshatched geome-
tries. The compressive modulus decreased with increasing
filament spacing [, primarily because of filament spacing
on the porosity ¢. Thus, the mechanical properties of the
porous structures were directly related to their porosity. In
addition, the porous PDMS exhibited the highest compres-
sive modulus when the filament angle was 90° (0/90). How-
ever, the corresponding staggered structure had the lowest
compressive modulus (S-0/90). The ratios between the com-
pressive moduli of these structures were 219, 411, and 686%
for the [ values of 0.6, 0.8, and 1.0 mm, respectively (Figure
3a—c). However, for the other cross-hatched structures
with 0°/30° and 0°/45° filament angles, the compressive
modulus remained in the same range.

The differences in the compressive modulus were clo-
sely related to the deformation mechanism in the initial
linear elastic stage of these porous PDMS structures under
compressive loading. To illustrate the compressive defor-
mation mechanism of the porous structures fabricated by
3D printing with an [ of 0.8 mm, the stress clouds of the x—z
section of the models were obtained, as shown in Figure 4.
The compressive stresses of the 0/90-0.8 model in the
z-direction were primarily transferred to a columnar pat-
tern (yellow or green area in Figure 4c) along the intersec-
tion surface of contiguous filament layers from top to
bottom [55]. The compressive stress in this region was
obviously higher than that in the non-overlapping region
for the PDMS model. Therefore, the compressive modulus
of the 3D-printed PDMS with a 0°/90° layered pattern was
primarily a result of the axial compressive deformation
mechanism of these columns [55]. The corresponding stag-
gered structure (Figure 4f) did not exhibit the stress column
effect. Moreover, the upper layer of the filaments was
squeezed, while the lower layer of the filaments experienced
a bending deformation mechanism, resulting in a lower com-
pressive modulus. For the other cross-hatched structures with
0°/30° and 0°/45° layered patterns (Figure 4a, b, d, and e),
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Figure 5: Influence of layered staggering on the compressive behavior of
the porous PDMS fabricated by 3D printing with filament raster angles of
(a) 0°/30°, (b) 0°/45°, and (c) 0°/90°.

certain overlapping regions formed by adjacent layers of the
filaments exhibited a stress column effect, resulting in com-
pressive moduli being between those of 0/90-0.8 and S-0/90-0.8.
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(c) 1.0 mm.

The compressive mechanical behavior of this 3D-printed
PDMS was analogous to that of typical foams [55,57]. In the
region of small and moderate deformation, the stress slowly
increased, and the whole model completely entered the den-
sified state, resulting in an exponential expansion of the
compressive stress (Figure 5) [55,58]. In addition, the layered
pattern had the same effect on the hyperelastic compressive
behavior of the porous PDMS fabricated by 3D printing with
the same porosity as that on E.. For cross-hatched structures
with 0°/30° and 0°/45° layered patterns, the compressive beha-
vior of the porous PDMS fabricated by 3D printing with the
same porosity was more consistent (Figure 5a and b), regard-
less of whether a staggered layer design was used or not.
However, a significant difference was observed between
the compressive behaviors of the 0/90 and S-0/90 models.
The staggered design enabled the porous PDMS, with a layer
angle of 0°/90° (S-0/90) to recover better (Figure 5c). Thus, it
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[ +0.20

=
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2
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2
g
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wn
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=
g
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(c) 0/90-0.8
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exhibited lower stress levels over a relatively long compres-
sion interval.

3.2 Effect of layered patterns on the tensile
properties of 3D-printed PDMS

The uniaxial tensile simulation calculations of the porous
PDMS fabricated by 3D printing with different cross-hatched
structures were conducted using FE analysis. Figure 6 shows
the y-axis tensile modulus (E) of the porous PDMS fabri-
cated by 3D printing with different values of I The tensile
modulus decreased with increasing I This phenomenon
was observed because the porosity of the PDMS sample
increased with increasing [ (Table 1). Consistent with the
compression simulation results, the structure with the

(d) S-0/30-0.8

(c) S-0/45-0.8 _

Figure 7: Von-Mises stress distributions of the models in the x-z section at 5% tensile strain in the y-direction: (a) 0/30-0.8, (b) 0/45-0.8, (c) 0/90-0.8, (d)

S-0/30-0.8, (e) S-0/45-0.8, and (f) S-0/90-0.8.
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higher porosity exhibited a significantly lower tensile mod-
ulus than the other structures. In addition, the layered
pattern regulated the tensile modulus of the porous PDMS
fabricated by 3D printing with different porosities in a similar
manner. As the filament angle increased (i.e., as the upper and
lower layers of the adhesive filaments tended to orthogonality),
their corresponding tensile moduli gradually increased.
Furthermore, the porous PDMS with an [ of 0.6 mm and a
0°/90° (0/90-0.6) layered pattern exhibited the highest tensile
modulus, while the 3D-printed structures with 0°/30° and 0°/45°
filament orientations exhibited reduced tensile moduli of 37
and 30%, respectively (Figure 6a). A similar change was
observed for samples with filament spacing [ of 0.8 and
1.0 mm printed with a 0°/90° (0/90-0.8 and 0/90-1.0) layered
pattern, as shown in Figure 6b and c. However, the stag-
gered layer design had no significant effect on the tensile
moduli of these cross-hatched structures (S-0/30, S-0/45, and
S$-0/90), which remain in the same range as those of the 0/30,
0/45, and 0/90 models, respectively (Figure 6a—c).

The differences in the tensile modulus were closely
related to the deformation mechanism in the initial linear
elastic stage of these structures under tensile loading. To
illustrate the tensile deformation mechanism of the 3D-
printed architectures at this stage, we obtained the Von-
Mises stress clouds of the x—z sections of the models with a
filament spacing of 0.8 mm (Figure 7). Because the direc-
tion of the filament layup was aligned with the tensile
direction (y-axis), the stress in the 0/90-0.8 and S-0/90-0.8
models was primarily transferred in the filament orienta-
tion (green area in Figure 7c or f) [55]. The stress of this
region was obviously higher than that of the porous PDMS
fabricated by 3D printing with the 0°/30° and 0°/45° layered
patterns (Figure 7a, b, d, and e). Thus, the tensile modulus
of the porous PDMS fabricated by 3D printing with a cross-
hatched structure was due to the contribution of the axial
tensile deformation mechanism of 3D-printed PDMS fila-
ments. As the raster angle increased (i.e., the filament direc-
tion of these adjacent layers tended to orthogonality), the
closer the filament orientation was to the tensile direction,
the higher the tensile modulus of the corresponding porous
PDMS fabricated by 3D printing. Therefore, the 3D-printed
PDMS with a layer angle of 0°/90° exhibited the highest tensile
modulus because the printing direction of the PDMS filament
was parallel to the direction of the tensile load, which could
bear more tensile stress. However, the staggered design (S-0/
30, S-0/45, and S-0/90) did not change the raster angle for the
corresponding porous architecture (0/30, 0/45, and 0/90),
resulting in its inability to regulate the tensile properties of
the porous PDMS fabricated by 3D printing.

The staggered design could not modulate the hypere-
lastic tensile mechanical behavior of the porous PDMS, and
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Figure 8: Influence of filament orientation on the tension behavior of the
porous PDMS fabricated by 3D printing with (a) cross-hatched and (b)
staggered structures.

a significant difference was observed between the tensile
stresses of the FE models with different raster angles. As
shown in Figure 8a and b, the tensile behaviors of the
porous structures were better regulated by the layer angle
of the filaments than by the staggered design. As the raster
angle of the filaments increased (i.e., the upper and lower
filaments tended toward orthogonality), the tensile mod-
ulus gradually increased, and the tensile properties of the
3D-printed PDMS improved. The improved tensile stress
was beneficial to both the mechanical stability of porous
structures and superhydrophobicity.

4 Conclusions

A strategy for the numerical simulation of the relationship
between the layered pattern, such as filament angle and
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layer stagger, and mechanical behavior, such as tensile and
compressive, of porous PDMS fabricated by 3D printing
was presented. The results revealed that the compressive
modulus decreased with increasing filament spacing. In
addition, the staggered design could be used to modulate
the compressive properties of the porous PDMS fabricated
by 3D printing, which exhibited the highest compressive
modulus when the filament angle was 90° (0/90). However,
the corresponding staggered structure had the lowest com-
pressive modulus (S-0/90). The ratios between the compres-
sive moduli of the 0/90 and S-0/90 structures were 219, 411,
and 686% for the filament spacing values of 0.6, 0.8, and
1.0 mm, respectively. However, the compressive properties
of the porous PDMS fabricated by 3D printing with other
filament angles (0°/30° and 0°/45°) were in the same range.
The tensile modulus also decreased with increasing fila-
ment spacing, but the tensile behaviors of these 3D-printed
structures were better regulated by the filament angle
rather than the staggered design. With the increasing raster
angle of the filaments (i.e., the upper and lower filaments
tended to orthogonality), the tensile properties gradually
improved. The porous PDMS fabricated by 3D printing
with a filament spacing of 0.6 mm that was printed with a
0°/90° (0/90-0.6) layered pattern exhibited the highest tensile
modulus, while the 3D-printed structures with 0°/30° and
0°/45° filament orientations exhibited reduced tensile
moduli of 37 and 30%, respectively. A similar change was
found for samples with filament spacings of 0.8 and 1.0 mm.
Thus, the compressive and tensile properties of the 3D-printed
PDMS with superhydrophobicity and a filament spacing of
0.8 could be regulated by adjusting the filament angle and
staggered layer design. Because the superhydrophobicity of
the 3D-printed PDMS was primarily controlled by the top-layer
structures of the porous PDMS, the required layered
pattern could be selected for the integrated design of
mechanical and functional aspects in 3D-printed PDMS,
considering the mechanical environment and the super-
hydrophobic properties.
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