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Abstract: The structure tensor (ST), also named a second-
moment matrix, is a popular tool in image processing.
Usually, its purpose is to evaluate orientation and to con-
duct local structural analysis. We present an efficient algo-
rithm for computing eigenvalues and linking eigenvectors
of the ST derived from amaterial structure. The performance
and efficiency of our approach are demonstrated through
several numerical simulations. The proposed approach is
evaluated qualitatively and quantitatively using different
two-dimensional/three-dimensional wood image types. This
article reviews the properties of the first- and second-order
STs, their properties, and their application to illustrate their
usefulness in analyzing the wood data. Our results demon-
strate that the suggested approach achieves a high-quality
orientation trajectory from high-resolution micro-computed
tomography (μCT)-imaging. These orientations lead to estab-
lishing a description of fiber orientation states in thermo-
mechanical models for fiber-reinforced composite materials.
We concludewith an overview of open research and problem
directions.

Keywords: structure tensor, 3D reconstruction, image pro-
cessing, tomography, anisotropy, mechanical modeling

1 Introduction

Tensors [1] are considered a powerful language for ana-
lyzing complex physical phenomena [2–5]. Consequently,
they are essential in various application areas, such as
medicine, mechanics, and so on. For instance, the diffusion
tensor is used widely in medical fields to provide the ani-
sotropic diffusion behavior of water molecules located in

tissue structures [6,7]. This is explained by the diffusion
action, which is stronger in the direction of neuronal fibers
[8]. The diffusion rate is usually expressed by a second-
order tensor field. This motivates the concept of new visua-
lization tools suitable for these tensors [9]. Particularly,
researchers concentrate their efforts on scalar and vector
fields due to their significance. The extraction of pertinent
information from a tensor visualization is a challenging
task. This article surveys the vector visualization methods
that have been adapted to view prevalent directions in the
tensor field [10]. The proposed method aims to characterize
physical regions, leading to an analytical interpretation of
the data. These regions exhibit planar anisotropy due to
the fiber configuration. Physically, tensors contain infor-
mation such as vectorial quantities that constitutionally
exhibit the anisotropic behavior [11–13].

Furthermore, much research in image processing has
been devoted to tensor data [14–17]. Indeed, the visualiza-
tion and image processing methods need to be adapted to
the complexity of these data [18–20]. The linear structure
orientation can be coherent or incoherent within a voxel.
This depends on image resolution and noise sensitivity. We
will show that the regularization technique, which is often
used in image processing, such as noise removal, is not a
necessary step to estimate the anisotropy. High-resolution
scans and segmentation processes are not required to illus-
trate the microstructural anisotropy. Commercial software
such as Avizo, GeoDict, and VGStudio Max are available
that can be used easily to provide the characterization of
anisotropic orientation from any material microstructure
[21–24]. Employing these techniques in image processing,
including processing of micro-CT scans, is indispensable
for using the invoked software. Such software needs high
computational resources and calculation time to process
these scans. The current research aims to propose a sim-
plified tool that avoids using these procedures to compute
directly the orientation distribution of any given material
microstructure, particularly wood material, using the local
structure tensor (LST).

The orientation distribution controls various mechan-
ical properties of composite materials. Composite mate-
rials might be of artificial or natural origin. Indeed, wood
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is considered a composite material composed of cellulose
fibers distributed in a lignin matrix [25]. The mechanical
properties of wood, such as stiffness and strength, depend
on parameters such as density and microfibril angle [26,27].
This parameter plays a vital role in influencing the mechan-
ical properties of wood. Particularly, the orientation of
microfibrils in the cell wall structure in the material wood
is related to the principal axis transformation. The purpose
is to determine the microstructure and, therefore, the prop-
erties of the material via the orientation distribution. The
Finite-element (FE) modeling of fiber-reinforced composite
materials using X-ray computed tomography (CT) requires
orientation analysis for orientation mapping [28–30]. Next,
the orientation tensors must be introduced into the FE fra-
mework to establish mechanical behavior [31,32]. Note that
tensor analysis is an indirect method, and it should be vali-
dated by comparing experimental measurements, which
remain challenging, and computational results. Such valida-
tion was done in many works [33–35] for fiber-reinforced
polymer composites.

The scope of this article concerns using a combination
of mathematics and visualization aspects to generate rig-
orous and intuitive exposed characteristics from the tensor
field. These characteristics take the form of a set of direc-
tional vectors or tensor field maps encoded by color, inten-
sity, and shape functions within glyphs, and various
combinations. Previous works have recognized the impor-
tance of diffusion tensors based onmedical-acquired data in
the form of a healthy subject. For instance, the prior work of
Ennis and Kindlmann [36] outlined the mathematical devel-
opment and application of the tensor shape to determine
whether a visualizing zone of anisotropy is linear aniso-
tropic, orthotropic, or planar anisotropic. Additionally, the
work of Tornifoglio et al. [37] highlighted the diffusion
tensor imaging for providing the microstructural composi-
tion of arterial tissue. It was illustrated in this investigation
that, within arterial tissue, tractography is sensitive to cel-
lular orientation.

The outline of the article is structured as follows.
Section 2 provides a brief introduction to computational
approaches via ST analysis in multi-dimensional space.
This concept is applied widely in tomographic data collec-
tions and used to quantify some anisotropic properties and
orientation information according to the eigendirections of
the local structure. Section 3 deals with the estimations of
the properties of the orientation distribution functions,
which are presented for model microstructures and μ-CT
data. The wood microstructure and fiber-reinforced compo-
sites dominate these data. Next, Section 4 compares some
existing tools implementing the anisotropic analysis and
fiber orientation. Section 5 investigates several benchmark

examples and available numerical results via the developed
approach depicting the mechanical properties of wood spe-
cimens. Conclusions are given in Section 6.

2 Derivative-based approaches

The approximation of the local orientation using the partial
derivatives [38] such as finite differences can be made more
efficient. This approximation is based on the structure
tensor (ST) which becomes a powerful tool for studying
low-level features. Texture analysis is one of these features,
known as a dynamic field in modeling the structure layer of
the texture. The matrix field of the ST, introduced by För-
stner and Gülch [39], is a widely used technique in image
processing and computer vision [40,41].

Consider a multi-channel image represented by a con-
tinuous function →I : Ω n� as a vector field, where the
spatial domain ⊂Ω d� is the definition domain of the
image. Through this article, we restrict on the practical
cases =d 2 and =d 3, although the theory is valid in any
dimension. In the particular case =d 2, the domain is in a
rectangular shape with width W and height H . Briefly,

×W H is the image dimension, and ∈ +
n � is the dimen-

sion of each vector-valued image pixel I x( ) localized at
= ( ) ∈x yx ΩT . The superscript T represents the vector

transpose. Given this image , the ST is dependent on the
gradient of I, which is generally computed by means of
Gaussian derivative filters:

= ⋆ = ⋆I G I GI I, .x x y y (1)

The notation ⋆ stands for the convolution operator; Gx and
Gy are two Gaussian derivative filters of standard deviation
in the x- and y-directions, respectively [42,43]. G is a non-
negative and convolution kernel that performs the weighted
averaging in a window defined by o. The normalized
two-dimensional (2D) Gaussian distribution G with
mean =⋆μ μ , μ

1 2
( ) and standard deviation =⋆σ σ σ,1 2( ) is

recognized simply by the product of two independent
Gaussian densities, one with mean μ

1
and variance σ1

2,
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2. The Gaussian
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There are also other possibilities to define the Gaussian
distribution. One of them is to choose the low-pass filter
to avoid the ill-posedness of gradient components under noisy
conditions [44,45]. In this case, if the two variance components
σ1 and σ2 are supposed to be equal, i.e., = =σ σ σ1 2, then the
Gaussian distribution is expressed as
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where σ is the width of the Gaussian window in pixels that
defines the inner or local scale. J

ij
denotes an element of the ST.

The integration window size used in the ST analysis impacts
the orientation and anisotropy profiles. The 2D STmatrix of the
image I at the current point x is formed as follows:

= ∇ ∇ =
⎛
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⎞
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⎟I I
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·( ) ( ) ( ) (4)

where ∇ =I I I,x y

T[ ] denotes the gradient operator and ·
signifies the matrix multiplication directions x and y,
respectively. This means that Ix and Iy indicate the partial
derivatives of the image I x( ), along the principal directions
x and y, respectively. The matrix field J defined in equation
(4) is computed from the gradient of I by applying the
tensor product. Then, its expression is simplified to give
a ×2 2 symmetric and semi-positive-definite matrix, which
is a direct consequence of a given filter.

We have seen that the ST is formed by averaging the
outer product of the gradient of an image. The aim is to
show how this tool is useful for determining the dominant
direction [46,47]. A diagonalization method is applied at the
ST to allow recovering the orientation and anisotropy at
every point of the image domain [48,49]. Assume that the
ST can be factorized using eigenvalue decomposition. In
agreement with the principles of matrix eigenvector decom-
position, the eigendecomposition of the matrix field J can be
written in the following form:

=J x QAQ .T( ) (5)

Considering the system depicted in Figure 1, the diagona-
lization system is written in equation (5). The matrix Q is a

×2 2 orthogonal matrix whose each column corresponds
to the eigenvector of J. The matrix Q is used to obtain the
orientation of the main axes of the small window. Denoting
u and v are orthonormal eigenvectors corresponding respec-
tively to the eigenvalues λu and λv. These eigenvalues of tensor
J are defined as the roots of the characteristic polynomial

= −p λ λI Jdet( ) ( ). The matrix A is a diagonal ×2 2 matrix
whose diagonal elements are the corresponding eigenvalues.
These eigenvectors provide an estimation of the local orienta-
tion of image features using the decomposition (5),
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The fitted ellipse illustrated here aids in quantifying
the orientation mode which is a visual representation of

the features of the gradient ST [50,51]. This ellipse is
described by three parameters including direction, size,
and elongation (ratio of major to minor axes). It represents
the best fitting to the image gradient [52,53]. According to
equation (6), the shape of the tensor J may be seen as an
ellipse, oriented by the vector basis ⊥u v and elongated by
eigenvalues λu and λv, as illustrated in Figure 1. The pre-
dominant orientation follows the direction of least change
in intensity. This means that it is the direction of the eigen-
vector corresponding to the smallest eigenvalue. In others
words, the local predominant orientation θ in the consid-
ered zone corresponds to the direction of the largest eigen-
vector of the tensor, and it is thus given by,

⎜ ⎟= ⎛
⎝

⎞
⎠

−
θ

I

I

tan .
y

x

1 (7)

The inverse function arctan is strictly increasing, continuous,

and differentiable on � which takes values in ⎤⎦ − + ⎡⎣,
π π

2 2
. Note

that the author of this article has investigated the ill-posedness
of the inverse problem of some operators that can be applied
to the image deconvolution [54,55]. According to the expression

of function θtan 2( ) in terms of θtan( ), i.e., = −θtan 2
θ

θ
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( )
,

the angle orientation θ within the interval π0,[ ] can be
expressed in terms of the tensor elements J
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The orientation given by the ST with a small local window
o, is computed as the unit vector

= θ θJ cos , sin .
θ

( ) (9)

The eigenvalues λu and λv contain information about the
distribution of the gradient within the window o. They

Figure 1: The ellipse that draws orientations and defines locally the
structures of interest. The ST at a pixel point is visualized as an ellipse
and its unit eigenvectors u, v and eigenvalues λu, λv are depicted.
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indicate the elementary of the gradient structure along the
eigenvector directions. Depending on the eigenvalue, the
predominant direction of the pattern can be determined.
To characterize the regions where the eigenvector is well
aligned with one of the gradient directions, two quantities
are defined, the so-called energy E and the coherency C

[56–58]. The energy is based on the eigenvalues of the ST
and is defined as = = +E λ λJtrace u v( ) ∣ ∣ ∣ ∣. If this energy is
near to zero, which corresponds to = ≃λ λ 0u v , then this
means that the region is homogenous. But, if this energy is
much higher, i.e., ≫E 0, then the property of the structure
is governed by the coherency information C . This informa-
tion is computed as follows:
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(10)

Given a three-dimensional (3D) map I x( ), where x

denotes the pixel position, the gradient tensor will be easily
extended along three principal axes [59–61]. The concept
of the second moment matrix viewed previously remains
the same in the extended 3D space. Technically, the 3D gra-
dient tensor becomes the ×3 3 transformation matrix,
based on an image convolution with a matching filter. Its
purpose is to capture the principal orientations by estab-
lishing a set of vectors in space. Three typical structures
can be distinguished depending on the computed eigenva-
lues from the ST [62]. Denoting by λw the third eigenvalue is
associated with the eigenvector w over all pixels in the

image. Assuming that the three eigenvalues λu, λv, λw are
listed with the increasing order, i.e., ≤ ≤λ λ λu v w. Then,
three cases for the LST are described as follows. The first
is a spherical case which occurs ≃ ≃ >λ λ λ 0w v u . It means
that the gradient vectors in the window o are more or less
evenly distributed, with no directional preference. This
means that the image I is mainly isotropic in that neighbor-
hood. Consequently, I is constant with a zero gradient value
in the window. The second consists of a linear structure con-
stituted with lines in the situation of ≃ ≫ ≃λ λ λ 0w v u . This
case presents the edge area. Then, this standard ST approach
diffuses axially along the first eigenvector λu, which is the
principal and preferred direction, exhibiting the minimum
variation. The last is a planar structure presenting a flat
area when ≫ ≃ ≃λ λ λ 0w v u . This case happens when the
two eigenvectors λu and λv are with a similar small contrast
difference [63,64]. Figure 2 summarizes generally the relation-
ship between the eigenvectors and corresponding eigenvalues
in different structures, which can be encountered in wood or
polymer images. In a uniform area, the coefficient values are
all close to 1. In the sphere case, the coefficient is very small to
prevent diffusion that can preserve the image’s edge structure.

The eigen-decomposition of J gives an estimate of the
anisotropy and orientation of the image features via the
following decomposition:

= + +λ uu λ vv λ wwJ x .u

T

v

T

w

T( ) (11)

The unit vector J
θ ϕ,

denotes the orientation of the line
structuring element over all pixels in the image. The para-
meterization of this vector in two angles θ andϕ is given as

= θ ϕ θ ϕ θJ sin cos , sin sin , cos ,
θ ϕ,

( ) (12)

where ∈θ π0,[ ] and ∈ϕ π0, 2[ [.
In what follows, we will present the 3D first, and

second-order STs and their properties [65,66]. The purpose
is to show how they are clearly estimated by differing the
image, which can be used to evaluate the local structure
of the 3D wood volume data. We previously kept only the
first-order terms in the expansion from the approximation
of the image via equation (4). Recalling that the system
of equations that must be solved for predicting the local orien-
tation of the eigenvectors is written in the following form:
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(13)

Another ST can be provided within the second-order approx-
imation. Then, the image function is expanded in the Taylor
series to develop the new ST, which can be expressed in terms
of the second partial derivatives of the 3D image

Figure 2: The relationship between eigenvectors and corresponding
eigenvalues of the ST in different situations.
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where Ixx , Ixy and Izz are the second-order partial deriva-
tives in the three directions, and Ixy, Ixz and Iyz are the
mixed second-order partial derivatives. The first-order
partial derivatives are involved in equation (4) within
the first order structure. In the case of first-order, the
second-order local structure can also be classified using
the eigenvalues. The characteristic equation of the above
matrix (14) is the cubic polynomial
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The system of equations that has to be solved for the eigen-
vectors is established within three equations. Then, some
algebraic manipulations of this system of equations are
made to estimate the orientation by the angle values.
From this, the orientation of each eigenvector is described
by the zenith angle θ and the azimuth angle ϕ, which are
defined explicitly as

=
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The characteristic equation of the image ST from the
matrix (13) is defined as:
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As in the second-order tensor case, the cubic equations
(15)–(18) accept non-trivial solutions. Even if it is possible
to estimate the roots of the characteristic equation, the
Jacobi transformation (or orthogonalization) can be investi-
gated as an iterative method to determine these eigenvalues.

Following the previous process in the algebraic manipula-
tion, the orientation angles ϕ and θ can be written formally
as
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Primarily, it is necessary to determine the second-order
derivatives of the image in each direction to create the
matrix J for each voxel. The second derivative Ixx (respec-
tively, Iyy/Izz) is estimated by convolving the image with a
Gaussian filter in the x -direction (respectively, y-/z-direction),
and convolving the result with the second derivative of the
Gaussian filter in the targeted direction. Additionally, the
second derivative Ixy is estimated by convolving the image
with derivative Gaussian filter in the x-direction and the result
with the same derivative in the y-direction. However, within
the first-order gradient ST of the image I defined by the prin-
ciple maps I

x

2, I
y

2, I Ix y are calculated and they are smoothed by
applying the 3D Gaussian convolution filter along one direc-
tion first, and to the result, the same filter is used along the
other direction. In practice, Table 1 shows the CPU times in
seconds (s) needed to perform the computation using the first-
and second-order STs in the analysis [67–69]. This perfor-
mance is based on the domain size from the input image given
in pixels.

3 Numerical simulations

In Section 2, we have recapitulated the definition of ST to
improve its comprehension from the detailed information
of an image. The main objective is to show its capability of
analyzing fields from locally coherent image data in 2D and
3D spaces [70–72]. Notably, this quantitative analysis of
wood samples leads to the characterization of the orienta-
tion and anisotropic properties of a region of interest in an
image, even in a local neighborhood. Simulated tissue
orientation and anisotropy are derived using ST analysis
applied to wood images. We will view some of its extracted
effects and most important properties. Figure 3 depicts the
prediction of anisotropic properties of the poplar and
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spruce wood specimens using the orientation tensors.
Figure 3(a)–(d) show the μ-CT scan represented as a 2D
gray value for the poplar and spruce species. These images’
physical size is ×352 352 pixels. According to this resolu-
tion, these images are analyzed using segmentation algo-
rithms to identify individual phases. The Otsu method,
established by Otsu in 1979 [73], is one of the thresholding
methods used widely in image processing. This method is
proposed here to separate the aggregate phase and seg-
ment the initial CT slice images. The obtained Tiff gray
images are with 256 gray scale values. On this scale, 0
indicates the darkest, illustrating the solid tissue phase,

and 255 indicates the brightest values, meaning for the
pore phase.

In the computed orientation via the ST vector field, the
user specifies a Gaussian-shaped window. The consistency
of the orientation distributions computed by this method
for various window centers is observed in Figure 3(b)–(e).
To quantify the information captured by the anisotropic
operator, the spectral norm can be evaluated at every pixel
of the image domain. The chosen spectral norm of the
matrix J is the Euclidean norm, which corresponds to the
largest absolute singular eigenvalue of J due to the sym-
metry properties of this matrix, i.e.,

Table 1: Comparison of accuracy of the proposed various STs in terms of the wood grid images

Type ××128 128 ××256 256 ××320 320 ××768 768 ××1,024 1,024

First-order ST 3.6 (s) 8.2 (s) 10.7 (s) 26.2 (s) 34.1 (s)
Second-order ST 3.1 (s) 7.6 (s) 9.9 (s) 23.5 (s) 31.7 (s)

Figure 3: Computing the ST based orientations for the poplar and spruce wood specimens. (a) Poplar wood, (b) orientations, (c) norm of ST, (d) spruce
wood, (e) orientations, and (f) norm of ST.
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= λ λJ max , .u v2�‖ ‖ (∣ ∣ ∣ ∣) (21)

Figure 3(c)–(f) illustrates the norm of ST defined by equa-
tion (21) for the poplar and spruce species. The same map
expresses approximatively the energy component. The
result from the presented analysis correlated well with
the ST method of image analysis. This yields consistently
an overview of the interested zones. This illustration aims
to quantify the overall certainty of the dominant direction
in terms of these zones, as seen with the estimated discrete
gradient. Note that depending on the chosen shapes of the
fitted Gaussian distributions, the geometric orientations
vary highly around the pore centers. Such standard devia-
tion and mean parameters are used to control the influ-
ence of the computed ST and the orientation information.
The σ and μ involved in formula (2), describe particularly
this influence on the coherency and energy values inside
the map image. In Figure 4, we test this impact of the
normal distributions on the anisotropy map at each pixel
of the poplar image. Two Gaussian distributions are dis-
played in Figure 4(a), which are shared into two diagrams.
The first is defined with parameters σ equal to 0.5 and μ

equal to 1. The second is defined with parameters σ equal
to 0.2 andμ equal to 4. The first Gaussian is used to run the
simulations depicted in Figure 3. Thus, it can be noted that
the energy spectrum is relatively the same as the norm.
However, the norm and energy spectra presented in Figure
4(b) and (c) are generated by the second Gaussian. These
spectra differ slightly in the way that the energy has a
higher value than the norm in the wood tissue. The
common point between both spectra consists of having the
same behavior. This means that the spectrum levels are very
low inside vessels. However, the medium and high spectrum
values are located in the tissue solid. The maximum values
reach the zones occupied by the neighborhood of major

vessels. This analysis remains valid for the spruce specimen,
as shown in Figure 3(f).

We now present some promising results concerning
the evaluation of wood image prediction. This prediction
is based on computing the coherency scalar C , which is
derived from the ST and expressed in equation (10). The
scalar C is essentially captured in terms of the eigenvalue
distribution. The representation of the coherency feature is
provided as a color in an image to express the luminance
and saturation. Figure 5 depicts this evaluation in the map
data using the two previous Gaussian distributions. Based
on the ST computations, this figure shows that the coher-
ency value ranges from zero to one. Lower values indicate
that the pore structures have an isotropic character. Figure
5(a) and (b) illustrates that the higher values are equidis-
tributed outside the pores using the first Gaussian. How-
ever, the coherency’s behavior with the second Gaussian is
totally unexpected and differs from the first. Particularly,
these values are localized exteriorly around some pores, as
shown in Figure 5(c) and (d).

It will be interesting to explore the ST with the Fourier
analysis method [74–76]. This methodology is based on a
Java plugin for ImageJ/FIJI, named OrientationJ. This plugin
is designed to identify the orientation and isotropic charac-
teristics of a region of interest in an image based on the
evaluation of the ST in a local neighborhood. The Direction-
ality parameter is one part of this plugin. This parameter
leads to dividing an image into smaller square parts, in
which the dominant orientation is provided through Fourier
spectrum computations. The Fourier analysis is well-estab-
lished and capable of accurately determining the main fiber
orientation [77–79].

The wood images are analyzed to generate the output
of the analysis providing the directionality histogram

(a) (b) (c)

Figure 4: Influence of the Gaussian distribution parameters on the norm and energy properties for the poplar wood specimen. (a) Two gaussian
distributions, (b) norm of ST, and (c) energy of ST.
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[80,81], as shown in Figure 6. This analysis indicates the
preferred direction, particularly the angle at which the
structure is oriented. Additionally, the analysis provides
two quantities named direction and dispersion which are
measured in degrees ( ∘ ). The direction of the structures in
the images is measured in degrees on the x-axis and the
amount presenting the frequency, which is a unitless mea-
surement on the y-axis. The dispersion is designed to
match the standard deviation of the Gaussian. The plugin
detects the preferred orientation of structures; it is marked
with a peak in each histogram. The directionality histo-
grams show distinct peaks at ∘2.51 and − ∘1, 11 , respectively,
for the poplar and spruce specimens, as shown in Figure 6.

The datasets analyzed here represent grain and fiber
networks reconstituted from biopolymer materials. Figure
7 displays the orientation tensors in terms of direction in
the context of fiber orientations. The gray-scale data set is

kept in its original format corresponding to no threshold
segmentation data. The image processing techniques are
not used to compute a local orientation. CT is used to inves-
tigate and measure morphology, as illustrated in Figure
7(a)–(c). This figure shows the slice of the original image
without image processing. The resolution of CT is sufficient
to determine this morphology well and distinguish indivi-
dual phases. This study serves many purposes. One of them
is to generate the orientation vectors in which the image
information is constant without denoising fibers and seg-
menting them from the matrix. This can present significant
advantages. These advantages lead to considerably reduced
computational time concerning calculation without opera-
tions such as traditional image processing. Note that orien-
tations are computed via fabric tensors, detected, and then
incorporated into the dataset without the segmentation pro-
cess. The large eigenvalue calculated from the ST technique

(a) (b)

(c) (d)

Figure 5: Results from the impact of the Gaussian distribution on the coherency characteristics for the poplar and spruce wood specimens. (a) and (b)
express the coherency resulting from the left Gaussian distribution (Figure 4a), and (c) and (d) express the coherency resulting from the right
Gaussian distribution (Figure 4b) for these specimens. (a) The poplar’s coherency ( =σ 0.5, =μ 1), (b) the spruce’s coherency ( =σ 0.5, =μ 1), (c) the
poplar’s coherency ( =σ 0.2, =μ 4), and (d) the spruce’s coherency ( =σ 0.2, =μ 4).
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to extract the orientation vectors remains the same. The
preferential local orientation for grain and fiber, meaning
for anisotropy information, is visualized in Figure 7(b)–(d).
The bi-dimensional computational orientation maps can be
described as follows. The oriented directions are indicated
by the vectors presented in red color on each map, in which
the original dataset shares the same color coding. In order to
explore the fibers passing through a specific region, the
computed 2D vectors onto the plane are resized in length.
Meanwhile, the orientations for grains remain in the classic
format. The presented computational analysis provides an
objective assessment of tissue microstructures, thus facili-
tating quantitative assessments of anisotropic materials such
as fiber-reinforced composite networks.

An important property of network structures is their
orientations, based on two quantities. These quantities are
the color of the image and the degree of anisotropy, super-
posed in a unique image to display orientation and aniso-
tropy. The double eigenvalues represent this degree. In
Figure 7(e)–(f), the oriented pattern is shown, underlying
the anisotropic diffusion process. These distributions of
angles, which are scalar values, specify mainly the direc-
tion as anisotropy characterization.

After reviewing the concept of a thorough analysis of
the tensor estimation, we will present the attempts to
extend the analysis definition to an additional dimension space
in very simple gray scale of morphological images without CT
scans. Quantitative wood images via 3D structure analysis
require entirety much quantitative visualization [82,83]. Thus,

the ST technique will be applied to various shape-simplifying
images. First, the process is tested on these images, which are
performed by their shape classes. Next, we will handle the
wood images for our approach. The image features in straight
lines and circular shapes are then investigated. These images
indicate our created artificial dataset. It yields, of course, to
defy purely the oriented description vector fields.

The above examples demonstrate our ability to pre-
serve anisotropy features from patterns. The ST overall
properties of the image features are well preserved, as
shown in Figures 8 and 9. This is the most straightforward
way to process those patterns’ estimated orientation, par-
ticularly the principal directions. Figure 8(c)–(d) shows the
multi-dimensional orientation vectors on the fabric fibers
expressed by straight line-type (see the 3D original image
presented in Figure 8(a)). In 3D case, it can be stated that
the typical distribution of principal directions follows well
the sets of characteristic lines. In order to quantify these
observations, the ST framework is generated bidimension-
ally and depicted in Figure 8(d). The purpose is to visualize
potentially the coherent regions in vector fields. Here, two
prevailing orientations exist. One of the material phase,
which is presented continuously by lines, and one of the
empty phase. For the energy field result, there are two color
representations in which the high values are mapped to
green to allow for a combined visualization of the vector
fields, even in the empty zones. The energy information con-
stitutes a coherent structure which is preserved to filter the
directional preferences, as illustrated in Figure 8(b)–(d).

(a) (b)

Figure 6: The computed histograms of the frequency distribution in terms of orientation angles. These histograms (a)–(b) are generated, respectively,
for the poplar and spruce specimens using the OrientationJ plugin.
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In the following, we construct a cylinder gravity model
with the same center of the contained parallelepiped
shape, which has equal length and width and a small
height. Its diameter is equal to half-length. The 3D view
of the synthetic model is shown in Figure 9(a). This model
has the same voxel size as the input image presented in
Figure 8(a). To demonstrate the real application effect, the
ST approach is applied to the cylinder image. Then, the
directional gradients of the input image are computed.
The energy spectrum of the tensor field is shown in

Figure 9(b). The projected orientations onto the plane
from the synthetically image are compared with the 2D
orientation obtained by the 2D ST, as shown in the three
bottom diagrams of Figure 9(d). The ST is used for the
anisotropic structure analysis to exhibit the energy and
orientation patterns in the same map, as illustrated in
Figure 9(f)–(e). The higher value of energy indicates highly
oriented structures. Note that the combination vector field
is calculated using the Gaussian kernel with parameters σ

equal to 0.2 and μ equal to 4 (Figure 9(f)) being deemed

Figure 7: 2D computational orientation vectors by ST analysis illustrating orientations and anisotropies. The ST is based on micro X-ray CT scans with
low-resolution of fiber and grain microstructures. (a) Material grain, (b) anisotropic orientations, (c) material fiber, (d) anisotropic orientations, (e)
degree of anisotropy in material grain, and (f) orientation and anisotropy in material fiber.
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sufficiently realistic for this study compared to the one
defined with parameters σ equal to 0.5 and μ equal to 1
(Figure 9(e)). In other words, the local orientations are
much more rotational in the case of high energy structure.
We see that the estimation influences the Gaussian filter on
the orientation maps in the higher-resolution data. Thus,
the effect is relatively important. In both cases, the map is

entirely different from the one projected map presented in
Figure 9(d).

We have previously enhanced the structural aniso-
tropy of images underlying some simplified geometrical
objects. The anisotropy on a voxel level is quantified in
terms of three independent scalar eigenvalues. Then, the
third computed eigenvalue signifies the uncertainty

Figure 8: Result visualization of orientation maps using the ST technique applied at the continuous straight line fibers: (a) 3D input image, (b) 3D
norm/energy, (c) 3D orientations, and (d) 2D orientations/energy.

Figure 9: 3D estimated orientation related to the shape component of the cylindrical object tensor: (a) 3D input image, (b) 3D norm/energy, (c) 3D
orientations, (d) 3D orientations (c) projected onto the plane =Z 0, (e) 2D orientations/energy using =σ 0.5 and =μ 1, and (f) 2D orientations/energy
using =σ 0.2 and =μ 4.
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concerning the dominant orientation of the structure field
due to complex and noisy neighborhoods. Feature informa-
tion, particularly orientation estimation of 3D images, is
most important for computer vision and image processing.
To estimate the LST, we will address responses for how to
obtain the representation from computations on 3D image
data. The proposed approach has been followed to realize
this estimation and integrated in a visualization frame-
work by the 3D VTK data [84]. For illustrative purposes,
we will display the energy physics that has been applied to
image processing. Estimating the local energy of wood spe-
cies in different orientations is depicted in Figure 10. This
energy is computed in terms of variation of the eigenvalues
from the resulting tensor field. The variation is analyzed
for two-phase wood material specimens. In other words,
low-energy region is located in pores, while high-energy
quantifies the tissue volumes. This is equivalent to saying
that large eigenvalues of the ST at each pixel point mean
high-frequency components of the image.

This work also aims at determining the anisotropic
structure viewed as a set of direction vectors on the center
points of the meshed microstructure. The process involved
in the computation is the utilization of the mesh prepared
from the tomographic micro-CT data. The CT scan image
segmentation is based on using the Otsu thresholding method.
Then, the material microstructure is triangulated to create the
meshed surface using the open-source Nanomesh [85]. Recal-
ling that Nanomesh is a Python workflow tool for creating 2D
and 3D meshes from image data. The tool contains a pre-pro-
cessing filter to segment the image data to generate a contour
that accurately reports the phases of interest. This summarized
that the meshing process consists of contour finding and trian-
gulation. The local direction of the anisotropy defined on the
voxel using the ST is correlated with themesh center. Note that

the image does not necessarily have to be segmented according
to our framework to generate anisotropic diffusion of the ST.
However, generating its mesh data via the thresholding con-
cept is a required stage. There are various advantages to deter-
mine the preferred orientation on the featured geometrical
elements. Particularly the stability and performance of
mechanical and thermal frameworks strongly depend on ani-
sotropic properties [86–90].

Figure 11 exhibits the local orientation presented by
the anisotropy vector for the poplar and spruce wood spe-
cimens. The figure is divided into four diagrams that focus
on the enlarged image in size to show the displayed vectors
on the cell center highlighting the quality and morphology.
The software tool used here for the visualization aspect is
Paraview, in which the visualization was performed in
VTK format. The proposed anisotropic morphology defined
on the mesh can be explained as follows. The kernel-based
approach defined on the mesh cell centers is associated with
the nearest vector field computed from the local tensor at
each pixel position. It means that the orientation estimation
of a centered cell will be located close to the pixel position,
which is given by distance information The applied mathe-
matical morphology operation illustrates that there is a con-
sistency from the anisotropic behavior depicted in Figure 3
compared to the presented below anisotropy.

4 Comparison with other
orientation analysis software

In contrast to some explored software tools, such as DiameterJ,
OrientationJ, and FibrilTool, which are devoted to quantifying
the fiber orientation analysis in 2D, our package is engaged on

Figure 10: (a)–(b) The local energy of the structure corresponding to the detail view in 3D space for the poplar and spruce wood. A selection of 3D
images have a resolution of × ×192 192 10 voxels and have different nodes to show the complexity of structure.
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parameters especially required for biomaterials. The most
regularly cited software tools for the investigation of fibrous
materials are exhibited in Table 2, where the performance of
software extensibility and integration with others software by
users are analyzed. The proposed Python package, named
Quanfima (quantitative analysis offibrousmaterials) [91], offers
both 2D and 3D analysis of data. It contains an assembly of
useful routines designed for studying themorphological proper-
ties and composition under visualization of multi-dimensional
data. The aim of using Quanfima is to provide a full analysis of
wood materials, including the determination of fiber orienta-
tion, particle diameter, and porosity. The estimation of diameter
quantifications is computed using a ray-casting method.

We run the anisotropic algorithm via Quanfima for the
poplar and spruce wood specimens. The fiber network was
visualized using the plugin Quanfima. The orientation
angles are presented in degrees, varying from 0 to 180,
and the diameter of each fiber is measured in pixels. The
analysis of these fibrous materials is interpreted as follows. As
shown in Figure 12, some solid tissues in increasing curves
take the orange-green colors, and others with decreasing
curves are attributed pink. The fabrics that follow or
approach a rectilinear shape are assimilated to the red
color. The fiber diameter given in the dataset impacts the
computed throughput because a thicker fiber needs more
iterations to catch a border. The diameter of the wood

Figure 11: 2D visualization of the orientation vector field on the mesh for the wood species: (a) Poplar wood, (b) spruce wood, (c) the enlarged image
presented in a( ), and (d) the enlarged image presented in b( ).
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Table 2: Comparison of open-source orientation analysis software existed in the literature with respect to the proposed ST package

FeatureName FiberScout DiameterJ OrientationJ Quanfima ST

Language + +C  Java Java Python Python
Dimensionality 3D 2D 2D 2D/3D 2D/3D
Facility Hard Medium Medium Medium Easy
Application CT Microscopy Microscopy CT/microscopy CT/microscopy
Orientation estimation Yes Yes Yes Yes Yes
Orientation on mesh No No No No Yes
Oriented vectors on map No No No No Yes
Diameter estimation Yes Yes No Yes Yes
Fiber length estimation Yes No No No Yes
Visualization Yes Yes Yes Yes Yes

Figure 12: The morphological analysis from 2D fibrous data structures via quanfima package. These datasets are loaded from the previous gray scale
image with the size of ×352 352. The visualization of the estimated orientation, analysis of the fiber orientation and diameters are shown in diagrams
(a)–(b) (respectively (c)–(d)) for the poplar (respectively for the spruce) specimen.
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structures is investigated and presented by mapping geo-coor-
dinates to a color scheme. Note that, concerning this diameter,
our ST and Quanfima packages lead to the same result. As
expected, large pore and vessel sizes, one of the key para-
meters in the main porosity properties, are identified inside
a wood structure in pink and blue colors. The obtained results
previously performed were expected because the morpholo-
gical properties of the specimens react in the same way.

Avizo is an object-oriented software system. It contains
system components based on modules and data objects. For
this purpose, there are two reasons that Avizo has not been
presented in Table 2. The first is that it is commercial soft-
ware supporting some file formats, such as Abaqus and
ANSYS. The second consists of the difficulty of using the
anisotropic module, particularly to view the orientation dis-
tribution on a 3D plot than 2D. The Avizo XWind provides
tools and powerful visualization to display the vector tensor
fields defined on 3D mesh-generated inputs. This aim of our
developed package has been attempted in a simple way
freely without processing main workflows on an image
stack. There exists an implemented method in Avizo soft-
ware to determine the orientation tensors, and the reader is
referred to its documentation [92] for a detailed explanation.
Using it allows visualizing the anisotropy of the wood by
displaying the local directions. Avizo can visualize main
orientation field given on 2D/3D Point Cloud sets or Line
Sets. This offers the possibility to view the representation
of points, rectangles, and line shapes as illustrated in Figure
13 corresponding to the orientations of the poplar material.

5 Bidimentional orthotropic linear-
elastic model with orientation

The purpose is to investigate the anisotropic behavior,
depicting the elastic moduli that is considered important
to understand and characterize the physical and mechan-
ical properties [93–95]. Assuming that the investigated
material is linear elastic with heterogeneous properties.
In this elastic regime, according to Hooke’s law, it can be
stated that for sufficiently low stresses, the stress σ is pro-
portional to the magnitude of the strain ε. Thus, in the
Voigt notation, this can be expressed via the local stiffness
matrix C, i.e., =σ εC ,
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C is the symmetric ×3 3 matrix characterized by four inde-
pendent coefficients to model the anisotropic wood materials

in 2D space. The elastic coefficients matrix Cij are expressed in
terms of the elastic coefficients, which are Young’s moduli E1

and E2, Poisson’s ratios ν12 and ν21, and one shear moduli G12.
The mechanical and elastic properties are described within
these coefficients, which are given as follows:
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Also, as an alternative to equation (22),

=σ C ε ,ij ijkl kl (24)

where Cijkl are the fourth-rank elastic stiffness tensor, and
σij and εkl denote the homogeneous second-rank tensors.
This means that the stiffness tensor is often written using
the two-index convention Cmn, expressed in equation (22),
wherem and n are related to the four indices ijkl expressed
in equation (24) with respect to specific ordering. Conver-
sely, the inverse of Hooke’s law takes the following form

=ε σS , where S is the compliance matrix, defined by
inverting the stiffness matrix C, i.e., = −S C 1. The symmetry
of the compliance matrix implies the relationship between
the engineering constant

=
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2
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The purpose is to investigate the conceived model to gen-
eral anisotropic microstructural materials within a given
rotational angle [96–98]. Consider a generic coordinate
system xy rotated by the angle θ with respect to the initial
system. Then, σ̂ denotes the stress tensor in the new orien-
tation coordinate system expressed in terms of the stress
tensor σ conforming to the elementary rotational matrix R

= ⋅ ⋅σ R σ Rˆ .T (26)

Similarly, the strain tensor ε̂ in the new reference basis is
expressed as

= ⋅ ⋅ε R ε Rˆ .T (27)

Then, equation (22) can be rewritten as Hook’s law in the
new reference basis

=σ εCˆ ˆ ˆ. (28)

Equations (26)–(27) and (22)–(28) can be coupled between
them, yielding the compact expression [30,99,100],

= R R R RC Cˆ .T T[ ] [ ] (29)

Summarizing based on the aforementioned work, the results
of anisotropic elasticity gained for the 2D Cauchy continuum
within the new tensor Ĉ are transferred from the tensor terms
C, = GC Cˆ : ,
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= GC Cˆ ,ijkl ijklmnop mnop
(30)

where G is the orientation tensor expressed in terms of the
rotation matrix elements.

We refer the reader to the previous excellent works
[101,102] exploring the mechanical properties within the FE
modeling based on the wood samples along the three
orthotropic directions. This study is investigated in the
3D organization where the material directions, namely
radial (R), tangential (T), and longitudinal (L). A reduction
of 1D in space refers to the 2D case without the longitudinal
direction. In order to examine the 2D mechanical behavior
of the wood specimens, the FE simulations are conducted
with the spruce wood microstructure. The aim here is to
show the ability of the framework to generate the different
material properties. For that, the mechanical properties
used in the model are assumed to be constant and inde-
pendent of the porosity. This assumption is explained by
simplifying the modeling work. The purpose is to deter-
mine the better physical engineering coefficients used in
the literature for which the framework is convergent and
affects the numerical results. Neagu and Gamstedt [103]
study principally the knowledge of the anatomical features
structured from the wood fiber while dispensing the hygro-
elastic properties from these samples. The radial and long-
itudinal Young’s moduli E1 and E2 of the wood specimen is
equal to 6.08 GPa, = =E E 6.081 2 GPa. Poisson’s ratio ν12

and the shear moduli G12 for transverse strain in the tan-
gential direction (T) when stress applies in the radial direc-
tion (R), are respectively, 0.42 and 2.14 GPa. Formally,

=ν 0.4212 GPa, =G 2.1412 GPa.

Figure 14 reports the FE numerical results of testing
the wood microstructure with highlighting 2D mechanical
analysis. The figure is shared into six diagrams, depicting
each component microstructure’s mechanical distributions.
This investigated microstructure is the spruce wood spe-
cimen having the dimension of ×192 192 pixels, and treated
with ImageJ-Python software. The FE approach takes as
input the meshing geometry, with the channel loads in
terms of the displacement boundary conditions. Note that
the presented FE framework is designed for the orthotropic
elastic problems, implemented without the previously rotated
formalism. First, the material microstructure was meshed in
2D, 3D triangular elements using an automaticmesh generator
(nanomesh) [85]. The model contained approximately 1,000
elements and approximately 1,000-half nodes. The boundary
conditions should be enforced. The vertical displacements are
applied to the top boundary layer of the microstructure. How-
ever, the inferior and four rest lateral sides are considered
blocked. This means that there is a null displacement on these
sides, as illustrated in Figure 14(f) in which the deformed
shapes and displacement maps are obtained with the FE
analyses.

The FE modeling is confirmed against some uniaxial
mechanical testing responding to the tensile loadings. As
said before, the Dirichlet boundary conditions are defined
by enforcing a vertical displacement − × −4 10 6 on the top
nodes following the tangential direction T corresponding to
the y-axis. The radial strain tensor ε22 is calculated according
to the strain–displacement relation, i.e., =ε Bu, where B is
the strain–displacement matrix (Figure 14(b)). According to
the stress–strain relationship given by equality (22), the

Figure 13: Visualization of anisotropy via Avizo for the poplar wood. The anisotropic behavior of local directions is displayed in point/rectangle (a) and
line (b) forms.
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component of stress σ22 is calculated and its variation is illu-
strated in Figure 14(c). Figure 14(d) and (e) depict the radial
displacement and stress fields. The modeling results show
that it is consistent with respect to the expected computations,
particularly the Poisson effect. At first sight, the Poisson
effect is illustrated in the top diagrams. Particularly, as
shown in Figure 14(a) when the tangential displacement
u22 varies steadily from the lower value − × −4 10 6 to the
higher value × −2.6 10 9.

6 Summary and future work

Throughout the article, we have used the ST model on
wood images to construct quantitative fiber orientation
maps in 2D and 3D spaces. The ST is typically used to
extract features on digital images. This consists of taking
a pixel’s neighboring gradients into account to provide the
anisotropy and directionality. In the industry sector, this
serves to predict these mechanical properties in the global
axis system, minimizing the production costs in time.

Investigation of wood anisotropy aims to tackle the major
commercial obstacles of new biomaterials produced from
wood by reducing their costs. First, the ST-based fiber
orientation mapping is presented on the plane. Since the
analogy of ST with the tensor matrices in 3D remains the
same, its extension into the 3D space remains the same.
Efforts in the computational analysis have been made to
implement the software tools via imaging techniques using
the performant visual interfaces. The computational orien-
tation maps demonstrate a good agreement of directional
information extracted from the imaging system. We will
demonstrate that the vector corresponding to orientation
maps is not sensitive to image intensity and is independent
of the preprocessing filter. The reason is the compatibility
between the 2D/3D computational orientation vectors and
the morphology of the original microstructure. This com-
parison correlates well with the computed orientations and
morphology. This information has been provided and is
available with direct viewing at tensors from a visualization
point of view. Moreover, the results obtained from the 3D ST
analysis remains ambiguous of directional alignments.
Particularly, the lack of a dominant direction to be observed

Figure 14: The mechanical test under the tensile loading demonstrates the validation of the orthotropic linear-elastic model in 2D space for the spruce
wood microstructure image with the size of ×192 192. The specimen is characterized by the mechanical properties within Young’s moduli,

= =E E 6.081 2 GPa, the Poisson’s ratio ν12, and the shear moduli G12, i.e., =ν 0.4212 GPa, =G 2.1412 GPa. (a) Displacement field u22, (b) component of
strain ε22, (c) component of stress σ22, (d) displacement field u11, (e) component of stress σ11, and (f) original/deformed shape.
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visually. To clarify this ambiguity, the orientation map on
the horizontal and vertical planes is displayed.
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