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Abstract: In the field of advanced materials, carbon-based
fillers are crucial for crafting high-performance polymer
composites. Continual innovations in modifying these fil-
lers are expanding the capabilities of polymer composite
materials, heralding new advancements in diverse techno-
logical areas. Ionic liquids provide innovative methods for
modifying carbon-based fillers to improve the performance
of polymer composites. In this concise review, numerous
carbon-based fillers used for modification, ionic liquids uti-
lized in the modification, and polymer matrices employed in
polymer composites are classified. In addition, the impact of
ionic liquids on the interactional and structural properties
of carbon-based fillers and their polymer composites, as
analyzed via Raman spectroscopy, is concisely explained.
This review provides a succinct analysis that deepens the
understanding of the Raman spectroscopic results pertaining
to various carbon-based fillers and polymer composites. In
brief, Raman analyses indicate that carbon-based fillers mod-
ified with ionic liquids and their composites exhibit upshifted
peak positions and higher intensity ratios compared to their
unmodified fillers. The upshifts in peak positions are linked to
interactions between the fillers and ionic liquids or between
the modified fillers and polymer matrices. Higher intensity
ratios in these modified fillers and polymer composites sug-
gest increased structural defects in the fillers.
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1 Introduction

In the area of advanced materials, carbon-based fillers
stand as essential components in the development of high-
performance polymer composites. These fillers derived from
various forms of carbon, such as carbon black, graphite, gra-
phene, and carbon nanotubes [1], are renowned for their
exceptional properties, which include high thermal conduc-
tivity, electrical conductivity, and mechanical strength [2].
Their incorporation in polymer matrices can significantly
enhance the physical properties of the base material [3],
leading to composites that are robust, lightweight, and cap-
able of operating under a wide range of environmental con-
ditions [4]. Carbon-based fillers substantially improve the
thermomechanical properties of polymer-based composites
due to their superior mechanical and thermal characteristics.
When modified and incorporated into polymer matrices,
these fillers contribute to advanced composite materials
that offer enhanced strength, conductivity, and stability [5].
This versatility makes carbon-based fillers highly sought after
in numerous industrial applications, ranging from electronic
to aerospace engineering, where they contribute to electrical
conductivity and material durability [6]. The morphology and
surface chemistry of these fillers play crucial roles in their
interactions with polymer matrices [7]. Modifications at the
molecular level can tailor their dispersion and compatibility
[3,8,9], influencing the overall performance characteristics of
the composites. As research progresses, the modification of
novel carbon-based fillers continues to push the boundaries
of polymer composite material capabilities, promising new
innovations across various technological fields. Moreover,
the environmental aspects of their modification are becoming
increasingly important considerations as industries strive for
sustainability, emphasizing eco-friendly practices and resource-
efficient methodologies in manufacturing processes.
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Ionic liquids, characterized by their unique properties,
such as low volatility, thermal stability, and tunable solu-
bility [10-12], offer innovative ways to modify carbon-
based fillers to enhance polymer composites’ performance
[9]. When used as modifying agents, ionic liquids can
impart specific functionalities to the surfaces of carbon-
based fillers such as graphene, graphene oxide, and carbon
nanotubes [13-15]. These functionalities can lead to improved
dispersion within polymer matrices [16,17], enhanced inter-
facial bonding [18], and increased electrical and thermal con-
ductivities [13]. The modification mechanism involves the
interaction between the ionic liquid and the carbon filler,
often resulting in a tailored surface chemistry that is better
suited for specific applications. For instance, the introduction
of ionic liquids can reduce the agglomeration of nanofillers
and promote a more homogeneous distribution throughout
the polymer matrix [19,20], which is crucial for achieving the
desired mechanical, thermal, and electrical properties in the
final composites. Moreover, the use of ionic liquids in surface
modification is aligned with green chemistry principles,
offering a less toxic and environmentally benign alternative
to conventional organic solvents and chemical treatments
[7,21]. This approach not only extends the functional range
of traditional carbon-based fillers but also opens new possi-
bilities for the design of next-generation materials that meet
stringent performance and environmental criteria.

Raman spectroscopy is highly effective for character-
izing carbon materials, as it offers insights into various char-
acteristics, including electronic structure, photonic structure,
and defect structure [15]. It emerges as an essential analytical
technique in the study of ionic liquid-modified carbon-based
fillers [22]. This non-destructive spectroscopic method is par-
ticularly valuable for probing the molecular structure and
bonding environment of modified fillers [23,24]. By delivering
detailed comprehensions into the chemical interactions at the
molecular level and structural characteristics [3,25], Raman
spectroscopy helps elucidate how ionic liquids change the
properties of carbon-based fillers. The unique Raman spectra
obtained through Raman analysis provide crucial data regarding
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the functionalization of the filler surfaces [2]. For instance, shifts
in peak positions or changes in intensity ratios can indicate
the presence of ionic liquid molecules [18,26] or the degree
of crystallinity of carbon fillers [27,28]. These spectroscopic
signatures are vital for verifying the successful modification
of the fillers and for understanding the dynamics of these
modifications under various environmental conditions [29].
Moreover, Raman spectroscopy aids in assessing the efficacy
and constancy of the modifications [22], which are critical
factors in tuning filler properties. The technique’s sensitivity
to structural changes makes it an indispensable tool in the
ongoing development and refinement of ionic liquid domains
in polymer composite materials.

The application of Raman spectroscopy to analyze
ionic liquid-modified carbon-based fillers within polymer
composites offers profound insights into their interactions
and structures [30]. This technique is crucial for con-
firming modified-filler loading [31], which is essential to
support the changes in mechanical, thermal, and electrical
properties of the composites [32], highlighting the signifi-
cant value of Raman spectroscopy. This review aims to
emphasize recent advancements in the utilization of ionic
liquids for polymer composites, with a particular focus on
comprehensions derived from Raman spectroscopic ana-
lyses. So far, there has been limited literature that specifi-
cally reviewed carbon-based fillers, ionic liquids, polymer
matrices, and their analysis through Raman spectroscopy
in ionic liquid-modified carbon-based fillers and their
polymer composites. This concise review seeks to address
this gap by exploring the way ionic liquids modify carbon-
based fillers and polymer composites, especially in terms
of their effects on Raman spectroscopy results. Through
investigating the role of ionic liquids, this review provides
a succinct overview of the interactions and structures
within these materials. The goal is to deepen the under-
standing of how ionic liquids impact the interactional and
structural properties of the fillers and their composites, as
observed in Raman analyses, thereby enriching the overall
knowledge base in materials science.

Table 1: Examples of carbon-based fillers used for modification with ionic liquids

Carbon-based filler Abbreviation Ref.

Carbon black CB [16]

Carboxylated multiwalled carbon nanotubes MWCNT-COOH [37]

Graphene Gra [15,22,24,35,38,39]
Graphene oxide GO [9,11,14,18,23,26,29,34,40-42]

Multiwalled carbon nanotubes
Reduced graphene oxide
Rice bran carbon

RGO
RBC

MWCNTs

[2,3,6,7,13,17,20,25,27,28,30,31,33,43-49]
[19,50]
[51]
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2 Carbon-based fillers for
modification with ionic liquids

Table 1 presents examples of carbon-based fillers used for
modification with ionic liquids. It shows that a variety of
these fillers are commonly employed alongside ionic liquids
to enhance the properties of polymer composites. Among
these, multiwalled carbon nanotubes appear frequently, indi-
cating their significant role and effectiveness in composite
enhancements when modified by ionic liquids [13,30,31,33].
This is followed by graphene oxide, which also exhibits a
high frequency of use, underscoring its versatility and favor-
able properties that benefit from ionic liquid modification
[18,29,34]. Graphene, known for its exceptional thermal, elec-
trical, and mechanical properties [15,35,36], similarly attracts
attention in modifications. In the past 5 years, there has been
a significant increase in the number of publications on
carbon-based fillers modified with ionic liquids, particularly
graphene and graphene oxide, compared to multiwalled
carbon nanotubes, as shown in Figure 1 from the Scopus
database. Scientific studies focusing on polymer composites
and their analysis via Raman spectroscopy were considered
for inclusion in the data figure. Besides that, the usage of
reduced graphene oxide also highlights its importance in
specific applications where its distinct properties are advan-
tageous. Carbon black, carboxylated multiwalled carbon
nanotubes, and rice bran carbon, while less frequently men-
tioned, are indicative of the ongoing exploration into diverse
carbon structures that can be potentially enhanced by ionic
liquids for specialized applications. Generally, the usage fre-
quency of these carbon-based fillers reflects the expanding
interest and continuous innovation in the field of materials
science, particularly in tailoring the interfacial interactions
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Figure 1: Number of publications on carbon-based fillers modified with
ionic liquids, sourced from the Scopus database.
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and performance features of polymer composites through
advanced chemical modifications.

3 Ionic liquids for modification of
carbon-based fillers

Table 2 shows examples of ionic liquids utilized in the modifi-
cation of carbon-based fillers. It reflects a broad range of che-
mical structures tuned for specific interactions with carbon
materials in polymer composites. Among these, 1-butyl-3-
methylimidazolium hexafluorophosphate (BmimPFg) seems
to stand out for its frequent use, highlighting its efficacy and
versatility in modifying fillers to improve composite properties
such as conductivity and mechanical strength [35,38,42,47].
Similarly, 1-butyl-3-methylimidazolium tetrafluoroborate
(BmimBF,) also shows significant utilization, suggesting its suit-
ability in achieving desired dispersion and interfacial adhesion
within composites [13,15,38]. The utilization of 1-ethyl-3-methy-
limidazolium tetrafluoroborate (EmimBF,) also illustrates the
expansive approach researchers take to optimize the interac-
tion between fillers and polymer matrices [3,27,48]. There has
been a substantial rise in the number of publications on ionic
liquids utilized for modifying carbon-based fillers in the past
5 years, specifically BmimBF, compared to BmimPFg, as shown
in Figure 2 from the Scopus database. In addition, this review
applied the Scopus database as it offers a more significant
number of publications than the Web of Science database
[52,53]. Figure 3 shows the chemical structures of BmimPFg,
BmimBF,, and EmimBF,. The specific choices of these ionic
liquids are driven by their ability to tune the surface properties
of carbon-based fillers, enhancing compatibility with polymers
and overall material performance. Moreover, less common but
specialized ionic liquids indicate ongoing explorations into
new chemistry. In general, the selection and frequency of these
ionic liquids in modifications denote a strategic approach to
improving the performance characteristics of carbon-based
filler composites, with a continuous push towards more inno-
vative and effective material solutions.

4 Polymer matrices for ionic liquid-
modified carbon-based filler/
polymer composites

Table 3 displays examples of polymer matrices employed

in ionic liquid-modified carbon-based filler/polymer com-
posites. Among these, styrene-butadiene rubber (SBR) is



4 —— Ahmad Adlie Shamsuri et al. DE GRUYTER

Table 2: Examples of ionic liquids utilized in the modification of carbon-based fillers

Ionic liquid Abbreviation Ref.
1-Allyl-3-methylimidazolium chloride Amimcl [9,45]
3-Allyl-1-methylimidazolium hexafluorophosphate AmimPFg [27,48]
1-(2-Aminoethyl)-3-methylimidazolium bromide AemimBr [23]
1-(3-Aminopropyl)-3-butylimidazolium bis(trifluoromethylsulfonyl)imide ApbimTFSI [6]
1-(3-Aminopropyl)-3-butylimidazolium bromide ApbimBr [6]
1-Benzyl-3-methylimidazolium chloride BzmimCl [25,31,49]
1-Benzyl-3-methylimidazolium tetrafluoroborate BzmimBF, [19]
1-(3-Butoxy-2-hydroxypropyl)-3-methylimidazolium tetrafluoroborate BhpmimBF, [18]
1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide BmimTFSI [28,46]
1-Butyl-3-methylimidazolium hexafluorophosphate BmimPFg [27,35,38,42,47,48]
1-Butyl-3-methylimidazolium tetrafluoroborate BmimBF, [13,15,17,38]
1-Butyl-1-methylpyrrolidinium hexafluorophosphate BmpyPFs [40]
1-Butylpyridinium bromide BpyBr [39]
1-Carboxyethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide CemimTFSI [37]
1-Decyl-3-methylimidazolium chloride DmimCl [33]
1-Ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide EdmimTFSI [71
1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide EmimTFSI [34]
1-Ethyl-3-methylimidazolium bromide EmimBr [43]
1-Ethyl-3-methylimidazolium dicyanamide EmimDCA [14,50]
1-Ethyl-3-methylimidazolium tetrafluoroborate EmimBF, [3,27,48]
1-Hexyl-3-methylimidazolium bromide HmimBr [43]
1-Hexyl-3-methylimidazolium hexafluorophosphate HmimPFg [51]
1-Hydroxyethyl-3-methylimidazolium tetrafluoroborate HemimBF, [24]
4-Methyl-1-butylpyridinium bromide MbpyBr [39]
1-Methylimidazolium chloride MimCl [29]
1-Methyl-3-octylimidazolium chloride MoimCl [45]
1-Methyl-3-pyrenylmethylimidazolium hexafluorophosphate MpmimPFg [35]
3,3’-(Octane-1,8-diyl)bis(1-butyl-imidazolium) bromide OdbbimBr [22]
1-Octyl-3-methylimidazolium tetrafluoroborate OmimBF, [11,26]
Tributylmethylammonium bis(trifluoromethylsulfonyl)imide TbmamTFSI [3]
Trihexyl(tetradecyl)phosphonium bistriflimide ThtdphTFSI [30]
Trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate ThtdphTMPP [2]
1-Vinyl-3-ethylimidazolium bromide VeimBr [44]
1-Vinyl-3-ethylimidazolium tetrafluoroborate VeimBF, [16,20,41]
1-Vinyl-3-hexylimidazolium bromide VhimBr [44]
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Figure 2: Number of publications on ionic liquids utilized for modifying  Figure 3: Chemical structures of (a) BmimPF¢, (b) BmimBF,, and
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Table 3: Examples of polymer matrices employed in ionic liquid-mod-
ified carbon-based filler/polymer composites

Polymer matrix Abbreviation  Ref.
Bromobutyl rubber BIIR [42]
Carboxylated nitrile rubber XNBR [34]
Carboxylated SBR XSBR [51]
Diglycidyl ester of aliphatic DGEAC [18]
cyclo

Diglycidyl ether of bisphenol A DGEBA [2,13,22]
Ethylene acrylic elastomer AEM [45]
Ethylene-vinyl acetate EVM [3]
copolymer

Fluorinated elastomer FKM [50]
High amorphous polyvinyl HAVOH [49]
alcohol

Natural rubber latex NRL [43]
Nitrile butadiene rubber NBR [24]
Poly(e-caprolactone) PCL [48]
Polychloroprene rubber CR [28,37]
Polyetherimide PEI [17,35,47]
Polyimide PI [15]
Polylactic acid PLA [40]
Polymethylmethacrylate PMMA [11,26]
Polystyrene PS [30]
Polyurethane PU [29]
Polyvinyl chloride PVC [19]
Polyvinylidene fluoride PVDF [16,20,23,27,38,41]
Silicone rubber QM [14]
Sodium polyacrylate PAA [6]

SBR
TPU

Styrene-butadiene rubber
Thermoplastic polyurethane

[7,9,25,31,33,39,46]
[44]

particularly prominent, highlighting its significance in
improving the toughness and abrasion resistance of compo-
sites [39], which are crucial attributes in automotive and
industrial applications. Polyvinylidene fluoride (PVDF) also
has significant features, indicating its widespread accep-
tance and effectiveness in achieving desired mechanical,
thermal, and electrical properties in composites. This polymer
is favored due to its excellent chemical resistance and piezo-
electric properties [23,27], which are beneficial in various
applications, including sensors and actuators. Another
polymer, like polyetherimide (PEI), appears less frequently
but is important for specific properties it imparts, such as
high-temperature resistance [17]. Similarly, diglycidyl ether
of bisphenol A (DGEBA), commonly used in epoxy resins, is
noted for its strong mechanical strength and chemical resis-
tance, making it a preferred choice for high-performance
applications [22]. Figure 4 shows the chemical structures of
SBR, PVDF, PEIL, and DGEBA. The variety of polymers listed,
ranging from elastomers to advanced engineering plastics,
reflects the broad applicability and customization potential
of carbon-based polymer composites modified by ionic liquids.

Carbon-based fillers and their polymer composites = 5

This diverse array of polymer matrices employed suggests
ongoing efforts to meet specific performance criteria across
various industries, driving forward innovations in composite
material technologies.

5 Raman spectroscopy analysis of
ionic liquid-modified carbon-
based fillers and their polymer
composites

Raman spectroscopy serves as a necessary instrument in
the analysis of ionic liquid-modified carbon-based fillers
and their polymer composites, offering crucial insights
through the observation of two significant characteristic
peaks such as the D (diamondoid) peak [34] and G (gra-
phitic) peak [29,54] in the Raman spectra. Figure 5 displays
the Raman spectrum of graphene oxide, an example of
carbon-based fillers. The D peak is mainly located around
1,200 and 1,499 cm™?, indicative of defects or disorders
within the carbon structures [25], and the G peak is situ-
ated chiefly around 1,400 and 1,699 emY representative of
the graphitic domain [23]. These peaks are pivotal in asses-
sing the modifications introduced by ionic liquids. Modifi-
cations with ionic liquids can result in observable shifts in
these peak positions. The shifts in D and G peak positions
often imply chemical interactions between the ionic liquids
and the carbon-based fillers [3,43] and between the ionic
liquid-modified carbon-based fillers and the polymer matrices
[17,31,45]. Furthermore, the intensity ratios between these
peaks (Ip/I; ratio) provide additional data points [55]. The
intensity ratios typically signify structural defects/disorders
[35] or the crystallinity of carbon materials [48]. Through these
detailed analyses, Raman spectroscopy elucidates the mole-
cular-level interactions and structural rearrangements occur-
ring in modified carbon-based fillers and their composites,
making it an essential method for advancing the development
of high-performance materials with tailored properties.

5.1 Raman analysis of ionic liquid-modified
carbon-based fillers

Table 4 exhibits the Raman peaks, peak positions, and
intensity ratios of various carbon-based fillers modified
with different ionic liquids acquired using different equip-
ment and laser wavelengths. A significant observation
from the table is the prevalence of upshifted peak positions
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Figure 4: Chemical structures of (a) SBR, (b) PVDF, (c) PEL and (d) DGEBA.

in many combinations, particularly with MWCNTs. This
suggests that the interaction between this filler and certain
ionic liquids, such as imidazolium-based ionic liquids with
hexafluorophosphate, bis(trifluoromethylsulfonyl)imide,
tetrafluoroborate, and bromide counter anions. This leads
to considerable interaction with the m-electronic nanotube
network or surface [7,43], which is detectable via Raman
spectroscopy. Besides that, GO displays a variety of peak
positions with different ionic liquids, indicating a versatile
response to modifications, which could be attributed to its
unique oxygen-containing functional groups that interact
variably with different ionic liquids [11,18,23]. Upshifted
peak positions are notably common with ionic liquids like
AemimBr, EmimTFSI, and OmimBF,, implying enhanced
interactions that might influence their properties [26,34].
Generally, the table indicates that the type of ionic liquid
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profoundly affects the Raman spectra results of carbon-
based fillers, suggesting modifications that can be crucial
for tuning the properties of carbon materials for specific
applications. The ability of certain ionic liquids to consis-
tently induce upshifted peak positions in MWCNTs and GO
underscores their potential for enhancing material charac-
teristics in advanced composites.

Another observation from Table 4 is the higher inten-
sity ratio seen in most combinations, indicating reduced
ordering or decreased crystallinity, which could translate
to the formation of amorphous carbon at the molecular
level [26,29,34]. This formation typically indicates the effec-
tive surface modification of carbon-based fillers by the
ionic liquid molecules [18,27]. GO consistently shows higher
intensity ratios with various ionic liquids. This consistency
across different ionic liquids implies that GO is particularly
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Figure 5: Raman spectrum of graphene oxide. Reproduced from Sanchez-Rodriguez et al. [40].
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Table 4: Raman peaks, peak positions, and intensity ratios of ionic liquid-modified carbon-based fillers acquired using different equipment and laser

wavelengths

Carbon-based Ionic liquid Raman Peak position Intensity ratio Equipment Laser Ref.
filler peak (cm™) wavelength (nm)

CB VeimBF, Unstated Unstated High B, Senterra R200 785 [16]
Gra BmimBF, 1,581 Downshift High TS, DXR 532 [15]
Gra BmimPFg 1,349, 1,581 Upshift Low R, inVia Reflex 532 [35]
Gra HemimBF, 1,344, 1,580 Downshift Unstated Unstated Unstated [24]
Gra 0dbbimBr 1,340, 1,581 Downshift Low R, inVia Reflex Unstated [22]
GO AemimBr 1,352, 1,591 Upshift High Unstated Unstated [23]
GO AmimCl| 1,342, 1,579 Downshift High R, inVia-H31894 514.5 [9]
GO BhpmimBF,  Unstated Downshift High TY-HR 800 514 [18]
GO BmimPFg 1,345, 1,590 Downshift High R, inVia-H31894 514.5 [42]
GO EmimDCA 1,353, 1,586 Unchanged High Unstated Unstated [14]
GO EmimTFSI 1,353, 1,592 Upshift High H, Jobin Yvon T64000 514.5 [34]
GO OmimBF, 1,345, 1,583 Upshift High W, Access 300 532 [26]
GO OmimBF, 1,357, 1,594 Unchanged High R, inVia 514 [11]
GO MimCl Unstated Unstated High Unstated Unstated [29]
GO VeimBF, 1,260 Downshift High B, Senterra, R200 785 [41]
RGO BzmimBF, 1,334, 1,586 Upshift Unstated W, alpha 300RA 633 [19]
RGO EmimDCA 1,332, 1,573 Downshift High W, alpha 300RA Unstated [50]
MWCNTs ApbimTFSI 1,346, 1,583 Upshift High R, inVia Qontor 514 [6]
MWCNTs BmimBF, 1,345, 1,575 Unchanged High R, inVia 514 [13]
MWCNTs BmimBF, 1,346, 1,588 Upshift Unstated R, inVia Reflex 532 [17]
MWCNTs BmimPFg 1,311, 1,589 Upshift Unstated H, ARAMIS UV 785 [47]
MWCNTs BmimPFg 1,356, 1,582 Upshift High R, inVia 514 271
MWCNTs BmimPFg 1,359, 1,587 Upshift High R, inVia 514 [48]
MWCNTs BmimTFSI 1,309, 1,605 Upshift Low Holoprobe 785 785 [28]
MWCNTs Dmimcl 1,351, 1,548 Downshift High W, alpha 300R 532 [33]
MWCNTs EdmimTFSI 1,328, 1,571 Upshift Low Unstated Unstated [71
MWCNTs EmimBF, 1,309, 1,590 Upshift Unstated B, Senterra 785 [3]
MWCNTs HmimBr 1,353, 1,589 Upshift High R, inVia Reflex 532 [43]
MWCNTs ThtdphTFSI 1,345, 1,575 Unchanged High R, inVia 514 [30]
MWCNTs ThtdphTMPP 1,345, 1,575 Unchanged High R, inVia 514 [2]
MWCNTs VeimBF, Unstated Upshift High B, Senterra R200 785 [20]
MWCNTs VhimBr 1,360, 1,580 Upshift High H, LabRam HR 532 [44]

Evolution

MWCNT-COOH CemimTFSI 1,349, 1,579 Upshift Unstated TS, DXR 532 [371
RBC HmimPFg 1,418, 1,598 Upshift Unstated B, Senterra R200-L 532 [51]

B = Bruker, H = Horiba, R = Renishaw, TS = Thermo Scientific, W = WiTec.

receptive to ionic liquid modification, potentially due to its
oxygenated surface, which can facilitate diverse chemical
interactions [14,23]. For MWCNTSs, the higher intensity ratio
is common, although there are exceptions with certain
ionic liquids like BmimTFSI and EdmimTFSI showing a
lower intensity ratio, certainly reflecting the rearrange-
ment of the tubes or high degree of crystallinity that
enhanced structural order to some extent [7,28]. In con-
trast, Gra exhibits both higher and lower intensity ratios
depending on the specific ionic liquid used. In general, the
table suggests that ionic liquids have a significant impact
on the Raman spectra outcomes of these fillers, providing
evidence of their potential to modify and feasibly improve

the properties of carbon-based materials for polymer com-
posites. This influence is crucial for designing materials
tuned for specific applications where enhanced properties
are required.

5.2 Raman analysis of ionic liquid-modified
carbon-based filler/polymer composites

Table 5 demonstrates the Raman peaks, peak positions, and
intensity ratios of diverse ionic liquid-modified carbon-
based filler/polymer composites acquired using different
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Table 5: Raman peaks, peak positions, and intensity ratios of ionic liquid-modified carbon-based filler/polymer composites acquired using different

equipment and laser wavelengths

Polymer composite Ionic liquid Raman peak (cm™) Peak position Intensity ratio Equipment Laser wavelength (nm) Ref.
AEM/MWCNTSs MoimCl 1,610 Upshift Unstated Unstated Unstated [45]
DGEAC/GO BhpmimBF, 1,335 Upshift Unstated TY-HR 800 514 18]
HAVOH/MWCNTs BzmimCl 1,355, 1,598 Upshift Low W, UHTS 300 532 [49]
PCL/MWCNTs BmimPFg 1,360, 1,588 Upshift High R, inVia 514 [48]
PEI/MWCNTSs BmimBF, Unstated Upshift Unstated R, inVia Reflex 532 [17]
PMMA/GO OmimBF, 1,356, 1,588 Upshift High W, Access 300 532 [26]
PVDF/Gra BmimPFg Unstated Unstated High J, NRS-5100 532 [38]
PVDF/GO VeimBF, 1,320 Downshift High B, Senterra, R200 785 [41]
PVDF/MWCNTs BmimPFg 1,353, 1,583 Upshift High R, inVia 514 [27]
PVDF/MWCNTSs VeimBF, Unstated Upshift High B, Senterra R200 785 [20]
QM/GO EmimDCA 1,260, 1,410 Downshift Low Unstated Unstated [14]
SBR/MWCNTSs BzmimClI Unstated Downshift Low Unstated Unstated [31]

B = Bruker, | = JASCO, R = Renishaw, W = WiTec.

equipment and laser wavelengths. A Raman analysis of the
AEM/MWCNTs-MoimCl composites was conducted by Prasad
Sahoo et al [45]. Figure 6 shows the Raman spectra of the
composites (a) and pristine MWCNTs (b). They found that the
G peak position of the composites upshifted to 1,610 cm™,
compared to 1,589 cm™ for pristine MWCNTSs. This upshift is
associated with the untangling of the MWCNTs and their
subsequent distribution within the AEM matrix. The untan-
gling of the MWCNTSs results from robust chemical interac-
tions between the AEM matrix and MWCNTs-MoimCl [45].

A Raman analysis of the DGEAC/GO-BhpmimBF, com-
posites was carried out by Shi et al. [18]. They discovered
that the D peak position of the composites upshifted to
1,335 cm ™, compared to 1,330 cm ™ for the DGEAC/GO com-
posite. This upshift, which may be caused by changes in
atomic distances due to the presence of BhpmimBF, in the
composites, is definitely correlated with the degree of
deformation [18].

A Raman analysis of the HAVOH/MWCNTs-BzmimCl com-
posites was conducted by Santillo et al. [49]. Figure 7 displays
the Raman spectra of the composites (a) and pristine MWCNTS
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Figure 6: Raman spectra of AEM/MWCNTs-MoimC| composites (a) and
pristine MWCNTs (b). Reproduced from Prasad Sahoo et al. [45], with
permission from John Wiley and Sons.

(b). They found that the D and G peak positions of the compo-
sites upshifted to 1,355 and 1,598 em™} respectively, compared
to 1,348 and 1,591 cm™ for pristine MWCNTSs. This upshift is
due to BzmimCl, which contains imidazolium and benzyl
groups and forms n—m interactions with MWCNTS, as well as
hydrogen bonding with HAVOH [49]. However, the intensity
ratio of the composites is lower than that of pristine MWCNTs.
This lowered intensity ratio indicates reduced shear stress
among MWCNTs and fewer structural defects [49].

A Raman analysis of the PCL/MWCNTs-BmimPFg com-
posites was carried out by Yoon et al. [48]. Figure 8 shows
the Raman spectra of the composites (a) and pure MWCNTSs
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Figure 7: Raman spectra of HAVOH/MWCNTs-BzmimC| composites
(a) and pristine MWCNTs (b). Reproduced from Santillo et al. [49], with
permission from Elsevier.
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Figure 8: Raman spectra of PCL/MWCNTs-BmimPFgs composites (a) and
pure MWCNTs (b). Reproduced from Yoon et al. [48], with permission
from John Wiley and Sons.

(b). They discovered that the D and G peak positions of the
composites upshifted to 1,360 and 1,588 emY respectively,
compared to 1,351 and 1,580 cm™? for pure MWCNTs. This
upshift is attributed to the strong interaction between
BmimPFg and MWCNTs in the PCL matrix [48]. Moreover,
the intensity ratio of the composites is higher than that of
pure MWCNTs. This higher intensity ratio suggests that the
inclusion of BmimPFg introduces additional defects in the
MWCNTSs [48].

A Raman analysis of the PE/MWCNTs-BmimBF, com-
posites was conducted by Ke et al. [17]. Figure 9 displays the
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Figure 9: Raman spectra of PEI/MWCNTs-BmimBF, composites (a) and

pristine MWCNTs (b). Reproduced from Ke et al. [17], with permission
from John Wiley and Sons.

Carbon-based fillers and their polymer composites == 9

Raman spectra of the composites (a) and pristine MWCNTSs
(b). They found that the D and G peak positions of the
composites upshifted relative to those of pristine MWCNTSs.
This substantial upshift indicates that the MWCNTs-BmimBF,
are encapsulated within the PEI matrix, indicating a strong
interaction between the two components [17].

A Raman analysis of the PMMA/GO-OmimBF, compo-
sites was carried out by Minguez-Enkovaara et al [26].
They discovered that the D and G peak positions of the
composites upshifted to 1,356 and 1,588 cm™, respectively,
compared to 1,355 and 1,580 em™ for pristine GO. This
upshift is induced by the presence of OmimBF,. Moreover,
the intensity ratio of the composites is higher than that of
pristine GO. This higher intensity ratio is due to the
reduced crystallite size of GO-OmimBF, within the PMMA
matrix [26].

A Raman analysis of the PVDF/Gra-BmimPFg compo-
sites was conducted by Widakdo et al [38]. They found
that the intensity ratio of the composites increased with
the BmimPFg content. The increase in intensity ratio is
linked to a marked increase in disorder within the Gra
structure. This defect is likely caused by bulky Bmim
cations on the surface, which introduce a degree of strain
[38].

A Raman analysis of the PVDF/GO-VeimBF, composites
was carried out by Guan et al. [41]. Figure 10 shows the
Raman spectra of the composites (a) and raw GO (b). They
discovered that the D peak position of the composites
downshifted to 1,320 cm™, compared to 1,333 cm ™ for raw
GO. This downshift is due to some grafted VeimBF, mole-
cules being peeled off from the surface of GO [41]. How-
ever, the intensity ratio of the composites is higher than
that of raw GO. This higher intensity ratio implies that the
microphase-separated nanoclusters on the GO surface con-
tinue to interact with the GO surface [41].

A Raman analysis of the PVDF/MWCNTs-BmimPFg com-
posites was conducted by Chen et al. [27]. Figure 11 displays
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Figure 10: Raman spectra of PVYDF/GO-VeimBF, composites (a) and raw
GO (b). Reproduced from Guan et al. [41], with permission from Elsevier.
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Figure 11: Raman spectra of PVYDF/MWCNTs-BmimPFs composites (a)
and pure MWCNTs (b). Reproduced from Chen et al. [27], with permission
from John Wiley and Sons.

the Raman spectra of the composites (a) and pure MWCNTSs
(b). They found that the D and G peak positions of the com-
posites upshifted to 1,353 and 1,583 cm™, respectively, com-
pared to 1,351 and 1,580 cm™! for pure MWCNTSs. This upshift
is induced by the strong interaction between BmimPFg and
MWCNTs in the PVDF matrix [27]. Moreover, the intensity
ratio of the composites is higher than that of pure MWCNTs.
This higher intensity ratio indicates that the introduction of
BmimPFg into the composites can induce more defects in the
MWCNTSs [27].

A Raman analysis of the PVDF/MWCNTs-VeimBF, com-
posites was carried out by Wang et al. [20]. Figure 12 shows
the Raman spectra of the composites (a) and pristine MWCNTS
(). They discovered that the G peak position of the composites
upshifted relative to that of pristine MWCNTSs. This upshift is
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Figure 12: Raman spectra of PVDF/MWCNTs-VeimBF, composites (a) and
pristine MWCNTSs (b). Reproduced from Wang et al. [20].
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attributed to the interactions between the cations of MWCNTs-
VeimBF, and CF, groups in the PVDF matrix [20]. Further-
more, the intensity ratio of the composites is higher than
that of pristine MWCNTS. This higher intensity ratio exhibits
the detachment of VeimBF, from the MWCNTS [20].

A Raman analysis of the QM/GO-EmimDCA composites
was conducted by Sarath et al. [14]. They found that the D
and G peak positions of the composites downshifted to
1,260 and 1,410 cm ™%, respectively, compared to 1,353 and
1,586 cm™ for neat GO. This downshift is due to the inter-
action of GO-EmimDCA and QM matrix. Moreover, the
intensity ratio of the composites is lower than that of
neat GO. This lowered intensity ratio suggests fewer struc-
tural defects and edge effects associated with the narrow
width of graphene sheets [14].

A Raman analysis of the SBRIMWCNTs-Bzmim(Cl com-
posites was carried out by Abraham et al [31]. They
discovered that the G peak position of the composites
downshifted relative to that of pristine MWCNTs. This
downshift is induced by the mechanical compression trans-
ferred from the SBR matrix to the MWCNTS, causing the
MWCNTs-BzmimCl to shrink [31]. Furthermore, the intensity
ratio of the composites is lower than that of pristine MWCNTs.
This lowered intensity ratio results from improved alignment
of MWCNTs within the composites and a decrease in disorder
or the number of defects [31].

6 Discussion

Table 4 reveals changes in Raman peak positions and inten-
sity ratios, illustrating the complex interactions between
various carbon-based fillers and ionic liquids. MWCNTs
often show upshifted peak positions, likely due to significant
interactions with ionic liquids like imidazolium-based ionic
liquids. These interactions with the nanotube’s m-electronic
network are detectable via Raman spectroscopy and suggest
a strong interaction that modifies the electronic structure
of the carbon nanotubes. Conversely, GO displays varied
responses to ionic liquid modifications, possibly because
its oxygen-containing functional groups interact differently
with various ionic liquids. The consistent upshift in GO’s
peak positions with certain ionic liquids indicates enhanced
interactions that can significantly influence its properties,
indicating the potential for tailored functionalization. More-
over, a higher intensity ratio across most modified carbon
fillers implies a decrease in crystallinity or ordering, often
translating to increased amorphous carbon content. This is
indicative of effective surface modification, especially noted
in GO, which consistently shows this characteristic across
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different ionic liquids, pointing to its high receptiveness to
modification due to its oxygenated surface. For MWCNTSs,
variations in intensity ratios could reflect changes in struc-
tural ordering or crystallinity, highlighting the subtle effects
of specific ionic liquids. Overall, these spectra changes
underline the deep impact of ionic liquids on carbon fillers,
enhancing their properties for use in advanced composites
and underscoring their potential in material design custo-
mized for specific applications.

Table 5 showcases Raman spectra changes across var-
ious ionic liquid-modified carbon-based filler/polymer com-
posites, reflecting involved interactions at the molecular
level. Across different studies, a common observation is
the upshift in both D and G peak positions in composites,
indicating alterations in the electronic properties and struc-
tural rearrangements due to the interactions between the
fillers and the ionic liquids. These upshifts, often linked to
the redistribution of modified carbon fillers within the
matrices, suggest robust chemical interactions that alter
the properties of the composites. Similarly, downshifts in
peak positions are typically associated with the detachment
or reorganization of modified fillers, affecting their interac-
tion with surrounding polymer matrices. This change of
peak positions highlights the specific impacts of various
ionic liquids, such as imidazolium-based ionic liquids with
different counter anions, on the structural integrity and
electronic characteristics of the fillers. The intensity ratios,
another critical measure of Raman spectroscopy, provide
insights into the degree of disorder or crystallinity within
the composites. Higher intensity ratios generally indicate
increased amorphous characteristics or structural defects.
Conversely, lower intensity ratios suggest enhanced ordering,
which can be a result of fewer structural defects or disorders.
By analyzing these Raman spectra as a whole, it is evident
that ionic liquids play a transformative role in tuning the
properties of carbon-based materials, enhancing their utility
in advanced polymer composites.

7 Conclusions

In this review, examples of carbon-based fillers used for
modification, ionic liquids utilized in the modification, and
polymer matrices employed in polymer composites are con-
cisely identified. Additionally, the interactional and structural
properties of carbon-based fillers and their polymer compo-
sites, as analyzed by Raman spectroscopy, are described in
this concise review. MWCNTSs, GO, and Gra are the most
commonly used carbon-based fillers for modification with
ionic liquids, showcasing their critical role and efficiency in

Carbon-based fillers and their polymer composites = 11

enhancing polymer composites. BmimPFs, BmimBF,, and
EmimBF, are the most frequently utilized ionic liquids in
the modification of carbon-based fillers, reflecting their effec-
tiveness and adaptability in improving the properties of
polymer composites. SBR and PVDF are the most often
employed polymer matrices in ionic liquid-modified carbon-
based filler/polymer composites, emphasizing their impor-
tance in boosting the toughness and chemical resistance of
these materials. Many Raman analyses show that carbon-
based fillers modified with ionic liquids exhibit upshifted
peak positions and higher intensity ratios compared to pris-
tine carbon-based fillers. The upshifted peak positions suggest
interactions between the fillers and ionic liquids, while the
higher intensity ratios indicate structural defects in the mod-
ified fillers. Similarly, ionic liquid-modified carbon-based
filler/polymer composites display upshifted peak positions
and higher intensity ratios than their unmodified fillers.
These upshifts are attributed to strong interactions between
the modified fillers and polymer matrices, whereas the higher
intensity ratios result from increased structural disorders in
the modified fillers within the polymer matrices.
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