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Abstract: Activated alkali materials (AAMS) are progres-
sively utilized as an alternative to Portland cement concrete
owing to their widespread application and reduced environ-
mental impact. This research employed multi-expression
programming (MEP) and gene expression programming
(GEP) to create predictive models for the compressive
strength (CS) of AAMs based on a dataset of 381 entries
with eight distinct variables. To further assess the signifi-
cance of the factors influencing the CS of AAMs, sensitivity
analysis was employed. In comparison to GEP, MEP was
better at predicting AAM’s CS. The R? score of the GEP model
was 0.953, which is lower than the MEP model’s 0.970 level.
This was further backed up by the results of the statistical
study and Taylor’s diagram. The results of the sensitivity
analysis showed that specific surface area, aggregate volu-
metric ratio, and silicate modulus were the three most
important parameters influencing the models’ outcomes.
In comparison to models built in Python, the produced
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models yield novel empirical equations for AAM strength
characteristic prediction. Researchers and professionals in
the field could use these equations to find the best propor-
tions for mix designs, cutting down on the need for repeated
laboratory tests.
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List of notations

AAMs  alkali-activated materials

Adm admixture volumetric ratio

Ag aggregate volumetric ratio

CS compressive strength

ET expression tree

GA genetic algorithm

GPV geopolymer paste volume to total concrete ratio
GGBFS  ground granulated blast furnace slag

GP gene programming

GEP gene expression programming
LBR liquid-to-binder volumetric ratio
MEP multi-expression programming
MAPE  mean absolute percentage error
MAE mean absolute error

ML machine learning

Ms silicate modulus-Si0,/Na,0

NSE nash-Sutcliffe efficiency

OPC ordinary Portland cement

R Pearson’s correlation coefficient
R? coefficient of determination
RMSE root mean square error

RRMSE relative root mean square error
RSE relative squared error

RT reactivity

SHC sodium hydroxide concentration
SSA specific surface area
w/b water/binder ratio
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1 Introduction

Currently, the percentage of CO, emissions caused by the
manufacturing of ordinary Portland cement (OPC) is drop-
ping, but current predictions indicate that it will account
for an extra 8% of all emissions by 2050. The zero-emis-
sions aim of the Paris Agreement is being called into ques-
tion [1,2]. Discovering less detrimental substitutes for OPC
is crucial in order to reduce the OPC business’s carbon
dioxide emissions [3]. The eco-friendliness and low-energy
use of alkali-activated materials (AAMs) have made them a
highly sought-after potential game-changing construction
material in recent decades [4,5]. Industrial by-products,
minerals, and mining waste are all examples of materials
that include alumino-silicates. By reacting these materials
with alkaline activators, they can be transformed into
AAMs [6]. Among the several alumino-silicates that could
be employed as AAMs building blocks are those that are
discussed in detail, followed by red mud, fly ash, met
kaolin, blast furnace slag, and ashes from rice husks
[7-10]. A lot of people have used sodium activators to get
the right technical attributes for a good price [11]. This
includes sodium carbonate, water glass, and sodium hydro-
xide, to name a few. Utilization of AAMs has been wide-
spread in the construction industry, with applications
ranging from offshore structures to waterproof buildings,
dwellings, and heavy metal immobilizations [12]. In che-
mical science, AAMs refer to a broad category that includes
many different types of precursors that are activated by an
alkaline solution. Geopolymers are AAMs made by poly-
merizing aluminosilicate minerals under alkaline condi-
tions. Geopolymers, unlike AAMs, have a wide range of
configurations and geometries. Their distinctive and easily
controlled polymerization process makes them ideal for
usage in high-performance concrete [6,13]. Despite some
negatives, such as shrinkage cracking, AAMs are now
more effective than OPC concrete [14]. The reason for the
shrinkage cracking is due to rapid chemical reactions
between the alkali activator and the precursor materials,
leading to high internal stresses. These stresses result from
the rapid formation of hydration products and the loss of
moisture during the curing process, which contributes to
volumetric changes and ultimately causes shrinkage. Besides
shrinkage cracking, AAMs face disadvantages such as a high
carbon footprint of activators, potential durability issues, lim-
ited standardization, workability challenges, and higher costs
of raw materials [15-17]. Figure 1 shows the advantages
of AAMs.

This machine learning (ML) research focuses on com-
pressive strength (CS), a key structural material perfor-
mance indicator. Numerous studies have explored the
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Figure 1: Merits of AAMs [18].

influence of precursor type, curing conditions, water-to-
binder ratio (w/b), and activator measure on CS to develop
models and perform predictive assessments, with a parti-
cular emphasis on structural reliability. The purpose of the
study by Yang et al. was to investigate how changing the
water-to-binder ratio affected the mechanical characteris-
tics of alkali-slag concrete that had been activated with
chloroform [19]. The results indicated that the CS increased
at a similar rate as OPC concrete when the w/b ratio was
decreased. Alkali activation facilities commonly use both fly
ash and ground granulated blast furnace slag (GGBFS) as
precursors. According to Xie et al., the mechanical strength
of geo-polymer concrete stimulated by alkali and recycled
aggregate was influenced by GGBFS and fly ash [20]. A higher
ratio of GGBS to fly ash was shown to be correlated with an
increased CS. The findings support previous research indi-
cating that the use of NaOH to activate fly ash/slag blends
leads to an enhanced CS, particularly when the proportion of
slag is increased [21]. Table 1 provides a concise overview of
the literature on ML, which shows that ML models are very
accurate in predicting many concrete and mortar para-
meters. The number of building applications discovered by
AAMs and utilization of ML is quite small. A big worry is that
not enough is understood about how these various character-
istics impact their CS performance.

In order to adjust the mechanical characteristics of
AAMs, it is possible to modify the types and ratios of acti-
vators. In their pursuit of knowledge, Aydn and Baradan
dug deeper into the topic of alkali activation by investi-
gating the impacts of NaOH and NA,SiO; to activate the
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Table 1: Previous ML-based similar studies
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Ref. Materials investigated Attributes projected ML technique utilized R? value (max)
[22]  GP-mortar Flexural strength (FS)  Bagging regressor and support vector machine (SVM) 0.92
[23] RHA-based concrete cs AdaBoost, extreme gradient boosting, and gradient boosting  0.89
[24]  Mining waste-based cements  CS SVM, decision tree, and random forest 0.97
[25]  Geopolymer concrete CS MEP and GEP 0.97
[26] Metakaolin-centered concrete  CS & FS MEP and GEP 0.96

mechanical characteristics of slag from Turkey [27]. The
specimens activated with NaOH had a lower CS than the
slag mortars treated with NA,SiOs, as shown in the results.
The amount of Na,O and the ratio of SiO,Na,O concentra-
tion were presented to exhibit a substantial impact on CS.
For instance, after 28 days, mortars containing NA,SiO3 and
NaOH, with a SiO,/Na,0 ratio of 1.2 and an 8% Na,0 slag
component, attained the highest CS. Due to its sensitivity to
temperature, curing is the first stage of geopolymerization.
According to Rovnank, a geopolymer containing kaolin was
tested using a range of curing temperatures (from 10 to
80°C) to regulate its impression on microstructural and
mechanical attributes [28]. The CS of AAM designs should
be determined by considering the aforementioned criteria.
Uncovering the optimal computer science solution formerly
required doing numerous experimental trials in the labora-
tory. Nevertheless, it is an expensive and time-consuming
technique to prepare a big quantity of AAM specimens.
Improved estimates of AAM CS can be obtained without
squandering resources on ineffective batch experiments.
Soft computing has made it possible to more faithfully
model the technical properties of a wide range of materials.
Prediction accuracy relies heavily on data-fed ML models.
Because of their complicated complexity and inherent unpre-
dictability, construction materials are notoriously difficult to
quantify accurately. A notable area of use for ML algorithms
has been the estimation of engineering characteristics of con-
struction materials. Different varieties of concrete, including
both new and old, have had their characteristics studied
using ML techniques. These types of concrete include fiber-
reinforced concrete, lightweight concrete, self-compacting
concrete, recycled aggregate concrete, and concrete inte-
grated with phase change materials [29-33]. Several research
have shown that powerful ML models are more effective than
traditional physical and empirical methods in accurately
assessing specific engineering attributes. To obtain accurate fore-
casts on the characteristics of concrete, it is important to address
certain computational challenges. The intricate mechanisms of
cement hydration and microstructure formation, along with the
nonlinear relationship between time, temperature, and the
activity of cement paste, present substantial challenges [34-36].

Training ML models with input data on combination propor-
tions and curing circumstances allows for reliable prediction of
desired attributes. The use of ML models has various benefits,
such as generalizability, accuracy, and reproducibility in predic-
tions, as well as minimal computing requirements and ease
of use.

A reliable computational framework for CS prediction
of AAM composites might be developed with the assistance
of well-trained ML algorithms, according to the study. This
study aims to analyze AAM’s CS using strong ML models.
We utilized publically available research material to create
regression models that utilized gene expression program-
ming (GEP) and multi-expression programming (MEP) to
forecast the CS of AAMs. In all, there are 381 points in the
dataset. All the models were double-checked using mathe-
matical tests and Taylor’s diagram. To find out how the
variables affected the prediction, a sensitivity analysis
was run. The invention of new techniques and instruments
for conducting controlled assessments of material proper-
ties with minimal human involvement implies that the
results may have extensive ramifications for the entire
building industry.

2 Methods of research

2.1 Dataset selection and analysis

A dataset with 381 data points was analyzed using the MEP
and GEP techniques in this study. The dataset was gathered
from a laboratory experiment that attempted to estimate the
CS of AAMs [37-60]. Eight parameters were used to predict
the CS in this study: sodium hydroxide concentration (SHC),
silicate modulus-SiO,/Na,0 (Ms), reactivity (RT), admixture
volumetric ratio (Adm), geopolymer paste volume-to-total
concrete ratio (GPV), aggregate volumetric ratio (Ag), liquid-
to-binder volumetric ratio (LBR), and specific surface area
(SSA). The data collection and consolidation processes relied
heavily on thorough data pretreatment. Methods for
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preparing data for data mining aid in discovering new knowl-
edge from existing data, which is a common objective, but it is
not without its difficulties. Data cleansing and standardiza-
tion through the removal of inaccuracies and unnecessary
elements is the main objective of data preparation. Data
cleansing involves identifying and correcting errors, such as
missing values, duplicates, or incorrect entries, to ensure data
accuracy. Standardization involves converting data into a
consistent format or scale, such as unifying date formats or
normalizing numerical values. This process helps eliminate
inconsistencies and ensures that the data is reliable and ready
for analysis, leading to more accurate and meaningful results.
The model analysis included regression and error-distribu-
tion approaches. As shown in Table 2, we ran a number of
descriptive statistics on these numbers. Additionally, the effi-
cacy and validity of the models utilized have been assessed.
Violin plots in Figure 2(a)-(i) demonstrate the frequency of
various values. It shows the data’s probability density at var-
ious levels, as well as its distribution across several categories.
The graphic gives a thorough look at the distribution and
variability of the data, with features such as a median
marker, an interquartile range box, and the density curve
on each side.

2.2 ML modeling

To measure the CS of AAMs, a controlled setting was uti-
lized. The output (CS) was obtained by requiring eight
inputs. Using state-of-the-art ML algorithms such as GEP
and MEP, AAM’s CS predictions were generated. When
analyzing ML algorithms, it is usual practice to compare
the outputs of the algorithms to the data that they were

Table 2: Data-based variable descriptions
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given as input. 50% of the data was utilized for training the
ML models, while the remaining 30% was used for testing.
In order to demonstrate that the model is successful, the R?
score of the expected outcome is utilized. The coefficient of
determination (R is quite low for a significant difference,
which indicates that the expected and actual values diverge
to a minor degree [61]. The accuracy of the model is vali-
dated by a variety of methods, including statistical testing
and evaluations of errors in the model. The scenario model
depicted in Figure 3 is an example of a scenario model. A
representation of the hyper-parameter parameters that are
involved in the GEP and MEP models is shown in Table 3.

2.2.1 GEP model

Holland invented the genetic algorithm (GA), commonly
referred to as the GA, based on Darwin’s theory of evolu-
tion. This algorithm simulates the process of natural selec-
tion to solve optimization problems by evolving solutions
over generations, mimicking the survival of the fittest [62].
A sequence of GAs represents the genomic process, which
ends with consistent-length chromosomes. A new GA called
“gene programming (GP)” by Koza [63]. GP uses GAs to gen-
erate an evolutionary model, which is a general method for
problem resolution [64]. The adaptability of GP is derived
from its capacity to replace binary characters of arbitrary
length with nonlinear structures, such as parse trees of
varying lengths. The current Al system, in keeping with
Darwin’s hypothesis [65], uses naturally existing genomic
components (such as reproduction, crossover, and altera-
tion) to handle reproduction concerns. Replanting the area
using our preferred method makes use of the trees that
remain after removing the ones that will not function, just

Statistical parameters SSA (m*kg™) Ms RT GPV (%) Ag SHC (M) LBR Adm CS (MPa)
Mean 785.989 1.033 3.677 0.676 0.316 5.386 1.046 0.013 52.143
Standard error 47.244 0.039 0.576 0.015 0.015 0.230 0.023 0.003 1.385
Median 429.000 0.900 1.810 0.640 0.350 5.110 0.960 0.000 48.300
Mode 338.300 0.750 1.810 1.000 0.000 0.000 0.780 0.000 40.000
Standard deviation 922.176 0.755 11.239 0.289 0.291 4.495 0.456 0.054 27.038
Sample variance 850407.796 0.570 126.326 0.084 0.085 20.208 0.208 0.003 731.039
Kurtosis 10.314 33.548 110.023 -1.183 -1.179 -0.973 -0.385 39.703 0.248
Skewness 3.053 4.530 9.998 -0.246 0.290 0.380 0.681 6.307 0.358
Range 6118.850 7.940 136.640 0.920 0.920 16.000 2.000 0.390 145.200
Minimum 290.000 0.000 0.580 0.080 0.000 0.000 0.150 0.000 0.000
Maximum 6408.850 7.940 137.220 1.000 0.920 16.000 2.150 0.390 145.200
Sum 299461.790 393.440 1400.850 257.580 120.430 2052.240 398.390 4.960 19866.500
Count 381.000 381.000 381.000 381.000 381.000 381.000 381.000 381.000 381.000
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Figure 2: Database input/output violin plots: (a) RT; (b) SSA; (c) silicate modulus

volumetric ratio; (h) admixture; and (i) CS.
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Figure 2: (Continued)

as in the previous case. Early convergence is protected by
evolution, though [65,66]. Prior to implementing the GP
methodology, it is essential to identify the following four
factors: significant field activities, fitness evaluation, core pur-
poseful operators (such as population extent and crossover),
and results from method-specific endpoints [65]. Despite GP’s
recurring model construction, a crossover genetic processor
handles most of the parse tree creation [48]. Nonlinear GP
forms must fulfill the dual role of genotype and phenotype,
resulting in increased complexity in the expressions for
desired traits [66].

GP was initially proposed by Candida Ferreira, who
also invented GEP. This method enhances traditional GP
by encoding programs as linear chromosomes, which are
then expressed as tree structures, improving the efficiency
and capability of the evolutionary process [66]. GEP modeling
employs parse trees and static-length lined chromosomes

CS (Mpa)

®

based on population generation theory. By using basic,
fixed-length chromosomes, the extended GP, also known
as GEP, encrypts software of intermediate size. In order to
forecast complex and nonlinear issues, one can use GEP to
create equations [67,68]. Similar to GP, the circumstances for
termination, the final set, and the fitness function are all
supplied. The GEP method utilizes random numbers to gen-
erate chromosomes, which are then identified as such using
the “Karva” dialectal before they are manufactured. The
fundamental principle of GEP is a line that maintains a
constant length. Conversely, the code dispensation of data
that GP performs presents parse trees of variable lengths.
Beginning with their definition as static-length genomes, these
individual cords thereafter depict chromosomes through the
use of nonlinear manifestation/parse trees characterized by
pronged morphologies of varying sizes [65]. Different genetic
codes are present in these genotypes and phenol strains [34].
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GEP safeguards the genome across generations, thereby eradi-
cating expensive structural transformations and replications.
GEP chromosomes are uniquely structured with a “head” and
a “tail,” allowing them to produce complex multi-gene expressions
from a single chromosome. This efficient structure enhances the
algorithm’s capability to evolve sophisticated solutions [65]. Math-
ematical, arithmetic, logical, and Boolean instructions are pro-
vided by these genes. Activators connect genetic instructions to
their corresponding cell functions. Equations based on empirical
data are now possible because of a new language called Karva,
which can decipher these chromosomes. Following the expression
tree (ET), a prominent revolutionary starts their journey at Karva.
By using Eq. (1), ET assigns nodes to the underlying layer [67]. The
extent and length of GEP gene K-expression can be influenced by
the overall quantity of ETs

ETgep = 10g[l - %], M

‘ Dataset produced from
‘ experiments

'

Test results as output
(CS)

Raw materials as
input parameters

Developing machine learning-
based prediction models

Validation of prediction models

! | |

Statistical ‘ Taylor’s
checks diagram

Sensitivity analysis

!

‘ Significance of input

parameters on the outcome

Figure 3: Comprehensive study approach overview.
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where ETgp represents the output of the GEP model, where
i and j are input variables.

As an advanced ML method, GEP is able to function
without prior associations. Figure 4 shows the many stages
involved in creating GEP mathematical equations. Each cell
possesses an equal amount of chromosomes from the
moment of birth. In order to assess the health of indivi-
duals, it is necessary to verify the certification of these
chromosomes as ETs. Only persons who possess the highest
level of physical fitness and health are capable of reprodu-
cing. Optimal outcomes are achieved when highly accom-
plished individuals engage in an iterative process. The final
result is the product of three generations of breeding,
mutation, and crossover.

2.2.2 MEP model

Due to the fact that it makes use of linear chromosomes,
the MEP is considered to be a demonstrative linear-based
GP approach that is very advanced. The capability of MEP
to encode several software options into a single chromo-
some is what differentiates it from other variants of the GP
technique. With the help of fitness analysis, the result is
achieved by selecting the chromosome that is most suitable
[69,70]. This is what happens when a bipolar system cou-
ples twice, which results in the creation of two new gen-
erations, as Oltean and Grosan explain themselves. Each
generation acquires a parent for themselves [71]. The pro-
cess will continue to operate until the optimal software is
identified, which occurs prior to the termination condition,
as illustrated in Figure 5. When it comes to MEP, fitness
analysis is vital for assessing the efficacy of evolving math-
ematical expressions used to fit datasets. By comparing the
actual and desired results of a program, the fitness func-
tion finds the optimal set of chromosomes to reproduce. By
utilizing selection, crossover, and mutation, MEP promotes
fit programs. The algorithm can be trained to stay within
predefined parameters by using iterative approaches to
stop when the fitness level, number of generations, or
improvement limit is reached. Evolution alters linear chro-
mosomal elements through mutations in MEP. Variation in
population genetics is enhanced by small chromosomal
program mutations. Unique solutions are made possible
by mutations that start early in the MEP optimization pro-
cess and affect the genetic material of future generations.
With mutations, the algorithm becomes better at adapting
to fitness landscapes and searching solution spaces. Com-
ponent merging is possible in the MEP model as it is in
other ML paradigms. When engaging in MEP, it is crucial
to take into account factors such as the algorithm or code
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Table 3: Standardized MEP/GEP model factors
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MEP

Hyper-parameters

Settings

GEP

Hyper-parameters

Settings

Terminal set

Cross over probability
Num. of generations
Sub-population size
Mutation probability
Operators/variables
Number of generations
Number of treads
Error

Problem type

Code length
Replication number
Number of runs
Number of sub-populations
Function set

Problem input
0.9

300

150

0.01

0.5

450

2

MSE, MAE
Regression

30

15

15

60

+, =, X, ¥, power, square root

Data type

Constant per gene

Two-point recombination rate
Head size

Stumbling mutation
Inversion rate

Mutation rate

Linking function

Genes

General

Chromosomes

Lower bound

Leaf mutation

Upper bound

One-point recombination rate
Gene recombination rate
One-point recombination rate
Function set

RIS transposition rate
Random chromosomes

Floating number
10

0.00277

10

0.00141

0.00546

0.00138
Addition

6

cs

250

-10

0.00546

10

0.00277

0.00277

0.00277

+, =, X, +, power, square root
0.00546

0.0026
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Figure 4: Process flow diagram for the GEP method [23].
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Creation of chromosomes
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(Binary tournament procedure)

Production of off-springs

Fitness evaluation

Figure 5: Methodology of the MEP flowchart [23].

length, the number of functions, the frequency of cross-
over, and the number of subpopulation [72]. When there
are as many people as there are packages, it becomes more
tedious and time-consuming to evaluate the population. As
the code length grows, so does the size of the resulting
mathematical expressions. Table 3 presents a comprehen-
sive inventory of MEP characteristics that are necessary
for constructing a reliable mechanical property model.

It is usual practice to use literature data sets during the
evaluation and modeling stages of the MEP approach
[73,74]. Several scholars have contended that widely used
linear genetic programming techniques, such as the MEP,
are more effective in predicting practical and tangible
attributes. Grosan and Abraham came to the conclusion
that the most successful technique based on neural net-
works was the combination of linear genomic program-
ming and maximum likelihood estimation (MLP) [75]. The
GEP’s operational mode is marginally more advanced than
the MEP’s [72]. Although MEP has a lesser density than GEP,
there are significant alterations between the two: (1) MEP
allows for the processing of code again; (2) non-coding
components, which are surrounded by chromosomes, do
not need to be shown in a precise location; and (3) it

Compressive strength of AAMs using ML methods =—— 9

explicitly represents references to function parameters.
[76]. Programs with precise syntax can be easily created
because of the clear instructions found in the “tail” and
“head” of a typical GEP gene. As a result, numerous indi-
viduals have the belief that the GEP possesses improved
capabilities [71]. A more in-depth analysis of each of these
genetic methods to engineering difficulties is required as a
result of this finding.

2.3 Validation of models

In order to conduct statistical analysis on the models that
were developed with the help of GEP and MEP, a test set
was utilized. The calculated metrics for each model include the
Pearson’s correlation coefficient (R), mean absolute percentage
error (MAPE), relative root mean square error (RRMSE), rela-
tive squared error (RSE), Nash—Sutcliffe efficiency (NSE), root
mean square error (RMSE), and mean absolute error (MAE)
[74,77-80]. MAE measures the average magnitude of errors in
predictions. RRMSE is a normalized version of RMSE, making it
unit-independent. MAPE expresses errors as a percentage, pro-
viding insight into relative accuracy. RMSE (root mean square
error) emphasizes larger errors due to squaring. NSE com-
pares model performance to the mean of observed data. R
indicates the strength and direction of the linear relation-
ship between observed and predicted values. RSE measures
the proportion of variance unexplained by the model [81,82].
Using all these metrics provides a comprehensive evaluation
of different aspects of model performance, helping to under-
stand accuracy, bias, and error distribution. From Egs. (2) to
(8), the formulas for a variety of statistical indicators are
provided.

Z?=1(ai - a)(p; - D)

R=— - , 2
\/WZH(M -p)

1 n
MAE = —) |P; - T, ®
nia

. — T2
RMSE=1/Z¥, @

_ 100%% |P; - T

MAPE PATE )
Yia(a; - p)?
RSE= o0, (6)
2i-1(@ - @)?
Z?=1(ai - Pi)z
NSE=1- o7, )]
2i-1(a; - pi)z
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n L 2
RRMSE = %,/M, 8)
|al n

The actual and predicted values for the ith data point
are denoted by a; and p;, respectively, with n being the total
number of data points. In addition, the mean of the test and
forecasted values is denoted by a; and p;, respectively. The
correlation coefficient, commonly referred to as R, is an
effective metric for assessing the extent to which a model
can reliably forecast future results (a; and p)). It is indicated
that there is a considerable correlation between the predicted
and actual levels of output when the value of R is high [83].
Divisibility or reproduction does not alter the value of com-
ponent R. Nevertheless, R? provides a more precise approx-
imation of the genuine value, as it is calculated based on the
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actual versus expected outcomes. Higher R? values, closer to 1,
specify a more operative model-building method [84,85]. The
suggested model has even better performance with fewer
mistakes, much like MAE and RMSE, which exhibit substan-
tial improvements as errors grow. Both methods, neverthe-
less, eventually approach zero as the number of mistakes
increases [86,87]. Conversely, MAE really shines in continuous
and smooth databases, as was revealed following a closer
study [88]. The model often works better when the values
of the errors that were calculated before are smaller.
Statistical validation is a powerful tool for assessing a
model’s ability to predict and another is to use a Taylor dia-
gram. By comparing the models’ deviations from the truth or
the point of reference, this figure is helpful for analyzing the
correctness and trustworthiness of the models based on the

O

® 6O O

(©)
O

(d)

Figure 6: CS-GEP expression tree schematic, where d0: RT, d1: SSA, d2: Ms, d3: SHC, d4: LBR, d5: GPV, d6: Ag, d7: Adm.C0: 8.799, C1: -3.415, C4: 6.756,

C5: -8.392, C6: -5.125, and C9: -3.436.
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data [89,90]. The x- and y-axes indicate the standard devia-
tion, the radial lines show the correlation coefficient, and the
circular lines pinpointed at the real value point show the root-
mean-squared error. These three metrics can be used to eval-
uate the ideal position of a model. The most trustworthy
model is the one with the best forecast accuracy [89].

3 Research outcomes and scrutiny

3.1 CS-GEP model

Figure 6(a)-(d) presents the results of models created uti-
lizing the GEP method. These models utilize ETSs to estimate CS
based on mathematical relationships derived from genomic
frequency and head size. An Expression Tree is a hierarchical
structure representing mathematical expressions, where each
node corresponds to a function or operation, allowing the GEP
method to explore and optimize complex equations that best
fit the data. Most of the sub-ETs in the AAM’s CS models were
built utilizing numerical operations such as division, multi-
Plication, subtraction, addition, exponentiation, and square
roots. The output of encoding these sub-ETs with the GEP
method is an arithmetic formula. Using input data, these for-
mulas can estimate the future CS of AAMs, as shown in Eq. (9).
The resultant model can beat an ideal model in ideal circum-
stances given enough data. In Figure 7(a), a compact black line
denotes an impeccable match to the data, whereas dotted red
and green lines, respectively, reveal 10 and 20% deviations
from the perfect match. The expected and experimental CS
values are compared in this graphic to determine how well
they line up. The values of CS that were predicted by the GEP
model were very similar to the values that were measured. In
the process of estimating the CS of AAMs, the GEP technique
was shown to be highly effective. It achieved an R* value of
0.953 and predicted values within the 10 and 20% thresholds
72 and 97% of the time, respectively, suggesting a significant
improvement in accuracy. The potential mismatch between
the GEP model and the experimental results is illustrated in
Figure 7(b), which is a graph that plots the experimental data
against the absolute error. With an average absolute error of
3.95MPa and a range that goes from 0.04 to 15.85 MPa, the
results showed that the predictions made by the GEP equation
are in good agreement with the facts that were obtained
through experimentation. The distribution of the error values
is bell-shaped, as seen in Figure 8. The strength measurements
range from 22 values below 1.0 MPa to 37 values above

Compressive strength of AAMs using ML methods = 11

5.0 MPa, with 68 values between 1.0 and 5.0 MPa. It is impor-
tant to note that maximal error frequencies are quite rare.

CS(MPa) = [(Ms + (SHC + (((-5.125 x Ag) - GPV) - (Ag - RT))))

+ (,/(6.756 x (6.756 x RT)) x (Adm x (Ms x RT)))
+ (((17.598 x (GPV - Ag)) - Adm) - Ag)

9

>

RT
+[]140.568 - |[—— -
[[40 568 [LBR Ms]

_Ag

where RT: reactivity, Ag: aggregate volumetric ratio, Ms:
silicate modulus (Si0,/Na,0), GPV: geopolymer paste volume
to total concrete ratio, LBR: liquid-to-binder volumetric
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Figure 7: CS-AAM’s GEP model: (a) predicted-test CS connection and (b)
error distribution.
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Figure 8: Error analysis with a violin plot.

ratio, SHC: sodium hydroxide concentration, SSA: specific
surface area, Adm: admixture volumetric ratio, and CS: com-
pressive strength.

3.2 CS-MEP model

In order to determine the CS of AAMs, a mathematical for-
mula was developed using empirical data from the MEP
experiments. This model takes into account the effects of
the eight independent factors. Eq. (10) presents the ultimate
mathematical equation set that was developed through
modeling

2LBR
CS (MPa) = W LRV SSA]
6LBR
+ W + 24/ +/SSA
(10)
, | (@/SSAYTY)ME + 2SSA
« __2LBR
RTZY [GPV vﬂm’"’
x 2Ms x LBR|,

where RT: reactivity, Ag: aggregate volumetric ratio, Ms:
silicate modulus (Si0O,/Na,0), GPV: geopolymer paste volume
to total concrete ratio, LBR: liquid-to-binder volumetric
ratio, SHC: sodium hydroxide concentration, SSA: specific
surface area, Adm: admixture volumetric ratio, CS: compres-
sive strength.
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Figure 9: CS-AAM’s MEP model: (a) predicted-test CS connection and (b)
error distribution.

Figure 9(a) demonstrates the durability of the MEP model
against oversimplification and its high level of training, as
evidenced by an exceptional R? value of 0.970. Furthermore,
it demonstrates a reasonable level of performance when
applied to previously untested data. The CS-MEP model
demonstrates higher accuracy compared to the CS-GEP
model, as demonstrated by its improved R? value. The
solid black line in Figure 9(a) represents a complete align-
ment with the data, whereas the dashed red and green lines
indicate deviations of 10 and 20% from this line, respec-
tively. The recorded CS values closely corresponded to the
estimation of the MEP model. The MEP method effectively
determined the CS (confidence score) of AAMs (advanced
analytical models), with predictions falling under the 10%
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Figure 10: Error analysis with a violin plot.

criterion 94.4% of the time and within the 20% threshold
100% of the time, highlighting its outstanding accuracy.

Figure 9(b) displays the results of the study, carried out
in MEP simulations, of the absolute disparities between the
target and observed values. The data provided indicates
that MEP forecasts exhibit an average error margin of
1.97 MPa, with errors ranging from 0.01 to 5.66 MPa. Addi-
tionally, the mean error values remain below 5.66 MPa,
with 22 values falling below 1.0 MPa, 68 values ranging
from 1.0 to 5.0 MPa, and 37 values exceeding 5.0 MPa. For
instance, when looking at outlier values, the MEP model
shows less fluctuation in outcomes than the GEP model.
Models developed using MEP and GEP have the makings
of excellent predictors. However, applying the MEP equa-
tion leads to smaller error standard deviations and corre-
lation coefficients. The MEP equation’s adaptability and
brevity have made it quite popular. Figure 10 shows that
the MEP model has a lower error level and a higher corre-
lation coefficient than the GEP model, suggesting that it is
the superior model.

Table 4: Statistical analysis results

Property CS (MPa)

GEP MEP
MAE 3.954 1.968
MAPE 8.400 4.200
RMSE 5.035 2411
R 0.977 0.985
RSE 0.286 0.244
NSE 0.970 0.980
RRMSE 0.732 0.552

Compressive strength of AAMs using ML methods =—— 13

o GEP
0.2 e
29.5 - 0.4 %, * MEP
m  Test
£29.0 -
= <
> (J
% 28.5 - %
=] 0.9 %,
= U
= 28.0 -
'g 0.95
£ 275
@ 27 _ 0.99
27.0 4 ————1
[ 5] N N (5 N N
3 3 8 2 8 08
[} (V)] —J ] [} (V)]

Standard Deviation

Figure 11: Models validating employing Taylor’s diagram.

3.3 Model’s validation

Calculations for efficacy and error, including R, RMSE,
MAE, RRMSE, RSE, NSE, and those derived from Egs. (2)
to (8), are summarized in Table 4. Higher accuracy in
model predictions is associated with smaller error values.
Notably, the CS-MEP model surpasses its CS-GEP counter-
part, with a substantial reduction in MAE from 3.954 to
1.968 MPa, and a substantial decrease in the MAPE value
from 8.40 to 4.20%. Further measures that are based on
errors show a consistent pattern, such as RRMSE, RSE, and
RMSE. When matching both the models’ efficiency, the CS-
MEP model performs better with a slightly higher Nash—
Sutcliffe efficiency (0.980) than the CS-GEP model (0.970), as
measured by Pearson’s coefficient (R). Pearson’s coefficient
(R) yields comparable results for both models. As shown in

GPV

LBR RT

SHC

Figure 12: Radar plot for sensitivity assessments.
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GEP models demonstrate relatively distant predictions.
With its minimal standard deviation, maximum efficiency,
lowest error, and highest R? value, the MEP model emerges
as the most accurate ML-based technique for predicting the
CS of AAMs, consistent with previous research findings.

3.4 Sensitivity investigation

This study investigates the impact of input parameters on
the prediction of AAM CS. There is a significant link
between the input components and the projected output
[91]. A look into the future of concrete and construction
materials is offered in Figure 12, which sheds light on the
effect of each variable on the CS of AAMs. Among the factors
examined, the SSA exerts the highest impact, accounting for
28% of the variability in forecasting the CS of AAMs, fol-
lowed by the aggregate volumetric ratio at 25.0%, silicate
modulus at 17.0%, SHC at 9.5%, RT at 9.0%, LBR ratio at
6.0%, geopolymer paste volume to total concrete ratio at
3.5%, and admixture volumetric ratio at 2%. The outcomes
were significantly influenced by the quantity of model para-
meters and data points incorporated in the sensitivity ana-
lysis. Notably, when the ML technique was used, the results
of the study were affected in different ways by different
input parameters, such as the amounts of concrete mixes.
In order to establish the weight of each input parameter to
the model, we used Egs. (11) and (12)

where f .. (x;) represents the maximum value and
fimin (Xi) represents the minimum value projected across
all ith outputs.

4 Discussions

Using the MEP and GEP models that were applied in this
research, predictions that take AAMs into consideration
are arrived at. A narrow range of eight input parameters
is all that these models can accommodate. Consistency
in unit measurements and testing techniques across all
models enhances the reliability of the CS predictions they
generate. By using mathematical equations, the models
gain a better understanding of the mix design and the
effect of every input variable. However, if there are more
than eight variables in the composite assessment, the
models may not perform effectively. It is crucial for
the intended purpose of the models to align closely with
the inputs used for their training to achieve expected
results. Inconsistencies or changes in unit sizes of input
parameters can lead to under- or over-predictions by the
models, underscoring the importance of maintaining uni-
form unit measurements. ML models are highly dependent
on the input parameters and the values or figures present
in the dataset, which are influenced by the units used.
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Altering any of these factors can lead to significant changes
in the model’s outcomes and performance. Consequently,
even minor adjustments to the dataset can impact the accu-
racy and reliability of the predictions, underscoring the
importance of careful data preparation and unit consis-
tency in developing robust models. ML models have both
advantages and disadvantages for the construction sector.
On the one hand, they can improve energy efficiency, esti-
mate material strength, guarantee quality, assess risk, and
carry out predictive maintenance. On the other hand, they
pose certain obstacles. The use of human input, which is
susceptible to errors and erroneous data, is one such
obstacle. Integrating Internet of Things strategies, devel-
oping cross models, employing explicable artificial intelli-
gence approaches, considering sustainability, and tailoring
data collection and dissemination for explicit industries
are all potential future research topics that might be pur-
sued in order to enhance ML-based solutions and over-
come the constraints that have been identified. Modern
technology has the capacity to transform the construction
sector by augmenting efficiency, facilitating the compre-
hension and transparency of data, and enabling workers
to make educated decisions. Consequently, this should
result in a reduction in project delays, improved safety,
and increased sustainability. More widespread use of sus-
tainable, environmentally friendly materials and a shift
toward more environmentally friendly building practices
could result from the findings of this study. Figure 13 shows
that ML has many real-world engineering uses.

5 Conclusions

In order to study and forecast the CS of AAMs, the purpose

of this project is to make use of GEP and MEP. Using 381

different sets of CS data, the model was trained, tested, and

verified, each comprising eight input parameters derived
from laboratory experimental setups. The following are
the primary results of the study:

¢ For forecasting the CS of AAMs, the GEP method exhib-
ited a commendable level of accuracy, achieving an R?
value of 0.953. However, the MEP method surpassed this,
demonstrating even higher precision with an R* value
of 0.970.

» The GEP approach had an average error of 3.95 MPa in
predicting CS, while the MEP method had an average
error of 1.97 MPa. The error rates emphasized the preci-
sion of the GEP model, while also demonstrating the
greater predictive ability of the MEP technique for deter-
mining the compressible strength of AAMs.

Compressive strength of AAMs using ML methods = 15

* ML models showed gains in both R? values and error
rates, confirming their usefulness through statistical valida-
tion. The MAPE for the GEP model was 8.40%, which is greater
than the 4.20% shown by the MEP model. Furthermore, when
comparing the two models, the MEP model had a better RMSE
of 2411 MPa compared to the GEP model’s 5.035 MPa. These
choices further reinforce the validation of the model’s perfor-
mance across various aspects.

According to the sensitivity analysis, the following fac-
tors had the greatest impact on the prediction of CS of
AAMs: SSA (28.0%), aggregate volumetric ratio (25.0%),
silicate modulus (17.0%), SHC (9.5%), RT (9.0%), LBR
(6.0%), geopolymer paste volume to total concrete ratio
(3.5%), and additive volumetric ratio (2%).

To enhance the reliability and performance of ML
models, programs should be developed to ensure consistent
results across varying dataset units, making the models unit
independent. Additionally, incorporating robust cross-vali-
dation techniques and optimizing feature selection can
further improve model accuracy and generalizability.
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