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Abstract: The degradation of concrete structures is signifi-
cantly influenced by water penetration since water serves
as the primary vehicle for the movement of harmful com-
pounds. The process of capillary water absorption is widely
recognized as a crucial indicator of durability for unsatu-
rated concrete, as it allows dangerous substances to enter
the composite material. The water absorption capacity of
concrete is intricately linked to its pore structure, as con-
crete is inherently porous. The main goal of this work is to
create an innovative predictive tool that assesses the por-
osity of concrete by analyzing its components using a
machine-learning (ML) framework. Seven distinct batch
design variables were included in the generated database:
fly ash, superplasticizer, water-to-binder ratio, curing time,
ground granulated blast furnace slag, binder, and coarse-to-
fine aggregate ratio. Four distant ML algorithms, including
AdaBoost, linear regression (LR), decision tree (DT), and
support vector machine (SVM), are utilized to infer the
generalization capabilities of ML algorithms to estimate con-
crete porosity accurately. The RReliefF algorithm was imple-
mented to calculate the significant features influencing
porosity. This study concludes that in comparison to the
alternative techniques, the AdaBoost method demonstrated
superior performance with an R* score of 0.914, followed by
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SVM (0.870), DT (0.838), and LR (0.763). The results of the
evaluation of RReliefF indicated that the binder possesses a
remarkable influence on the porosity of concrete.
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1 Introduction

Concrete is a composite element characterized by its het-
erogeneity, multi-scale nature, and multi-layered composi-
tion, collectively contributing to its intricate structure. The
macro-physical and mechanical behaviors of the material
exhibit characteristics such as inconsistency, uncertainty,
and non-linearity, which indicate its complex morphology.
Although there has been extensive research on the macro
and micro characteristics of cement-based substances, there
has been comparatively less emphasis on comprehending
the microstructure of concrete. The arrangement of pores
and distribution of pore sizes in concrete are critical factors
that directly impact its durability and strength [1]. Hence,
developing a rapid assessment technique capable of evalu-
ating these characteristics of concrete would hold significant
value in forecasting the efficacy of concrete structures. The
correlation between concrete’s porosity and transport char-
acteristics has garnered excessive attention in academia.
These characteristics include the chloride ion migration,
diffusion coefficients of gas, electrical resistivity, and gas or
water permeability [2-4]. Figure 1 illustrates the empirical
correlation of the compressive strength (CS), porosity, and
permeability of concrete. In general, the permeability of
cement composite tends to increase with an increase in por-
osity, whereas its mechanical strength tends to decrease.
Hence, the criterion of porosity plays a fundamental role in
assessing the longevity and functionality of concrete struc-
tures subjected to harsh environmental conditions [5].
Concrete can be classified as a chemically bound ceramic
product when formulated with a hydraulic binder. The
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Figure 1: Relationship between porosity, permeability, and CS [6].

cement reaction with water leads to the formation of a
composite material comprising a solid phase and a net-
work of pores. Pores are an inherent characteristic of
concrete. The pore system plays a pivotal role in deter-
mining the critical characteristics of concrete, precisely
its strength [7]. Insufficient compaction can also lead to
the development of pores inside concrete. The pore
structure seen in the mortar or concrete exhibits a distinct
arrangement from the pores observed in well-compacted
mortar or concrete manufactured separately with identical
amounts of the corresponding constituents. The disparity in
both pore systems can be attributed to interfacial transition
zone (ITZ) pores at the interface between mortar and aggre-
gate [8]. The porosity of cured cementitious composite is
contingent on the water-to-binder (w/b) ratio. The w/b like-
wise regulates the porosity of ITZ in concrete. The increase
in w/b leads to an expansion in the dimensions of the pore
spaces within the hydrated cementitious composite. The
reduction in porosity occurs as the duration of curing
extends and the hydration process improves, primarily
due to the sealing or connection of large-dimension voids
by calcium-silicate-hydrate (CSH) hydrogel pores. A stan-
dard model for determining the volumetric makeup of the
hardened cementitious composites has been established
based on the w/b and the extent of cement hydration [9].
According to earlier experimental findings, it has been
observed that an augmentation in both the size and percen-
tage of coarse particles results in a corresponding increase
in the porosity at the ITZ. Consequently, this leads to a
decrease in the durability of conventional concrete [10].
The weight ratio between coarse and fine aggregates
(CA/FA) significantly affects concrete’s permeability, por-
osity, and tortuosity [11]. Supplementary cementitious mate-
rials (SCMs) are currently employed as a means of partially
substituting Portland cement (PC) to augment the durability
as well as the strength of concrete [12,13]. Furthermore,
SCMs, for instance, fly ash, which is a result of the burning
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of coal in the thermoelectrical factory [14], or ground granu-
lated blast furnace slag (GGBFS), which is a derivative of pig
iron manufacturing, have the potential to facilitate cleaner
production processes by effectively mitigating CO, emissions
[15]. The primary benefit of GGBFS in concrete is ascribed
to its inactive hydraulic reaction. This reaction plays an
imperative role in enhancing the hydration of cement by
compacting the concrete’s compound and improving the
pore formation. This phenomenon leads to decreased per-
meability and a surge in CS for concrete that undergoes
maturation over extended periods. The alteration in the
mineral constituents of the cement has the potential to
improve the concrete’s ability to capture chloride ions and
elevate its electrical resistance [16]. The decline in perme-
ability of concrete modified with fly ash can be ascribed to
the mutual impact of the diminished quantity of water
necessary for specific workability and a more processed
void structure resulting from the pozzolanic reaction. The ben-
efits of the pozzolanic process become increasingly apparent in
well-cured concrete due to its extended lifespan. Hence, the
curing state, whether water or air curing, is an additional
significant component that influences the porosity of concrete
[17]. Moreover, the use of superplasticizers (SPs) has the poten-
tial to significantly decrease the extent of mix-up water, hence
promoting the development of a more compact pore arrange-
ment [18].

Due to the diverse compositions of cementitious com-
pounds and the intricate reaction of cement hydration
over time, the evolution of the pore system in concrete
exhibits a high level of complexity, making it challenging
to represent accurately by analytical modeling. The uncer-
tainty of the pozzolanic reactivities of GGBFS and fly ash
poses a significant difficulty. The chemical structure of
SCMs exhibits considerable variability, posing difficulties
in accurately determining the reactive fraction of these
materials. Papadakis [19,20] introduced a theoretical frame-
work for predicting fly ash-based cementitious compounds’
chemical makeup and related volume. The prototype delib-
erates the stoichiometry of PC’s hydration process and the
pozzolanic reactivity of fly ash while also considering the
molar weight of the components and byproducts involved.
Nevertheless, this prototype operates under the assumption
of complete hydration of PC and the occurrence of pozzo-
lanic reactivity involving fly ash. Consequently, the proto-
type cannot account for the time-reliant changes in porosity.
Similarly, Salih et al. [21] used distant modeling techniques,
including artificial neural network (ANN), M5P tree, and
nonlinear and linear regression (LR), to estimate the CS of
fly ash-based modified concrete. Mohammed et al. [22] used
379 data points to compute the CS of fly ash-based modified
concrete using neuro-imperialism and neuro-swarm
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models. Piro et al. [23] studied the optimization of full quad-
ratic (FQ), multi-logistic regression (MLR), and ANN to pre-
dict the electrical resistivity and CS of concrete modified
with GGBFS and steel slag as aggregate replacement. Piro
et al. [24] developed MLR, ANN, and FQ models to forecast
the CS and electric resistivity of concrete modified with steel
slag as an aggregate replacement.

Several investigations have been conducted to com-
pute concrete porosity [25-27]. However, manufacturing
concrete compounds to compute the porosity and pore
structure requires a significant allocation of resources,
money, time, and labor. The process involves methodically
choosing substances and their corresponding amounts, guided
by a series of thorough experiments. Various scholars have
proposed statistical methods to predict the advancement of
cement hydration levels [28,29]. An empirical cement hydra-
tion model estimates the time-reliant changes in porosity and
chloride diffusion coefficient in concrete [30]. To formulate
empirical predictions regarding the permeability characteris-
tics of concrete, Khan [31] employed multivariate regression
analysis. This investigation entailed the computation of por-
osity by considering different constituents of the concrete
mixture, such as the percentage of fly ash, the ratio of
micro-silica, and w/b.

While these models were successfully employed to pre-
dict the porosity of concrete, their accuracy heavily relies on
the underlying assumptions. Applying machine learning
(ML) methods can provide numerous advantages in solving
challenges and enhancing the efficiency of computing con-
crete porosity. In contemporary times, ML algorithms have
been effectively utilized across several academic fields to
predict multiple attributes precisely. Similarly, the imple-
mentation of these solutions in civil engineering has the
capacity to generate significant advantages in terms of
optimizing the testing process and thereby lowering time
consumption. The implementation of such strategies has
been utilized. Several methodologies have been utilized in
the calculation of the strength and durability features of
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cementitious composites, such as genetic programming (GP)
[32], ANN [33-35], decision tree (DT) [36], and support vector
machine (SVM) [37]. The model findings demonstrate a sig-
nificant correspondence between the anticipated values and
the empirically derived concrete characteristics indicating
that ML holds promise as a tool for modeling concrete with
intricate mixed compositions. Nevertheless, there is a scarcity
of research focusing on utilizing ML techniques for predicting
concrete porosity. However, limited studies are available to
describe the utilization of ML algorithms to forecast the por-
osity of concrete. For instance, using the ANN model, Pereira
et al. [38] studied porous concrete’s airflow resistivity, open
porosity sound absorption, and tortuosity. Similarly, the
study of Sathiparan et al. [39] demonstrated the utilization
of various ML algorithms like ANN, SVM, LR, RF, k-nearest
neighbor, and DT to predict the permeability and porosity of
concrete. Cao [6] developed three models, including XGBoost,
RF, and XGB, to forecast the porosity of high-performance
concrete. Wu et al. [40] studied the predictive performance of
the ANN model using a permeability dataset of 3,252 obser-
vations. Similarly, the ML methodologies employed in the
literature to compute the porosity of concrete are provided
in Table 1.

The main focus of this investigation is to assess the
microstructural characteristics of concrete, with a parti-
cular emphasis on porosity. To achieve the objective, ML
techniques rooted in artificial intelligence were utilized,
including adaptive boosting (AdaBoost), LR, SVM, and DT.
The efficacy and precision of these algorithmic models
exhibit a distinct correlation with the quantity of data ele-
ments. A comprehensive database of 240 data components
regarding concrete porosity was compiled utilizing experi-
mental results from previous studies. The modeling tech-
nique considered seven input elements: the quantity of
binder, proportion of fly ash, water/binder ratio, percen-
tage of slag, ratio of coarse-to-fine aggregates, SP, and
number of curing days. A comparative evaluation has
examined the outcomes derived from the ML models,

Table 1: Previous studies conducted to predict the porosity using ML methodologies

Ref. Methods employed Properties studied Results
[41]  GP with the combination of ANN Tortuosity, CS, porosity The model showed excellent results with a high
correlation value

[6] XGB, RF, GBT Porosity GBT outperformed

[42] XGB, RF, SYM CS, porosity XGB outperformed

[43] LR, AdaBoost, RF, Bagging, XGB, Cat-Boost, CS, flexural strength, porosity, Models showed excellent results with a high
Light-GB, DT workability correlation value

[44] GBT, RF Porosity GBT outperformed

Annotation: XGBoost (XGB), Random Forest (RF), Gradient Boosting Tree (GBT), Support Vector Machine (SVM), Linear Regression (LR).
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specifically SVM, AdaBoost, DT, and LR. Statistical meth-
odologies were utilized to compute and compare the model’s
predictions, ability to generalize, inaccuracies, and profi-
ciency. Furthermore, this study implemented the RReliefF
algorithm to determine the key input variables that have the
most significant influence on the porosity of concrete.

2 Data description

The rationale of this study was to predict the porosity of
concrete. ML approaches necessitate the utilization of sev-
eral inputs to produce the desired target variable. The data
employed in this investigation for predicting the porosity
of concrete are derived from previously published litera-
ture with specific standards for selection [45-50]. Initially,
the concrete was blended with PC, which could be partially
substituted with either GGBFS or fly ash. Furthermore, it is

(b)
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worth noting that the concrete matrix comprises both
coarse and fine particles. The influence of carbonation on
voids arrangement alteration was not considered in the con-
crete sample. In addition, a well-maintained equilibrium
was preserved for each concrete variant, namely PC con-
crete, fly ash-based concrete and GGFBS-based concrete.
The experimental setup for evaluating the porosity of con-
crete is shown in Figure 2(a)—(d). Seven distinct properties
were selected as inputs to estimate the porosity of concrete.
The specific information regarding these elements is listed
in Table 2. The most critical stage while computing concrete
properties via ML is the compilation of a comprehensive
dataset. The accurate predictability of ML models is highly
dependent on the quality and quantity of the dataset. As per
literature studies, the adequate performance of the model is
contingent upon the quantity of data in relation to inputs.
An optimized model necessitates a ratio greater than 5 to
analyze the relationship between the necessary variables

©

(@

Figure 2: Experimental setup for computing porosity of concrete: (a) oven drying of the sample; (b) sample cooling in a desiccator; (c) sample inside a
vacuum container before beginning the test; and (d) sample in vacuum conditioning [53].
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Table 2: Specification of input features

Variables Abbreviations Unit
Binder — kg:m™
Coarse aggregates/fine aggregates CA/FA —
Water/binder w/b —

Fly ash — %
Curing time cT Days
Ground granulated blast furnace slag GGBFS %
Superplasticizer SP %

effectively. The current study utilized a dataset of 240
records to calculate the porosity of concrete with seven
potential inputs, hence fulfilling the requirement for the
adequate performance of ML models [51,52]. A total of 240
data points were used to train the ML models in which 75
observations were of standard PC concrete, 120 observations
were of fly ash-based modified concrete, and 45 records
were of GGBFS-based modified concrete. Figure 3 shows
the frequency distribution histograms of all the datasets
utilized in constructing models.

The process of normalizing and standardizing data is
often considered crucial in preparing data for training ML
models. Normalization may not be necessary or appropriate
when the data are categorical or sparse. Alternative pre-
paration techniques like data preprocessing may better
suit specific situations [55]. The present study employed
data preparation to assess its appropriateness for ML mod-
eling. The primary processing of gathered data is a crucial
and central phase in advancing and improving ML models.
Data preparation encompasses a variety of commonly
employed processes, including the management of missing
data, the encryption of variables, the identification and
treatment of outliers, and the partitioning of the data into
sections. The database utilized in the present study was
devoid of any missing information or outliers. Although
the research did not employ a multivariate strategy to find
outliers, a reliable data pre-treatment procedure success-
fully guaranteed the non-existence of abnormalities. Before
training the ML models, a methodology was employed to
detect outliers for each variable. The procedure involved
the detection and exclusion of any data, if applicable that
deviated from the predefined acceptable ranges. Addition-
ally, a thorough demographical and statistical assessment
was conducted on the dataset to sense and rectify any poten-
tial outliers. The statistical measurements offer boundaries,
both higher and lower. The study incorporates various sta-
tistical metrics, including median, skewness, standard devia-
tion, mode, standard error, mean, and kurtosis. The median,
as well as the mode score of the SPs data, was found to be
“0” due to the prevalence of values that are either 0 or in
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extreme proximity to 0. The frequency of values in proxi-
mity to 0 within the dataset for SPs can be credited to the
constrained quantity of these constituents that were blended
into the mixture. Skewness is the form of statistical indicator
employed to quantify the severity of imbalance in the fre-
quency distribution of a particular attribute with continuous
values corresponding to its mean. In the present context,
negative results typically indicate the presence of a long
tail on the left side of the bell curve. Kurtosis is a statistical
indicator used to evaluate the extent of the tail’s lightness or
heaviness in a given data, as well as its suitability for a
particular normal distribution. This provides valuable com-
prehension of probability distribution throughout the vertical
axis. Table 3 provides an in-depth review of the statistical
summary performed on all independent data features.

The evaluation of the relationship between inputs has
been recognized as a crucial measure for assessing their
influence on the target inside the employed dataset. Figure 4
depicts a plot of the Pearson correlation coefficient, which
showecases the statistical relationship between variables for
the complete dataset employed in the present study. Corre-
lation coefficients are utilized as a quantitative matrix to
evaluate the intensity and direction of the linear correlation
between two entities. The correlation tool is a frequently
employed gadget in the domain of statistics to examine
the interaction between different attributes. Potential out-
comes encompass an entirely (-ive) correlation, symbolized
by -1, a wholly (+ive) correlation, expressed by +1, and the
non-appearance of any correlation, indicated by 0. A +1
score implies that the increase in one entity is consistently
associated with an increase in another entity. At the same
time, a -1 correlation says that a decline in another entity
usually accompanies the increase in one entity. The input
variable that had the peak level of prominence was fly ash,
which revealed a more pronounced (+ive) correlation with
the target parameter (porosity). The association between
these variables was additionally substantiated by a correla-
tion value of 0.32. A positive connection was seen hetween
the CA/FA, fly ash, and w/b, while the correlation between the
binder, GGBFS, SP, and CT showed a (-ive) alliance with the
target variable. The complete database was arbitrarily sub-
divided into two definite subsets: training data, comprising
70% of the total data points, and testing data, comprising 30%
of the remaining data.

3 Research methodology

ML algorithms are utilized in several research fields to
anticipate materials’ serviceability. As nonlinear interac-
tion exists between various concrete components, which
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Figure 3: Frequency distribution histograms: (a) coarse aggregate/fine aggregate, (b) curing time, (c) binder, (d) fly ash, (e) SP, (f) slag, (g) water/
binder, and (h) porosity (parameters similar to the study of Tian et al. [54]).
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Table 3: Statistical explanation of inputs and target (parameters similar to the study of Tian et al. [54])

w/b Binder Fly ash GGBFS SP CA/FA CcT Porosity
Mean 0.480 369.942 0.150 0.044 0.001 1.708 89.358 10.362
Sample variance 0.010 5469.394 0.031 0.011 0.000 0.082 11904.984 8.293
Standard error 0.006 4.774 0.0Mm 0.007 0.000 0.019 7.043 0.186
Median 0.500 350.000 0.050 0.000 0.000 1.722 28.000 10.325
Mode 0.500 350.000 0.000 0.000 0.000 2.000 28.000 10.300
Standard deviation 0.098 73.955 0.176 0.106 0.002 0.287 109.110 2.880
Maximum 0.700 591.000 0.670 0.400 0.016 2.000 365.000 18.047
Kurtosis -0.144 3.965 -0.795 5.485 11.909 -1.289 1.51 0.267
Range 0.350 296.000 0.670 0.400 0.016 0.806 364.000 15.647
Skewness 0.550 2117 0.721 2.552 3.143 -0.376 1.610 -0.040
Minimum 0.350 295.000 0.000 0.000 0.000 1.194 1.000 2.400
Sum 115.203 88786.000 36.027 10.479 0.244 410.009 21446.000 2486.797
1
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Figure 4: Pearson correlation coefficient chart.

includes binder, coarse aggregates/fine aggregates, water/
binder, fly ash, curing time, GGBFS, and SP, this research
utilizes AdaBoost, LR, DT, and SVM techniques to predict
the porosity of cement-containing compounds. These tech-
niques are well recognized for capturing the non-linear
pattern between the concrete components, ensuring the pro-
blem of oversimplification and overfitting. These models
utilized sufficient parameters and hyperparameters, which
allowed us to learn the complex pattern between inputs and
output variables, enabling the algorithm to predict the out-
comes precisely. These approaches are adopted due to their
extensive practice, reliable predicting capacities in related

research, and identification as the most efficient data-
driven techniques. The utilization of the correlation
coefficient (R?), which falls within an interval of 0 to
0.99, is a prevalent method for evaluating the level of
accuracy in foreseeing properties by contrasting them to
their observed values. A higher R* signifies that the
selected algorithm has produced satisfactory results.
The in-depth flowchart of the current investigation is
depicted in Figure 5. The model’s algorithms are run in
Orange (3.35.0), a software platform based on Python.
The inclusive arrangement of models in orange software
is provided in Figure 6.
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3.1 DT algorithm

A DT is a controlled learning technique that may handle
input and target variables that are either categorical or
continuous. The algorithm is capable of making predictions
for both categorical data, using a classification tree, and
continuous variables, using a regression tree. The algorithm
operates by iteratively dividing a dataset into smaller seg-
ments using the most influential attribute, defined by a split-
ting criterion such as variance reduction, information gain,
or gini impurity. Each division yields nodes, and this process
continues until a stopping criterion is met. Typically, the
threshold is reached when each of the points in a node is
part of the same class (in classification) or when further

Learning Algorithms
Applying the optimized ML algorithm like
SVM, AdaBoost, DT & LR

Feature Importance

Applying RreliefF algorithm for feature
importance

divisions do not appreciably enhance predictions [56]. The
DT is an extensively employed regression approach that
offers an understandable framework for analysis. The key
benefit of DT is its ability to imitate decision-making in
humans, rendering it more accessible compared to other
ML algorithms. A rudimentary hierarchical structure is con-
structed to model prospective outcomes, consisting of root
systems, limbs, and leaf nodes, representing the predictions
[57]. The outcomes, as shown by the leaf nodes, are situated
at the terminus of the flow chart representing the DT [58].
The flow chart commences with root buds and thereafter
turns to branches. The hierarchical structure of the given
database commences with the primary root bud, which
commonly functions as a symbolic description of the
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Figure 6: Model arrangements in software.
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complete database. The effectiveness of a particular mod-
eling approach is determined by the functions assigned to
each root bud. The classification concept is determined by
the direction every parent node (Root) takes as it advances
the leaf, as shown in Figure 7. These buds are categorized
into three distinct geometric shapes: triangles, rectangles,
and circles. The DT classification technique is widely con-
sidered to be bare, with a simplicity that facilitates compre-
hension and use [59]. The functions applied to develop the
DT algorithm for the prediction of porosity are summarized
in Table 4.

3.2 LR algorithm

LR is a statistical framework for determining the linear
connection between a single response variable (referred
to as a dependent variable) and one or more explanatory
factors (referred to as independent variables). The funda-
mental concept is to identify a linear correlation that most
accurately corresponds to the given data. The multiple LR
algorithm is an expanded version of the standard regression
algorithm that aims to establish the correlation between a
numerical target parameter and two or more independent
factors [61]. The proposed model postulates that a linear
function of the experimental values of the independent vari-
ables can adequately represent the fitted probability of the
occurrence. The computational problem that LR tackles
involves the process of fitting a hyperplane onto the nth-
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dimensional space, where n corresponds to the number of
independent variables. In the context of a structure with nth
independent variables, denoted as x’s, and a single output
parameter, denoted as Y, the overarching objective of the
generic least-squares problem is to ascertain the unidenti-
fied variables of the LR model. This study aimed to assess
the suitability of LR due to its simplicity. Eq. (1) presents the
general expression for LR models [62]:

y=pBx+eg, @

where y is the target variable, f is the regression coeffi-
cient, x is the input features, and ¢ is the error term.

This research utilizes a specific methodology to effi-
ciently approximate several linear equations illustrating
the correlation between the porosity and the provided
independent factors. To boost the prediction capabilities
of the LR algorithm, polynomial parameters are created
by applying multiple degrees of polynomials to the funda-
mental features.

Table 4: Functions adopted for the DT algorithm

Parameters Assigned function
Least no. of instances in leaves 2

Maximum tree depth 50

Induce binary tree Yes

Minimal subset 5

Stopping criteria 95%

Root Node

Sub Tree —

Branches
——

Leaf
node

Leaf
node

Figure 7: Hierarchical structure of DT [60].
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3.3 SVM algorithm

The SVM, introduced by Vapnik [63], is comprehensively
utilized in several fields, such as regression, classification,
and predictions. The SVM utilizes a kernel function to
translate the independent dataset into a higher-dimen-
sional space, enabling it to address non-LR issues [47-49]
effectively. The k-function treats data points falling within
a predefined tolerance level of the true value as essentially
the same. The actual distance is equivalent to the spatial
separation relating to the two hyperplanes. Minor diver-
gences are not subject to strict monitoring. However,
significant deviations are not accepted under any circum-
stances. The essential factors that ensure the accuracy and
generalization capability of the SVM model are sample data
processing, parameter optimization choices, and k-function.
The SVM algorithm can be categorized as either a binary
classifier, in which the targeted variable adopts just two
values (0 and 1), or a regression classifier, in which the
targeted variable takes on indefinite fundamental values.
The SVMs as regression classifiers are commonly employed
for the construction of the input-output model because of
their successful resolution of non-LR challenges [64].

The primary step in SVM as a regression classifier is
mapping the input to an nth-dimensional parameter space
utilizing a predetermined mapping technique. Non-linear
kernel functions are utilized to effectively model the high-
dimensional parameter space, resulting in enhanced separ-
ability of independent datasets when differentiated from
their equivalents in the primary independent space. The
linear classifier in the space is denoted as f{a, b), and it can
be scientifically denoted by the following equation [62]:

n
f(a,b) = 2 bigi() + ¢, )
i=1
where b; is the weight vector, which can be computed by
reducing the normalized risk function, which incorporates
the empirical risk, g(x) is the collection of non-linear
transformations that operate on the independent space,
and c is the bias value.
The mathematical equation of the kernel function is
given in Eq. (3) [62]:

K(x,x) = Y §00g ). ®
j=1

SVM’s k-functions, for instance, linear, polynomial, sig-
moid, or radial basis functions, are adopted to locate the
support vectors, which are the critical data points that
determine the position of the decision function during
training. The default k-functions are contingent upon the
specific k-class and the employed software. The parameters
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selected to optimize the SVM model for forecasting the
porosity of concrete are summarized in Table 5.

3.4 Adaptive boosting algorithm

A single DT, when used as a separate model, is sometimes
referred to as a poor learner due to its inherent limitations
in terms of predictive power and generalization ability. The
likelihood of attaining a robust learner by amalgamating
several weaker learners is an active research area. The cen-
tral concept is to prioritize instances that pose the most
significant challenge in terms of classification. AdaBoost
operates in an iterative manner: with each round, it modi-
fies the weights of wrongly classified instances, increasing
their importance in the subsequent training phase. During
each step of this ongoing process, a new weak learner is
introduced and trained to rectify the errors made by the
prior ensemble. The speculation was proven by Freund
et al. [65] in 1990, establishing the fundamental principles
for the boosting algorithm, a technique that consecutively
combines numerous weak learners. As demonstrated in Eq.
(4) [66], incorporating a new tree algorithm into the overall
structure eliminates the typical tree, with just the most
robust tree included. Through the process of iterative com-
putation, the performance of the entire model will continu-
ously enhance. Following the acquisition of the primary
rudimentary tree model, specific sections within the dataset
are accurately identified, while the others are erroneously
labeled:

n

fj(x) = fH(x) + argminkZayi fj,lxi + kx;, ()]

i=1

where f; (x) represents the entire model, f;_; (x) represents
the entire mode in the prior round, y; represents the

Table 5: SVM model generalization function

Parameters Assigned function

V-SVM

Complexity bound (v) = 0.40
Regression cost (c) = 1.00
Polynomial

equation = (g(x)y + ¢)¢
g=0.10

c=0.90

d=4.00

Tolerance = 0.0001

Iteration limit = 500

Type

Kernel function

Optimization
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forecasted outcome of the ith tree, and kx; represents the
freshly incorporated tree.

The AdaBoost algorithm is an iterative method for
enhancing the performance of weak classifiers by itera-
tively learning from the data. This iterative process aims
to increase the algorithm’s overall classification ability.
The first poor classifier is derived by the process of training
on the provided samples, wherein the misclassified samples
are mixed alongside the untrained data to create a novel
trained prototype. Moreover, the succeeding poor classifier is
acquired through the process of learning from this prototype.
The incorrect prototype is merged alongside the untrained
data to create a novel trained prototype, which may be
used to derive the third poor classifier for training purposes.
Afterward, iteratively executing this procedure multiple
times can eventually obtain the reboot-resilient classifier.
To boost the accuracy of classification, the AdaBoost meth-
odology assigns multiple weights to the data [65]. The appro-
priately categorized samples are assigned relatively low
weights, while the misclassified samples need to be given
higher weights. This compels the algorithm to allocate more
importance to the misclassified data [67]. Figure 8 provides a
comprehensive depiction of the computational procedure
employed by the AdaBoost method. To train any basic DT
model, altering the weight distribution that appears for each
sample inside the dataset is mandatory. Given that each
training data point changes, the training results will simi-
larly demonstrate variability. Consequently, the cumulative
sum of all outcomes is obtained [68]. Table 6 provides
detailed insight into all the parameters adopted to run the
AdaBoost algorithm.

3.5 Model validation and evaluation criteria

Model validation refers to assessing the extent to which a
model accurately represents the real world, considering its

Efficacy of SCMs to improve concrete porosity = 11

Table 6: Functions utilized to run the AdaBoost model

Parameters Assigned value/function
Basic estimator Tree

Classification algorithm SAMME.R

Learning rate 0.50

Regression loss function Linear

Estimator’s number 100

intended purpose. Engineers commonly employ qualitative
validation methods, such as graphical comparison, to assess
the accuracy of model predictions concerning experimental
data. Nevertheless, it is necessary to employ statistics-based
quantitative methods to complement subjective judgments
and methodically consider error and unpredictability in
modeling forecasting and experimental observation [70].
Most of the previous research focuses on evaluating the
model’s performance and validation using statistical matrices
[33,51,55,71]. As this technique accurately foresees the general-
ization capabilities of ML models, this study also utilized
statistical error analysis to validate the model performance.
The evaluation of the constructed ML models involved the
utilization of statistical metrics, such as correlation coeffi-
cient (R?), objective function (OBJ), mean absolute percen-
tage error (MAPE), scatter index (SI), root mean square
error (RMSE), and mean absolute error (MAE). The R? factor
for predicted outcomes serves as a measure of the accuracy
of the utilized algorithms. The R* factor is used to quantify
the disparity between the projected algorithms and the
target metrics [72]. A numerical value closer to “0” implies
a greater level of deviation, whereas a numerical score closer
to “1” suggests a lesser level of deviation. The reduced mistakes
perceived in the statistical score indicate the enhanced preci-
sion of the created algorithms. The statistical assessment
of the accuracy of ML algorithms was conducted by
employing Egs. (5)—(9), which were sourced from the
study of Cao et al. [73]:

Model - 1
Training Model - 2 Combine .
Dataset Voting Final
Prediction
0
Dataset 0
Testing
Dataset Model - N

Figure 8: Schematic diagram for AdaBoost algorithm [69].
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where n is the number of datasets, P; is the predicted out-
comes, E; is the experimental values, and y’ is the average
of predicted outcomes.

3.6 RReliefF algorithm

The Relief algorithm selects features as reported by their
relevance for the output function [74]. The Relief analysis’s
core concept resembles the fundamental principles under-
lying the k-nearest neighbor method. Suppose a particular
characteristic is regarded as valuable. In that case, it is
anticipated that the nearest proximity of entries attributed
to the same class will be adjacent to the range specified for
that attribute in contrast to the nearest proximity of entries
from all other classes. The score determined using the
relief method is given by Eq. (10) [75]. The feature space
that is taken into consideration by the relief method is
denoted as “ij,” which represents the number of entries
used for computing the close-hit (CH) and close-miss (CM)
values. Feature X is a factor that is taken into consideration
while calculating the relief score:

w - diff(xy, closehit;)? + diff(x;;, closemiss;)? 10)

w =
m

As an illustration, when considering feature X, the
algorithm computes the CH metric within the confines of
the same class. The term “CH” refers to the minimum dis-
tance across features within the sample space encom-
passed by the same class. On the other hand, “CM” refers
to the distance across feature X from the sample space
encompassed by different classes. The original relief metric
is designed for binary classification tasks, while ReliefF is
an expansion that can handle multinominal classification
tasks [76]. The modification of ReliefF for the purpose of
regression is referred to as RReliefF [77]. The RReliefF algo-
rithm is designed to handle data characterized by noise,
incompleteness, and several classes. The RReliefF method
for multinominal classification employs K-nearest hit and
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K-nearest miss accumulation techniques for K-classes. The
RReliefF count provides a comprehensive perspective on
the variable quality judgment through estimation. The
RReliefF process considers a specified number of samples
to produce attribute scores, comprehensively assessing
variable quality globally. The chain of Relief algorithms
has gained significant recognition for their exceptional
performance. They have been widely applied in various
domains, such as signal identification, fault diagnosis,
and computational imagery processing and segmentation.
Scholars have developed methodologies to examine the
process of parameter selection using hierarchical learning
within a specific subset of parameters (or a defined sub-
space) to determine the most optimal subspace [33].

4 Results and analysis

4.1 LR outcomes

The analysis focused on the outcomes of the prediction and
the error associated with the LR algorithm. Figure 9(a) exhi-
bits the association between the experimental and antici-
pated outcomes, as indicated by an R* score of 0.763. This
correlation implies that the precision of outcomes is inferior
to that of the DT model. Figure 9(b) demonstrates the dis-
tribution of observed, forecasted, and errors in the LR
model. The training set exhibited maximal upper limit,
minimal limit, and mean limit error readings of 4.52, 0.00,
and 1.13%, respectively. Overall, 51.67% of the errors were
found to be below 1%, while 45.00% were within the range
of 1-3%. The remaining 3.3% of error values exceeded 3%.

4.2 DT outcomes

The values derived from the DT approach exhibit a satis-
factory level of accuracy and only a minimal magnitude of
divergence between observed and predicted outcomes.
Figure 10(a) presents the data analysis evaluation of the
observed and projected results for the porosity of cementi-
tious composites. R* indicates that the model accurately
predicts outcomes with a value of 0.838. The DT model out-
performed the LR model, as suggested by a higher R* score.
DT models can capture complex interactions and non-linear
patterns within the data. This characteristic makes them par-
ticularly well-suited for tasks in which the linear assump-
tions of LR may not be valid. Figure 10(b) displays the
distribution of data obtained from experiments, projected
scores, and errors for the DT algorithm. The training set was
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Figure 9: LR model outcomes: (a) R graph and (b) error tracing.

analyzed to find the maximum upper limit, lowest limit, and
mean limit values, which were found to be 5.55, 0.00, and
0.82%, respectively. Furthermore, approximately 73.75% of
the error values observed in the study were found to be less
than 1%. Around 23.75% of the error values also fell within the
1-3% range, while approximately 2.50% exceeded 3%.

4.3 SVM outcomes

The analysis focused on the prediction outcomes and errors
associated with the SVM model. Figure 11(a) showcases the
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Figure 10: DT models outcomes: (a) R? graph and (b) error tracing.
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interaction between experimental and anticipated results,
indicating higher precision in outcomes relative to the DT
and LR models, as supported by an R* value of 0.870. SVMs
have exceptional performance in identifying ideal hyper-
planes or non-linear transformations that optimize the margin
between distinct classes, hence offering a robust separation
between data points. Moreover, SVM models have a lower
susceptibility to overfitting in comparison to DT and LR algo-
rithms and possess the ability to effectively handle datasets
with a high number of dimensions. Figure 11(b) demonstrates
the distribution of observed, forecasted, and errors in the SVM
model. The training set exhibited maximal limit, minimal
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Figure 11: SYM model outcomes: (a) R graph and (b) error tracing.

limit, and mean limit error readings of 3.64, 0.01, and 0.80%,
respectively. Overall, 71.25% of the errors observed were
found to be less than 1%, while 26.67% were within the range
of 1-3%. The remaining 2.08% of the error values exceeded
3%. The superior accuracy of the SVM algorithm, in contrast to

the DT algorithm, is additionally substantiated by the presence
of lower error values.
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Figure 12: AdaBoost model outcomes: (a) R graph and (b) error tracing.
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4.4 Adaptive boosting outcomes

Figure 12(a) depicts the correlation between the experi-
mental findings of the AdaBoost and the projected out-
comes. The R? value of 0.914 for this model suggests that
it possesses a higher degree of accuracy in predicting
responses. AdaBoost shows higher accuracy than SVM, DT,
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Table 7: Error evaluation of models

Models  MAE (%) RMSE (%) R? MAPE (%) OBJ SI

AdaBoost  0.617 0.858 0914 6.3 0.771  0.083
SVM 0.796 1.059 0.870 8.5 0.992 0.103
DT 0.824 1.166 0.838 7.9 1.083 0.114
LR 1128 1.410 0.763 12.6 1.440 0.136

and LR due to its iterative adaptation and aggregation of
several weak classifiers. This collective approach effectively
improves model performance by mitigating misclassification
errors. Figure 12(b) displays a graphical depiction of the
distribution of observed, forecasted, and error values within
the AdaBoost model. Within the training set, the highest upper
boundary, lowest upper boundary, and average boundary
values were recorded as 5.10, 0.00, and 0.62%, respectively.
Nevertheless, 83.33% of the inaccurate approximations
were below 1%, whereas only 0.83% were above 3%.
The AdaBoost model demonstrated greater precision in
forecasting concrete’s porosity relative to the LR, DT,
and SVM models, as supported by the comparison of R?
values and error distributions. All of the model’s R* values
and error percentages fell within acceptable levels, indi-
cating improved predictive outcomes.

4.5 Statistical error analysis

The outcome of this study contributed to the creation of ML
algorithms, which were optimized to predict the porosity
of concrete and subsequently compare the performance of
these models. Table 7 presents the statistical deviations
observed between the anticipated and experimental results.
The statistical error analysis reveals a strong association
between the observed and projected responses for the Ada-
Boost model, demonstrating a high accuracy level in fore-
casting the porosity of concrete. The AdaBoost model has
exceptional performance, as demonstrated by its R* score of
0.914 and the following evaluation metrics: RMSE (0.858%),
SI (0.083), MAE (0.617%), OBJ (0.771%), and MAPE (6.3%).
Nevertheless, the LR model demonstrates the lowest level
of accuracy, as specified by an R score of 0.763 and errors in
terms of RMSE, SI, MAE, OBJ, and MAPE, which amount to
1.410, 0.136, 1.128, 1.440, and 12.6%, respectively. The violin
plot shown in Figure 13 demonstrates the error propagation
of ML models. The MAE of the AdaBoost model is 0.617%,
lower than 0.796% for SVM, 0.824% for DT, and 1.128% for
the LR model. Thus, the violin plot testifies to the boosting
performance of the AdaBoost model against DT, SVM, and
LR models in terms of forecasting the porosity of concrete.
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Figure 13: Violin graph for various developed models.

4.6 Feature importance evaluation

To forecast the porosity of concrete, this research employed
CAJFA, SP, w/b, GGBFS, CT, fly ash, and binder as input
features. Further, this study employed the RReliefF algo-
rithm to order the input features according to their impor-
tance while estimating the output target. Figure 14 presents
the findings of the RReliefF test. According to this radial plot,
the binder content, w/b, and GGBFS percentage significantly
influence the porosity of concrete with the RReliefF factors
of 0.167, 0.151, and 0.150, respectively. However, SPs and
curing time have the most negligible effect on the output
target (porosity), as suggested by the RReliefF factors of
0.085 and 0.084, respectively. The porosity of cementitious
composite is greatly affected by the amount of binder pre-
sent, as the binder is responsible for the hydration process
that bonds the aggregate fragments together. The quantity
and composition of the binder are key factors in deter-
mining the size and arrangement of the hydration products,
such as CSH, that occupy the voids in the concrete structure.
The calcium-to-silica ratio (C/S ratio) in CSH has an impact
on the pore structure and permeability [78]. Inadequate binder
causes incomplete hydration, leading to an increase in capil-
lary pores and increased porosity. On the other hand, an ideal
quantity of binder decreases porosity by guaranteeing a more
compact microstructure through efficient filling of pores [79].
Prior research has also demonstrated that fluctuations in the
amount of binder significantly impact concrete’s mechanical
properties and permeability, highlighting the significance of
regulating the ratio of binder to water to attain the necessary
porosity and strength [80]. Since the binder and wy/b ratio are
the controlling factors affecting the concrete porosity, while
preparing a concrete mix, one can prioritize these variables
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and compute the other quantities. Moreover, optimal concrete
mix designs can be achieved by modifying the quantity of
binder to attain the required porosity level.

4.7 Sieve diagram

Figure 15(a)-(d) demonstrates the sieve diagram for DT, LR,
SVM, and AdaBoost models. The sieve diagram is a graphic
technique applied to visually characterize frequencies in a
two-way contingencies table and assess them concerning
the expected frequencies based on a presumption of inde-
pendence. The presented visualization depicts rectangles
whose areas are proportionate to the expected frequency,
while the quantity of squares represents the experimental
frequency within each rectangle. The shading density visually
represents the distinction between actual and forecasted fre-
quency, which is proportional to the standard Pearson resi-
dual (y. This shading utilizes color to show whether the
divergence from independence is red (-ive) or blue (+ive).
The y* value for AdaBoost is 375.09, which is higher than
208.80 for DT, 319.29 for SVM, and 99.47 for the LR model.
The higher y* suggests a strong correlation between actual
and anticipated outcomes. Hence, AdaBoost shows an excel-
lent correlation of experimental porosity with predicted
porosity.
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5 Discussion

The current research employed a random split of the por-
osity database, with a ratio of 70% for training and 30% for
testing. This partition was used for all ML models, including
DT, SVM, AdaBoost, and LR. The intent was to evaluate and
contrast the predictive accuracy of these techniques and
study the applicability of these optimized models for calcu-
lating the porosity of concrete without any lab experimenta-
tion. The correlation coefficient of all developed models
showed acceptable performance, while AdaBoost outper-
formed SVM, LR, and DT models in terms of accuracy and
predictive capabilities. AdaBoost shows higher accuracy
than SVM, DT, and LR due to its iterative adaptation and aggre-
gation of several weak classifiers. This collective approach
effectively improves model performance by mitigating misclas-
sification errors. AdaBoost is an ML algorithm that focuses on
complex data points and iteratively enhances its predictive per-
formance by allocating more weights to previously misclassified
instances. The effectiveness of this technique lies in its adapt-
ability and ensemble nature, which allows it to effectively cap-
ture complicated decision boundaries and address difficulties
related to overfitting. Additionally, it demonstrates versatility by
accommodating different types of base classifiers. In addition,
AdaBoost exhibits less sensitivity to feature scaling, has a
simplicity of implementation, and has the capacity to
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Figure 15: Sieve diagrams: (a) LR model, (b) DT model, (c) SYM model, and (d) AdaBoost model.

effectively handle non-linear data, which collectively contri-
butes to its strong performance in many datasets and appli-
cations. Compared to the LR model, which is primarily
based on linear assumption, the DT and SVM models per-
form well as both models can trace out intrinsic correlation
among the variables. However, the efficiency of these algo-
rithms is highly dependent on the database. Any potential
outlier in the database yields false results in computation
modeling.

The approach described above exhibits promising
potential for several applications, such as optimizing mix
compositions to enhance the performance-driven design of
concrete structures and mitigating the adverse ecological
effects associated with concrete production. Furthermore,
the ML technique under consideration can be utilized to pro-
vide empirical predictions regarding the specific durability
characteristics of concrete, including but not limited to the
water and gas permeability, chloride diffusion coefficient,
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electrical resistivity, and degree of cement hydration.
Subsequent research endeavors should focus on developing
a dependable and balanced database encompassing con-
crete porosity, which can be utilized to train the ML model.
The integration of diverse ML techniques can achieve the
enhancement of forecasting accuracy. The applications of
ML for industry and academics are described in Figure 16.
However, some constraints are associated with utilizing
these ML techniques. The exploitation of large, superior
databases is crucial for ensuring the effectiveness of training
ML models. However, the process of obtaining a comprehen-
sive and diversified database that includes specific composi-
tions of cementitious compounds and their accompanying
porosity values may present significant difficulties. The lack of
available data has the potential to compromise the accuracy
and relevance of the algorithm. The algorithm’s ability to make
accurate predictions for unfamiliar mixtures or unusual pro-
cessing parameters may be compromised if the training data
lacks coverage of the full range of compositions of cementitious
compounds or unique situations of interest.

6 Conclusions

This research introduced an innovative machine learning
(ML) framework that demonstrated exceptional precision
and adaptation performance in predicting the porosity of
concrete. ML techniques include DT, AdaBoost, LR, and
SVM. The models were subjected to intensive training
and testing utilizing data sourced from reputable scholarly
publications. Statistical analyses have demonstrated that ML

algorithms exhibit superior performance compared to con-

ventional approaches, characterized by enhanced general-

ization capabilities and greater reliability. The study main
findings are as follows:

1) The ML procedures suggested in this study exhibited a
notable level of efficiency and generalization capability
when employed for predicting the porosity of concrete.
The correlation coefficient (R?) for AdaBoost was observed
to be 0.914. Meanwhile, R? values for DT, SVM, and LR were
0.838, 0.870, and 0.763, respectively.

2) The results of RMSE (0.858), MAPE (6.3), SI (0.083), MAE
(0.617), and OBJ (0.771) for the AdaBoost-model confirmed
the superior efficiency than the LR-model (1.410, 12.6, 0.136,
1.128, and 1.440), the DT-model (1.166, 7.9, 0.114, 0.824, and
1.083), and the SVM model (1.059, 8.5, 0.013, 0.796,
and 0.992).

3) As evident from the R* score and minimum observed
errors, the AdaBoost algorithm exhibited reliable accu-
racy and predictive capabilities against SVM, LR, and DT
for computing the porosity of concrete.

4) The outcomes of RReliefF analysis demonstrated the
comparative importance of each independent variable,
with the following order of significance: binder > water/
binder > slag > coarse/fine particles > fly ash > super-
plasticizer > curing time.

5) The AdaBoost model’s 375.09 chi-square value (y*) showed
a significant correlation of inputs with the target variable.
However, the )(2 values for DT, SVM, and LR were
observed to be 208.50, 319.29, and 99.47, respectively.

The research findings suggest that the formulated
models yield higher accuracy and precision. However,
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the use of a diverse dataset with a greater number of input
features can lead to the formation of a universal ML model
capable of capturing the intrinsic correlation among the
variables. Further studies can be conducted to generate a
dataset that includes the chemical composition of SCMs
and curing conditions to create a universal ML model for
estimating the porosity of concrete.
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