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Abstract: Currently, there is a lack of research comparing
the efficacy of machine learning and response surface
methods in predicting flexural strength of Concrete with
Eggshell and Glass Powders. This research aims to predict
and simulate the flexural strengths of concrete that replaces
cement and fine aggregate with waste materials such as
eggshell powder (ESP) and waste glass powder (WGP). The
response surface methodology (RSM) and artificial neural
network (ANN) techniques are used. A dataset comprising
previously published research was used to assess predictive
and generalization abilities of the ANN and RSM. A total of
225 research article samples were collected and split into
three subsets for model development: 70% for training
(157 samples), 15% for validation (34 samples), and 15% for
testing (34 samples). ANN used seven independent variables
to model and improve the model, whereas RSM used three
variables (cement, WGP, and ESP) to improve the model.
The k-fold cross-validation validated the generalizability
of the model, and the statistical metrics demonstrated favor-
able outcomes. Both ANN and RSM techniques are effective
instruments for predicting flexural strength, according
to the statistical results, which include the mean squared
error, determination coefficient (R2), and adjusted coeffi-
cient (R2 adj). RSM was able to achieve an R2 of 0.7532 for
flexural strength, whereas the accuracy of the results for ANN
was 0.956 for flexural strength. Moreover, the correlation

between the ANN and RSM models and the experimental
data was high. However, the ANN model exhibited superior
accuracy.

Keywords: waste glass powder, eggshell powder, artificial
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Abbreviations

ANFIS neuro-fuzzy inference systems
ANN artificial neural network
ANN-ICA combination of ANN and imperialist competi-

tive algorithm
ANN-LM Levenberg−Marquardt artificial neural

network
ANN-PSO combination of ANN and particle swarm

optimization
APSO adaptive particle swarm optimization
BBO biogeography-based optimization
CaCO3 calcium carbonate
CaO calcium oxide
CCD central composite design
CMNNs constrained monotonic neural networks
C–S–H calcium–silicate–hydrate
DOE design of experiment
ESP eggshell powder
FF firefly algorithm
FQ full quadratic
GA genetic algorithm
GA genetic algorithms
HPC high-performance concrete
HSC high-strength concrete
IA interaction
IPSO improved particle swarm optimization
LR linear regression
LWC lightweight concrete
MLR multilinear regression
MNHPSO modified new self-organizing hierarchical PSO
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MSE mean squared error
NAC natural aggregate concrete
NHPSO new self-organizing hierarchical PSO
NLR nonlinear regression
POFA palm oil fuel ash
PQ pure quadratic
PSO particle swarm optimization
R2 adj adjusted coefficient
R2 determination coefficient
RAC recycled aggregate concrete
RHA rice husk ash
RSM response surface methodology
SCC self-compacting concrete
SCM supplementary cementing materials
WGP waste glass powder

1 Introduction

Modern academics are interested in recycling waste mate-
rials because of the rising demand for aggregates and
cement in concrete and the need to responsibly protect
natural resources [1]. The processes of cement manufac-
turing and extraction of natural aggregates require a sig-
nificant amount of energy and contribute to the release of
CO2 emissions [2–4]. The utilization of cementitious mate-
rials leads to the depletion of natural resources and environ-
mental degradation. Researchers are currently prioritizing
substituting cement and natural aggregates with alternative
materials to advance the concept of environment-friendly
construction [5]. Previous studies have examined alternative
aggregates and cement materials [6]. The reuse of aggregates
and cement can reduce the environmental impact of open
trash disposal [7]. Substituting cement with mineral additives
and waste materials is a viable solution to these issues [8].
Industrial wastes such as recycled glass [9], rubber tires [10],
slag [11], plastic waste [12], foundry sand [13], fly ash [14,15],
desulphurized gypsum [16], red mud [17], and eggshell
powder (ESP) [18] significantly increased with serious
environmental problems. Therefore, some previous stu-
dies resorted to including waste instead of cement or
aggregates to reduce the environmental impact [19].

Eggshells, the tough outer layer of eggs, can be consid-
ered a type of agricultural waste. The yearly production of
eggshells is expected to surpass 8 million tons owing to a
consistent increase in egg production worldwide [20]. The
formation of calcium silicate hydrate (C–S–H) gel in cemen-
titious composites requires calcium carbonate (CaCO3), a
chemical component that is crucial to the composition of
eggshells [18]. ESP has been used as an SCM in concrete

and has improved its strength and durability owing to its
high CaCO3 content and balanced mono-carbonates and
ettringite [21]. Therefore, waste eggshell powder (WEP)
can be used in place of cement and fine aggregates in
building materials [22]. Recycling ESP and rice husk ash
(RHA) as concrete additives improves the mechanical and
microstructural characteristics of geopolymers [23]. The poz-
zolanic reaction between palm oil fuel ash and cement is
improved by using ESP to raise the necessary calcium oxide
level [24,25]. Hakeem et al. [26] improved ultra high-perfor-
mance concrete (UHPC) mechanical characteristics and
durability by blending rice straw ash as supplementary
cementing materials (SCM) with nano ESP as an adjuvant.
However, it is important to consider another type of SCM,
waste glass powder (WGP), because of its high silica content
and the significant volume that needs to be disposed of. The
global amount of solid waste discarded in 2004 was pre-
dicted to be 200 million tons, with glass products accounting
for 7% of this total [27]. Finely powdered glass powder below
38 μmmay have pozzolanic action [28]. Owing to the pozzo-
lanic reaction of glass powder, concrete with 30% glass
powder as SCM had lower strength before 28 days, but
improved strength at 90 days. Glass powder, like other
SCMs, has higher pozzolanic activity with smaller particle
size [29]. Traditional methods, such as nonlinear regression
and linear regression, predict the compressive strength of
concrete composites. Even with simple regression models,
forecasts are unreliable; therefore, advanced methods are
required [30]. Several methods can predict the mechanical
property independent–dependent relationships [31]. Artifi-
cial neural network (ANN) and response surface method
(RSM) are popular methods for displaying relationships [32].

The RSM is a comprehensive mathematical and statis-
tical method for modeling and analyzing experimental
issues [33]. Despite being widely used for experimental
design and optimization, this method has limited use in
the concrete industry [34]. For concrete technological opti-
mization and modeling, neuro-fuzzy inference systems
[35], ANN [36], genetic algorithms (GP) [37], and other
methods have been used. An approach based on statistics
called the design of experiment (DOE) is used to evaluate
the outcomes of studies. DOE can minimize experiments,
evaluate variable relationships, provide a mathematical
model, and optimize experimental outputs. Furthermore,
the utilization of the derived mathematical model allows the
prediction of outcomes based on various parameters [38].
The slump flow, filling capacity, V-funnel flow time, and
compressive strength were examined using the response
surface to determine how the self-compacting concrete
(SCC) mixing parameter affects the fresh and hardened attri-
butes [39]. The combined effect of the water-to-cement ratio,
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steel fiber tensile strength, and volume fraction of fiber on
the mechanical behavior of steel fiber-reinforced concrete
was determined, and the RSM was used to find the best
design parameters to maximize the concrete fracture energy
[40]. The response surface approach was used to study the
effects of the aspect ratio and steel fiber volume fraction on
the steel fiber-reinforced concrete fracture parameters [41].
An RSM-based statistical model was created to predict self-
compacting UHPC with hybrid steel fibers [42]. The response
surface method optimized the typical ready-mixed concrete
proportions for the slump flow [43].

ANNs are widely used and highly effective because
they can classify data and acquire knowledge of inpu-
t–output relationships for intricate situations [44]. An ANN
is composed of an input layer, one or more hidden layers,
and an output layer [45]. The mechanical properties of high-
performance concrete (HPC) [46], high-strength concrete
(HSC) [47], FRP-confined concrete [48], self-compacting
concrete (SCC) [49], lightweight concrete (LWC) [50], sul-
fate-resistant concrete [51], and concrete exposed to high
temperatures [52] have been estimated using ANN in recent
studies. An ANN analysis was used to predict the compres-
sive strengths of cement mortar based on the microstruc-
tural characteristics extracted by digital image processing
[53]. The experimental results for 179 specimens made with
46 combination proportions were used to train and test the
ANN to predict the strength of MK-containing mortars at 3, 7,
28, 60, and 90 days [54]. Traditional correlation equations
may not obtain results as good as the established ANNmodel
for estimating the elastic modulus of recycled aggregate
concrete (RAC) [55]. According to recent study findings,
ANN may be effectively utilized to forecast the carbonation
depth of natural aggregate concrete (NAC) and to design
NAC for durability [56]. ANN may predict better than other
statistical models; however, like other classical optimization
methods, its parameters are prone to local optimization
rather than global optimization [57]. The unconfined com-
pressive strength (UCS) of granite was predicted using three
non-destructive test indicators (pulse velocity, Schmidt
hammer rebound number, and effective porosity) using
three ANN-based models: Levenberg–Marquardt algorithm
(ANN-LM), a combination of ANN and particle swarm opti-
mization, and a combination of ANN and imperialist com-
petitive algorithm (ANN-ICA)[58]. According to the recent
research [59], improving the ANN model parameters using
the swarm intelligence algorithm can increase its general-
ization ability for predicting the mechanical performance of
conventional concrete. The application of ANN to predict the
mechanical strength of recycled aggregate concrete revealed
that certain networks did not yield accurate results. These

significant inaccuracies may be attributed to the omission of
cement type as an input parameter [60]. The accuracies of
eight novel hybrid metaheuristic-based models, such as par-
ticle swarm optimization (PSO) improved particle swarm
optimization, adaptive particle swarm optimization, new
self-organizing hierarchical PSO, modified new self-orga-
nizing hierarchical PSO (MNHPSO), genetic algorithm, bio-
geography-based optimization, and firefly algorithm) were
used to predict soil thermal conductivity [61]. The effect of
SiO2 on the mechanical properties of concrete was exam-
ined using several models including linear regression,
multilinear regression, nonlinear regression, pure quad-
ratic, interaction, and full quadratic [62]. The bond
strength of corroded reinforced concrete was estimated
using convolution-based ensemble learning algorithms,
which are becoming increasingly prominent in the field
[63]. A unique data-driven machine learning strategy
using constrained monotonic neural networks (CMNNs)
to forecast the shear strength of FRP-strengthened rein-
forced concrete beams has advanced structural engi-
neering [64]. Comparisons were made between several
machine learning methods and the prediction of the
mechanical properties of concrete [65], but one of the
future studies of many researchers was to compare
ANN and RSM [65–68]. A mathematical equation for the
WEP and WGP blended in concrete validation and predic-
tion has not been found. No research has predicted the
flexural strength of concrete integrating eggshell and glass
debris or provided mathematical calculations to save time
and material. Past research has rarely examined the para-
metric effects of constituents.

To date, there has been a lack of research on the
exploration of comparisons between the machine learning
method and response surface method for the prediction
of flexural strength. Researchers have recently shown a
growing interest in examining how well-suited RSM and
ANN modeling techniques are to find realistic solutions to
issues. In this study, recycled waste glass and ESP were used
as partial replacements for cement and fine aggregate to
investigate their effects on concrete flexural strength using
RSM and ANN, and their results were compared. A database
of 225 literature specimens was used to build the ANN and
RSM algorithms. This study used experimental data to build
Levenberg-Marquardt and central composite design (CCD)-
RSMmodels. We assessed and compared the accuracy of the
built models using statistical measures of the mean square
error (MSE), coefficient of determination (R2), and correla-
tion coefficient (R). To our knowledge, this is the first study to
compare RSMwith ANN to predict flexural strength, including
waste materials, such as recycled waste glass and ESP.
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2 Methodology

The study included dataset selection from previous research,
ANN and RSM models, and essential parameters. Artificial
neural fitting in MATLAB and CCD in design expert were
used to build the prediction model by constructing input–
target variable relationships. Literature datasets were used
to ensure model reliability. Engineering judgment was used
to improve the dataset quality and eliminate confusing
human-error-related entries. R, R2, and MSE assess the per-
formance of the prediction model. These measures compre-
hensively assess model correctness and prediction capacity.
A thorough parametric analysis examined how the key
input elements affect concrete flexural strength prediction.
This approach seeks to illuminate the relative importance of
concrete strength elements.

2.1 Materials and selection of dataset

The production assessed normal concrete with a compres-
sive strength of up to 40 MPa includes many components
such as cement, fine aggregate, water, silica fume, super-
plasticizer, ESP, and WGP. The physical and chemical prop-
erties of waste materials, such as ESP and WGP, have been
explained in literature [69,70]. Also, the mixing procedures
are explained in literature [71,72]. Creating accurate predic-
tive models requires a dependable and complete dataset.
This study used a complete literature review to collect
data from the previous studies. Dataset acquisition was com-
plicated by concrete flexural strength modeling. This ana-
lysis included data from 225 concrete mixtures obtained
from previous research. Cement (kg·m−3), fine aggregate
(kg·m−3), water (kg·m−3), silica fume (kg·m−3), superplasti-
cizer (kg·m−3), ESP (kg·m−3), WGP (kg·m−3), and flexural
strength (MPa) were the inputs and outputs of the model.
Table S1 presents the results of various experiments from
the literature. A histogram of the input and target variables
is shown in Figure 1. Using Pearson’s linear correlation, we
also examined the linear correlation coefficients and their
significance levels among the data factors [73]. A simple
comparison was made in Table 1 between the amount of
data and inputs used in this study and other studies.

2.2 ANN

ANNs were built based on the concept of biological neural
networks. ANNs are highly efficient methods for forecasting,

grouping, identifying, and organizing data [83,84]. Their
learning capabilities from training data are excellent and
serve as black boxes. A fundamental neural network con-
sists of an input layer that receives input variables and an
output layer that generates output signals, as shown in
Figure 2. The layers that connect the input and output layers
in between are frequently referred to as the hidden layers.
The choice of hidden layer is crucial because an excessive
number of hidden layers leads to model overfitting, whereas
a limited number of hidden layers leads to model under-
fitting [85]. In addition, the presence of additional hidden
layers in the model increases estimation time [86]. The
hidden layers consist of hidden neurons that are responsible
for performing intermediate calculations that determine the
output value of the neural network. Table 2 presents the
statistical features of the data. The synaptic weight (wi) is
multiplied by the input (xi). During the learning process,
weights were adjusted to obtain a certain level of accuracy.
Hidden layer neurons calculate the weighted total of the
received signals and apply a bias (b). The lack of relevant
input data eliminates bias, allowing the neuron to adjust the
output, regardless of the input values. After the total is
transmitted through activation function (f), y is the output.

∑= ⎛
⎝ × + ⎞

⎠Y f w x bni .i i (1)

The learning algorithm was used in the ANN model
because it is the fastest way to train small feedforward
neural networks [44,87]. It is also the primary response
to supervised learning situations such as those in this
study. The sigmoid activation function is often used in
research [88]. The variance between the actual and antici-
pated values was calculated using the algorithm. Adjusting
the weights and bias using the learning process sends an
error back to the network [89]. Normalize the subject para-
meter values between a suitable upper and lower limit
value to avoid ANN low-learning-rate concerns. Eqs. (2)
and (3) standardize the min–max normalization procedure
for upper and lower limit values between [0, 1] [90].

=
−x μ

σ
Data standardization , (2)

=
−

−
Normalization data

Feature Feature

Feature Feature
.

min

max min

(3)

Each ANN configuration was assessed using cross-vali-
dation. This approach was used to account for the limited
size of the dataset, ensuring that the overall performance
of the model was not affected and minimizing the possibi-
lity of overfitting. This method reduces the unpredictability
of choosing a single test set and improves the dependability
of the performance of the model [31]. This study
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Figure 1: Seven independent factors histograms.

Table 1: Comparison of the amount of data and inputs between this study and other studies

Machine learning
algorithm

No. sample Variable concrete content Ref.

ANN 150 Cement, silica fume, fly ash, waste marble powder, water, superplasticizer [74]
ANN 103 External diameter of CFST composite column filled with recycled concrete, the

thickness of the steel tube, length of specimen, the proportion of replaced recycled
coarse aggregates, compressive strength of recycled concrete, yield stress of the
steel tube

[75]

ANN 13 w/c, cement, water, coarse, fine aggregate, condensed milk can (tin) fibers [76]
ANN 40 Beam dimensions, compressive strength of SCGC under ambient and marine

exposure conditions, time of exposure, the tensile strength of the BFRP bar, tensile
strength of steel reinforcement bar, and shear span-depth ratio

[77]

ANN 50 Cement, water, sand, aggregate, w/b, and ESP [78]
ANN 17 Cement, w/c, coarse, fine aggregate, and foam volume [79]
ANN 55 Cement, admixtures, water, coarse, fine aggregate, and superplasticizer [80]
ANN 17 Cement, water, natural coarse aggregates, recycled coarse aggregates, and

natural sand
[1]

ANN 60 Cement, admixtures, water, coarse, fine aggregate, and waste [81]
ANN 220 Dry density (D), water/cement ratio (W/C), and sand/cement ratio (S/C) [82]
ANN 224 Cement, fine aggregate, water, silica fume, superplasticizer, ESP, and WGP The current

study
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implemented a 5-fold cross-validation technique, with the
maximum value of k set at 5. The training set consisted of 80%
of the available data, whereas the remaining 20%was used to
test the ANNmodels. This particular k-max valuewas selected
to strike a compromise between computational efficiency and
the accuracy of the performance assessment, as advised for
conducting a strong statistical analysis [82].

2.3 RSM

In RSM, independent variables (input parameters) interact
with one or more responses (output parameters). It can
estimate the output parameters and produce a precise
model with less experimental data [91]. ANOVA divides
the observed variance data into components for further
testing [34]. The purpose of ANOVA in RSM is to determine
the Sum of Squares, Mean Square, F-value, and p-value
of the variables [92]. This strategy is used when multiple
variables affect the responses. For each response, this
study generated a CCD model and an RSM experimental
design for second-order (quadratic) model prediction. The

complete methodology employed in this study is shown in
Figure 3. Table 3 presents these factors and their respective
ranges of variation.

Design Expert software was utilized to perform CCD
data analysis and accomplish multivariable optimization.
The number of experiments was determined using Eq. (4).

= + +N K C2 2 ,K (4)

where k, 2k, and C are explained in ref. [93]. The factorial,
axial, and center points are schematically represented by
the CCD in Figure 4. Based on Eq. (4), a total of 13 experi-
mental points were recommended for the study. These
points consisted of five factorial points without replication
(2k), four axial points without replication (2k), and one
center point with four replications (c).

The best response was ascertained by applying a quad-
ratic model or a second-order polynomial, Eq. (5).

∑ ∑ ∑= + + +y β β xi β x β x x ,
i ii i ii i j0

2 (5)

where y is the anticipated response value, β0 is the intercept of
the model, βi represents the linear coefficients, βii refers to the
quadratic coefficients, and βii is the coefficient of the variables’
interaction. xi and xj are the independent variables [94].

2.4 Indexes of performance

In addition, the output of the model was examined using
several performance indices including MAE, MSE, RMSE, R,
and R2, as shown in Eqs. (6)–(10). Higher R2 values imply a
better fit between the analytical and predicted values,
while lower RMSE values suggest more accurate prediction
findings (a null value represents a perfect fit). The fol-
lowing equations determine the statistical parameters.

[( ) ]∑= −
=N

O PMAE
1

,

i

N

i i

1

2
1

2 (6)

[( ) ]∑= −
=N

O PMSE
1

,

i

N

i i

1

2 (7)

Figure 2: Designer of single-layer neural network.

Table 2: Input and output layer ranges, average values, and standard divisions

Input Output

Cement Fine aggregate Water Silica fume Superplasticizer ESP WGP Flexural strength

Min 612.00 612.00 180.00 122.00 36.00 0.00 0.00 2.68
Mean 731.27 731.27 191.33 151.67 38.17 32.06 32.06 4.70
Max 810.00 810.00 203.00 180.00 40.50 121.50 121.50 6.21
SD 53.70 53.70 9.41 23.75 1.84 40.46 40.46 0.76
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i
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i
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2

(10)

The equation represents the relationship between the
observed value (Oi), expected value (Pi), total number of
observed samples (N), and average forecasted value (Pi).

A20-index, a novel performance metric proposed by
the authors, was also calculated to aid classification [95].

- =
m

M
a20 index ,

20 (11)

where M is the dataset sample number, and m20 is the
number of samples with an experimental-predicted ratio
between 0.80 and 1.20. In a perfect predictive model, the
a20-index value should be a unit value. The proposed a20-
index offers a physical engineering benefit by indicating
the percentage of samples that satisfy the expected values
within ±20% of the experimental values.

3 Results and discussion

3.1 Predicting flexural strength using RSM

The RSM results for the flexural strength are shown in
Figures 5–8. Figure 5 displays the flexural strength for
response 1 as a 3D view, contour graph, and perturbation.

3 factors 
1- cement
2- ESP
3-WGP

Use DESIGN EXPERT
[CCD]

Define and analyze 
factorial

Analysis of resultsDevelopment of 

Figure 3: The schematic of RSM model.

Table 3: Factors and factor levels for RSM

Factor (kg·m−3) Code Factors level of code

Low level −1 Intermediate level 0 High level +1

Flexural strength Response 1 Cement A 646 728 810
ESP B 0 60.75 121.5

Response 2 Cement A 612 686 760
ESP B 0 57 114

Response 3 Cement A 729 769.5 810
WGP B 20.25 70.88 121.5

Response 4 Cement A 612 686 760
WGP B 19 66.5 114

( 0 , 0 )

( 0 , + α )

( + 1 , + 1 )( - 1 , + 1 )

( 0 , - α )

( + α , 0 )( - α , 0 )

( + 1 , - 1 )( - 1 , - 1 )

Figure 4: Schematic representation of factorial, axial, and center points
in CCD.
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Figure 5(a) shows that the contour lines along the ESP axis
are more closely spaced than those along the cement axis,
suggesting a substantial impact of the ESP on the flexural

strength. Table 4 shows the ANOVA results for the para-
meters of the quadratic model of flexural strength. The
predicted values of the flexural strength were 4.6, 4, 3.6,

Figure 5: Flexural strength for response 1: (a) contour graph, (b) 3D view, and (c) perturbation plot.

Figure 6: Flexural strength for response 2: (a) contour graph, (b) 3D view, and (c) perturbation plot.

Figure 7: Flexural strength for response 3: (a) contour graph, (b) 3D view, and (c) perturbation plot.
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3.6, and 3.8 MPa at cement contents of 646, 687, 728, 769,
and 810 kg·m−3 ESP content of 24.3 kg·m−3. The equations
generated from Eq. (12) were used to calculate the mathe-
matical prediction of the flexural strength for response 1.

=

+

A B

AB A B

F.S for response 1 3.40 – 0.1217 – 0.46

0.3575 – 0.5009 – 0.034 ,2 2

(12)

where A and B represent the variables (cement and ESP).

Figure 8: Flexural strength for response 4: (a) contour graph, (b) 3D view, and (c) perturbation plot.

Table 4: ANOVA results for the parameters of the quadratic model for flexural strength

Source Sum of
squares

Mean
square

F-value p-value Source Sum of
squares

Mean
square

F-value p-value

Response 1 Response 2
Model 2.64 0.5284 3.63 0.0415 Significant Model 2.38 0.4769 6.93 0.02071 Significant
A-cement 0.0888 0.0888 0.6095 0.4606 A-Cement 0.546 0.546 2.21 0.1806
B-ESP 1.27 1.27 8.71 0.0214 B-ESP 0.0253 0.0253 0.1027 0.758
AB 0.5112 0.5112 3.51 0.1032 AB 0.1482 0.1482 0.6004 0.4638
A² 0.6929 0.6929 4.75 0.0656 A² 0.397 0.397 1.61 0.2453
B² 0.0032 0.0032 0.0221 0.886 B² 1.64 1.64 6.65 0.0366
Residual 1.02 0.1457 Residual 1.73 0.2469
Lack of fit 1.02 0.34 Lack of fit 1.73 0.5754 1150.82 <0.0001 significant
Std. Dev. 0.3817 R² 0.7214 Std. Dev. 0.4969 R² 0.7798
Mean 3.61 Adjusted R² 0.6922 Mean 4.75 Adjusted R² 0.7156
C.V.% 10.57 Predicted R² 0.6526 C.V.% 10.46 Predicted R² 0.6923

Adeq Pre. 7.3265 Adeq
precision

4.8337

Response 3 Response 4
Model 0.4052 0.081 7.04 0.0117 Significant Model 2.33 0.4667 9.8 0.0046 Significant
A-cement 0.0308 0.0308 2.68 0.1459 A-Cement 0.4302 0.4302 9.03 0.0198
B-WGP 0.0323 0.0323 2.8 0.1381 B-WGP 0.0413 0.0413 0.8661 0.383
AB 0 0 0 1 AB 0.2809 0.2809 5.9 0.0455
A2 0.0013 0.0013 0.115 0.7445 A2 0.0277 0.0277 0.5817 0.4706
B2 0.3065 0.3065 26.61 0.0013 B2 1.47 1.47 30.88 0.0009
Residual 0.0806 0.0115 Residual 0.3335 0.0476
Lack of fit 0.0806 0.0269 Lack of fit 0.3335 0.1112
Std. dev. 0.1073 R² 0.8341 Std. Dev. 0.2183 R2 0.875
Mean 4.99 Adjusted R² 0.7155 Mean 4.86 Adjusted R2 0.7856
C.V.% 2.15 Predicted R² 0.6953 C.V.% 4.49 Predicted R2 0.7532

Adeq
precision

7.541 Adeq
precision

9.6198
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As shown in Figure 5(b), the highest flexural strength
predicted was 4.5MPa at a cement content of 646 kg·m−3 and
ESP 0 kg·m−3, while the lowest flexural strength predicted was
2.7MPa at a cement content of 728 kg·m−3 and ESP 121.5 kg·m−3.
The perturbation plots in Figures 5 and 6(c) illustrate the effect of
the cement and ESP content on the flexural strength at a certain
position. The high slope created by the parameters (cement and
ESP concentrations) indicates that both elements are susceptible
to flexural strength. A minimal change in the gradient was
observed for component B (ESP), indicating its low sensitivity.

The mathematical prediction of the flexural strength
of response 2 was calculated using the equations resulting
from Eq. (13).

= +

+ +
−

A B

AB A

B

F.S for response 2 4.93 0.3017 – 0.065

0.1925 0.3791

0.7709 ,

2

2

(13)

where A and B represent the variables (cement and ESP).
The F-value of 6.93 implies that the model is significant

relative to the noise. There is a 20.71% chance that an
F-value of this large could occur due to noise, as shown
in Table 4. At a cement content of 686 kg·m−3, the flexural
strength increases by 11.91, 16.67, 16.67, and 14.28% when
the ESP content reaches 19, 38, 57, 76, and 95 kg·m−3, respec-
tively. A decrease of 2.38% in the flexural strength was not
observed with EPS content of 114 kg·m−3 as shown in Figure
6(a). As shown in Figures 5–8(b), the process order was
quadratic. As shown in Figure 6(b), the highest predicted
flexural strength was 5.8 MPa at 760 kg·m−3 of cement con-
tent and 57 kg·m−3 of ESP, while the lowest predicted flex-
ural strength was 3.4 MP at 649 kg·m−3 of cement content
and 114 kg·m−3 of ESP.

Figure 7 shows the flexural strength for response 3 as a
3D view, contour graph, predicted versus actual results,
and perturbation. The mathematical estimate of the flex-
ural strength for response 3 was computed using the equa-
tions derived from Eq. (14).

= +

+

A B

A B

F.S for response 3 5.14 – 0.0717 0.0733

0.0219 – 0.3331 ,2 2

(14)

where A and B are the variables (cement and WGP,
respectively).

The predicted flexural strength was 4.68, 4.99, 5.09,
5.03, and 4.84 MPa at WGP content 20.3., 45.6, 70.9, 96.2,
and 121.5 kg·m−3, respectively, as shown in Figure 7(a).
The model F-value of 7.04 implies the model is significant.
There is only a 1.17% chance that an F-value this large
could occur owing to noise, as shown in Table 3. As shown
in Figure 7(a), the contour lines following the WGP axis

were denser than those following the cement axis, indi-
cating that the WGP had a greater influence on the flexural
strength. As shown in Figure 7(b), the highest flexural
strength predicted was 5.26 MPa at a cement content of
810 kg·m−3 and ESP 20.3 kg·m−3, while the lowest flexural
strength predicted was 4.56 MPa at a cement content of
729 kg·m−3 and ESP 70.9 kg·m−3.

The flexural strength for response 4 was mathemati-
cally predicted using the formulae derived from Eq. (15).

= +

+ +

A B AB

A B

F.S for response 4 5.15 0.265 – 0.0983 – 0.265

0.1002 0.7298 ,2 2

(15)

where A and B represent the variables (cement and WGP).
Figure 8 displays the flexural strength of response 4 in

3D, contour graph, predicted vs actual, and perturbation.
The model F-value of 9.80 implies the model is significant.
There is only a 0.46% chance that an F-value this large
could occur owing to noise, as shown in Table 3. Based
on WGP contents of 18, 42, 66, 90, and 114 kg·m−3, the pre-
dicted flexural strengths were 4.8, 5.2, 5.3, 5, and 4.4MPa
(Figure 8(a)). As shown in Figure 8(b), the maximum pre-
dicted flexural strength was 5.7 MPa at 760 kg·m−3 of cement
content and 60 kg·m−3 of ESP, while the minimum predicted
flexural strength was 4.2 MP at 612 kg·m−3 of cement content
and 18 kg·m−3 of ESP. P-values for response 4 of less than
0.0500 indicate that the model terms are significant. In this
case, A, AB, and B² are the significant model terms, as shown
in Table 4. The most significant factors were ranked by F-
value or P-value with 95% confidence. Greater F-value and
smaller “P” value (Prob. > F) indicate a more significant
coefficient [96]. Model significance was indicated by the
30.88 F value. In addition, the model term is significant
only when “Prob. > F” is less than 0.05.

3.2 Predicting flexural strength using ANN

The training state of the ANN model is shown in Figure
9(a), which also indicates that the test terminated at epoch
29 and that the errors were repeated six times after epoch
0. The weights from the first epoch, 0, were used as the
final weights and point of reference. As the errors occurred
six times before the operation ended, the validation check
was 6. As demonstrated in Figure 9(b), the MSE for the
tested scenario in the training and validation datasets satu-
rated with increasing epochs. The training process was
completed at the 29th iteration, but it is important to
remember that at this time, the error was larger than
that in the 22nd iteration for both the validation and testing
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data as demonstrated in Figure 10. Table 5 displays R and
MSE values for the flexural strength.

During the validation of the ANN model, epoch 23
achieved the highest performance. This is evident from
the data presented in Figure 9(b), which shows an MSE
of 0.049307. The nonlinear correlation between the input
variables in Figure 9(c) indicates that the model can predict

the flexural strength with an R2 value of 0.956. The correla-
tion coefficients (R) of training, validation, testing, and
cumulative data were 0.9857, 0.9530, 0.9667, and 0.9776,
respectively. Figure 9(d) displays the distribution of error
bins, providing additional clarification of the distinction
between the actual and expected values. The model’s pre-
dictions for concrete flexural strength demonstrated high
accuracy, as seen by the significant proportion of the dataset
falling into reduced error ranges. This is the absolute error
distribution of the exp which is expected and reported in
the experimental data. The ANN inputs and outputs are
displayed as parallel coordinate plots in Figure 11. Table 6
presents the error evaluation results from the MAE, MSE,
RMSE, R, R2, and a20-index statistical analyses.

The coefficients MAE, MSE, RMSE, R, and R2 were eval-
uated, and it was found that R and R2 achieved a high
prediction rate, while MSE and MAE were small, which
proved the success of the model in prediction [97]. Table 7

Figure 9: (a) Training state, (b) MSE, (c) R, (d) error histogram of the network for flexural strength.

Table 5: R and MSE for training, validation, testing, and cumulative of
ANN model

Correlation coefficient (R) MSE

Training 0.9857 0.01572
Validation 0.9530 0.04931
Testing 0.9667 0.04551
All 0.9776 —
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shows good agreement between the main network results
and the k-fold cross-validation networks. This demonstrates
the generalization ability of the network. The average
R-value of the k-fold cross-validation network was 0.92303,
demonstrating correctness.

3.3 Validation of RSM and ANN in
mechanical properties

RSM and ANN approaches were used in this study to fore-
cast flexural strength. Recently, RSM and ANN-based
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degrees of experimentation have become the most popular
model and process optimization methods [98]. To gauge the
precision of the mathematical models, we examined the
correlation between observed and projected values. This
significant correlation confirmed that the mathematical
models accurately predicted the outcomes. Table S2 dis-
plays the statistical evaluation and performance of the
RSM and ANN models. The results showed that for both
methods, the projected values of the flexural strength
model agreed well with the corresponding experimental
values. Nevertheless, it has been observed that RSMmodels
for pre-designed mixes have limitations in their ability to
accurately anticipate reactions compared to ANN. To vali-
date the adequacy of the final models, a determination
coefficient (R2) was used to evaluate the relationship between
the actual and anticipated results of the RSM and ANNmodels.
Using the statistical characteristics listed in Tables 5 and 6, the
created RSM and ANNmodels were assessed. The results were
substantially closer to 1, and the ANN-estimated R2 was more
accurate than that of the RSM approach. The ANN-generated
models demonstrated increased predictive power and accu-
racy. As indicated by the lower MSE values that the ANN
obtained in contrast to the RSM, the ANN performed better
than the RSM.

4 Discussion

This study utilized an ensemble learning approach, speci-
fically the Levenberg−Marquardt algorithm, in combina-
tion with CCD, to predict the flexural strength of concrete
materials.

The results mentioned above demonstrate the ability
of an ANN to predict actual results, and the accuracy of the
predicted results was higher than that of the RSM to pre-
dict actual results [1]. The R coefficient is a statistical mea-
sure used to ensure the accuracy of the results. From the
above results, it became clear that the R coefficient from

ANN for flexural strength exceeded 0.9, which is accurate,
as shown in many previous studies [86,87,89,99,100], whereas
the R coefficient from RSM for flexural strength exceeded 0.8.
Given the input data, the Levenberg algorithmmodel can effec-
tively and accurately predict the flexural strength of concrete.
The actual method is not necessary for users to understand,
which simplifies and facilitates application [101]. Table 8
reveals that most researchers have used comparable input
parameters. Data availability and variable significance have
led researchers to employ fewer input variables. Literature
R2-values range from 0.67 to 0.956 in Table 8. The ANN
model of this analysis showed a good R2-value of 0.956, close
to literature. This shows that the developed model is more
accurate than the previous models. One difference between
this study and others is the sample size [1].

Sometimes, the RSM model is unable to achieve high
accuracy in prediction, and this is due to the failure of the
values of the variables to match the values of the RSM
model, which results in low prediction accuracy [33]. A
decrease in prediction accuracy was observed. For example,
the accuracy of Response 4 for flexural strength was higher
than that of the other responses, which proves that the
mismatch of values between the laboratory variables and
model variables resulted in a decrease in prediction accu-
racy. To verify the efficiency of the ANN model, the model
used in this study was compared with those used in previous
studies. The accuracy of prediction has been mentioned in
many literatures [104–106]. To verify the validity of the RSM
results, R2 and P values are looked at. If R2 is greater than 0.8
and P-value is less than 0.05, this proves the accuracy of the
model in prediction. The greater the R2 than 0.8 and the
lower the P value than 0.05, the greater the accuracy of
the predicted results [93,107,108].

ESP has many advantages of using in concrete. These
features can be summarized as follows: eggshells are abun-
dant in calcium carbonate. Calcium carbonate accounts for
95% of eggshells. This chemical molecule is identical to
limestone and a cement ingredient, making it a feasible
replacement for concrete cement [109]. Eggshells reduce
concrete workability. According to previous studies,

Table 6: Statistical checks were performed for all models

MAE MSE RMSE R2 R a20 index

ANN model 0.0102 0.0233 34.34 0.956 0.9776 0.996

Table 7: K-fold cross-validation results

K folds K1 K2 K3 K4 K5 Ava.

R 0.8765 0.8942 0.97761 0.9432 0.9236 0.92303

Table 8: Comparison of predictions of ANN model with current research

Machine learning algorithm R2-value Ref.

ANN 0.85 [102]
ANN 0.933 [103]
ANN 0.825 [78]
ANN 0.929 [80]
ANN 0.67 [81]
ANN 0.956 The current study
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increasing eggshell content decreases workability. This is
because eggshells absorb a large amount of water early in
the casting process. The eggshell absorbs water to achieve
good workability [110]. Eggshells increased the compres-
sive strength of concrete by 6–35%. The ideal eggshell con-
tent varied between studies; however, most studies agreed
on 10–15% for mechanical performance. The same range
applies to concrete below M30, which uses eggshells and
another substitute material [111].

5 Limitations and future studies

Note that the proposed optimum ANN and RSM system
application field is defined by its design and training para-
meter settings. As shown in Tables 1 and 2, the suggested
ANN and RSM systems reliably predicted the parameter
values between the lowest and maximum input para-
meters. ANN and RSM systems are limited for parameters
exceeding these limits. Despite the promising results, the
proposed ANN and RSM models should be used cautiously.
The database is the largest in the relevant literature; how-
ever, it requires more experimental data. In particular, the
limitations are related to the following:
• Regarding RSM, the experimental data are missing some
data related to −1, +1, 0, −α, and +α, which leads to a
decrease in R2.

• ANN needs to collect more data with more variables to
check the effect of these variables on prediction.

Future work can be summarized as follows:
• Support vector machines, back-propagation neural net-
works, genetic programming, multilayer perceptron neural
networks, and ANNwith genetic algorithms are suggested to
be used for predicting experimental data in future studies.

• Using a 3D approach in future studies for the factors, axis,
and center points in the CCD and making a comparison
with the 2D approach could provide additional insights.

6 Conclusion

This research will significantly contribute to the field of
sustainable construction by demonstrating the feasibility
of using ESP and WGP as partial replacements for concrete.
The predictive models developed will aid in optimizing mix
proportions for enhanced performance, promoting sustainable
practices in the built environment, and reducing the environ-
mental impact of concrete production. Utilizing ANN and RSM,
this study created a model that predicted flexural strength

based on previous mixes that included waste components
such as eggshells and WGP. The investigation yielded the
following findings:
• The lack-of-fit test results and high coefficients of multiple
determinations (R2) of the polynomial regression model
showed that it could predict the concrete performance for
the RSM model. The extraordinarily low P-value of the
ANOVA data statistically supported all model parameters.

• Data-based ANN and RSM models have shown promise
for properly replicating concrete characteristics.

• Based on the RSM analysis, the two most influential ele-
ments in predicting the flexural strength of concrete
were cement (WSP), with R2 = 0.7532.

• A comparison of the comparative findings of the two
approaches reveals that the ANN model outperforms
the RSM, with a strong correlation coefficient (R2) that
is nearly equal to 1 (0.956) for flexural strength.

• The maximum and minimum flexural strength predicted
by ANN is 6 and 2.29 MPa, while the maximum and
minimum predicted results in RSM are 5.03 and 2.86 MPa.

• ANN can predict numerous previous results simulta-
neously, unlike RSM, which needs to group previous
results to increase accuracy.

• The development of reliable predictive models (RSM and
ANN) for concrete flexural strength using ESP and WGP
promotes sustainable buildings. It also encourages the
use of waste materials in construction, lowering the
environmental impact of concrete production.

• This study could help develop a consistent ANN approach
and RSM to predict concrete flexural strength quickly and
reliably. The prediction method reduces lab time and cost.
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