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Abstract: Plastic waste (PW) poses a significant threat as a
hazardous material, while the production of cement raises
environmental concerns. It is imperative to urgently address
and reduce both PW and cement usage in concrete products.
Recently, several experimental studies have been performed
to incorporate PW into paver blocks (PBs) as a substitute for
cement. However, the experimental testing is not enough to
optimize the use of waste plastic in pavers due to resource
and time limitations. This study proposes an innovative
approach, integrating experimental testing with machine
learning to optimize PW ratios in PBs efficiently. Initially,
experimental investigations are performed to examine the
compressive strength (CS) of plastic sand paver blocks
(PSPBs). Varied mix proportions of plastic and sand with
different sizes of sand are employed. Moreover, to enhance
the CS and meet the minimum requirements of ASTM C902-
15 for light traffic, basalt fibers, a sustainable industrial
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material, are also utilized in the manufacturing process of
environmentally friendly PSPB. The highest CS of 17.26 MPa
is achieved by using the finest-size sand particles with a
plastic-to-sand ratio of 30:70. Additionally, the inclusion of
0.5% basalt fiber, measuring 4 mm in length, yields further
enhancement in outcome by significantly improving CS by
25.4% (21.65 MPa). Following that, an extensive experimental
record is established, and multi-expression programming
(MEP) is used to forecast the CS of PSPB. The model’s
projected results are confirmed by using various statistical
procedures and external validation methods. Furthermore,
comprehensive parametric and sensitivity studies are con-
ducted to assess the effectiveness of the MEP-based proposed
models. The sensitivity analysis demonstrates that the size of
the sand particles and the fiber content are the primary fac-
tors contributing to more than 50% of the CS in PSPB. The
parametric analysis confirmed the model’s accuracy by
demonstrating a comparable pattern to the experimental
results. Furthermore, the results indicate that the proposed
MEP-based formulation exhibits high precision with an R* of
0.89 and possesses a strong ability to predict. The study also
provides a graphical user interface to increase the significance
of ML in the practical application of handling waste manage-
ment. The main aim of this research is to enhance the reuse of
PW to promote sustainability and economic benefits, particu-
larly in producing green environments with integration of
machine learning and experimental investigations.

Keywords: compressive strength, plastic waste, basalt fiber,
multi-expression programming, paver blocks, graphical
user interface

Abbreviations

ANFIS adaptive neuro-fuzzy inference system
ANN artificial neural network

ASTM  American Society for Testing and Materials
CS compressive strength
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F fiber content

GA genetic algorithm

LDPE low-density polyethylene
MAE mean absolute error
MEP multi-expression programming
ML machine learning

OF objective function

PA parametric analysis

PB paver block

PI performance index
PSPB  plastic-sand paver block
PW plastic waste

R coefficient of correlation

RMSE root mean squared error
S sand

SA sensitivity analysis

SVM support vector machine

1 Introduction

Efficiently managing solid waste remains a significant chal-
lenge, especially in developing countries. Plastic waste
(PW) is a sort of solid waste that is a matter of serious
concern at both national and global levels. The issue of
PW has been steadily increasing over the past four dec-
ades, with only a fraction of it currently being recycled.
The widespread use of plastic, because of its adaptability
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and extended reliability, has resulted in the substantial
creation of disposable plastic and the accompanying gen-
eration of garbage. The massive increase of PW in the
ecosystem poses a significant risk to many aquatic crea-
tures and the long-term viability of the natural world.
Water pollution arises when polluted wastewater is dis-
charged into aquatic environments such as oceans and
rivers, in which it is exposed to solar radiation and the
motions of water and waves [1-3]. An estimated 8 million
metric tonnes of plastic are being dumped into the ocean,
and it is expected that if this trend persists, garbage in the
marine environment will exceed the number of fish [4].
Microplastics produced during the degradation of plastic
have been linked with health problems in animals as a
result of the process of bioaccumulation and biomagnifica-
tion [5]. Furthermore, PW can hinder the movement of
water in sewer systems, leading to overflow and the rapid
spread of insect parasites and waterborne diseases [6]. The
global consistently expanding trend of PW production
from 1950 to 2015 is shown in Figure 1 [7]. Due to its
inability to decompose, plastic has exacerbated various
ecological challenges while posing additional risks to local
communities.

Among the several approaches to managing PW, the
conversion of plastic into a useful item is particularly ben-
eficial. This approach not only decreases the need for new
materials but also enhances the economic value of waste.
Additionally, studies have indicated that recycling PW by
stabilizing it in concrete or creating useful items using
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Figure 1: Worldwide PW production (1950-2015) [7].
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supplementary recycling has less detrimental effects on
the environment compared to pyrolysis and incineration
methods [8]. Paver blocks (PBs) and bricks have also been
produced using PW. For many years, cement-based PB has
been extensively used in pedestrian walkways, driveways,
shipping yards, and roads [9]. However, scientists are wor-
ried about the growing production of concrete products
and the subsequent release of CO,, which poses a signifi-
cant environmental risk. To preserve the planet, it is neces-
sary to decrease the utilization of cement. This is because
the manufacture of cement-based composites results in
substantial releases of CO,. Minimizing cement consump-
tion can significantly decrease CO, emissions, with around
0.9 tonnes of CO, produced annually for every 1.0 tonne of
cement consumed [10]. The cement sector accounts for
nearly 8% of all anthropogenic greenhouse gas emissions [11].
The conventional PB utilizes 210 kgm ™ cement, resulting in sig-
nificant CO, emissions [12]. The need to tackle numerous signifi-
cant emissions originating from cement factories is crucial
Furthermore, concrete contains small amounts of crystalline
silica, a material that can cause skin damage, lung irritation,
and environmental pollution. Efforts should be made to find
substitutes to decrease the usage of cement-based composites.
Employing PW instead of cement as a binder material in concrete
products is a viable option that can help reduce the use of cement
and decrease the PW, which results in sustainable products [13].

In 2006, Pierre Kamsouloum first used a combination of
PW and sand to manufacture pavement blocks. Agyeman
et al. [14] stated that recycled PW can be used as a viable
alternative to cement in the production of PB. Utilizing PW
in construction projects has benefits in improving ecological
sustainability [15]. Furthermore, the addition of PW in the
PB leads to a 15% decrease in weight compared to a standard
concrete block. The financial investigation reported that the
plastic sand paver block (PSPB) has a 35.39% lower per unit
cost than a typical concrete block [12]. Moreover, the com-
pressive strength (CS) of concrete PB is mainly influenced by
the water-to-cement (w/c) ratio, the hydration process, the
time of curing, and the properties of the concrete compo-
nents used [16]. Eliminating cement from PSPB will result in
the removal of both the water-to-cement ratio and the
curing time, as there is no need for curing in the case of
PSPB. It is important to highlight that PW is a thermoplastic
substance that is flexible and can assume any required
shape when exposed to heat. Nevertheless, as a thermo-
plastic substance, its strength decreases significantly as the
temperature increases. Consequently, this study included
basalt fibers as an addition to plastic-bonded sand paver
to improve CS at elevated temperatures.

The strength of plastic blocks produced with PW is
assessed to determine their performance. This assessment
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is influenced by various factors, such as the particular
type, the composition, the content of plastic, the mix
design, and the testing methodologies employed [17]. The
PSPB responds in an anomalous manner when various
mixed composites with additives like basalt fibers are uti-
lized. In essence, an experimental study must be carried
out to understand the relationship between PSPB ingredi-
ents and their properties. However, conducting experi-
mental studies could be a time-consuming and expensive
process. Therefore, the availability of soft computing, along
with experimental investigation, can accurately correlate
influencing factors and properties of PSPB, which could be
the best alternative to address the issue (of time and cost)
and promote the re-utilization of PW for sustainability [18].

Recently, artificial intelligence (AI) approaches, such
as multi-expression programming (MEP) [19,20], support
vector machine (SVM) [21], gene-expression programming
(GEP) [22,23], artificial neural network (ANN) [24], and par-
ticle Swarm optimization (PSO), have been extensively
used to address issues related to complex construction
materials [25-27]. Chou et al [28] employed SVM and
ANN to estimate the CS of high-strength concrete. The find-
ings of the study showed that the proposed model had a
significant prediction performance. In a different study by
Trocoli et al. [29], the ANN was utilized to simulate the CS of
recycled aggregate concrete, and they found that ANN
models are reliable. Gupta [30] utilized SVM to forecast
the 28-day CS of high-strength concrete. They used a total
of 371 data points from experimental findings and the lit-
erature for model development. The findings confirm the
efficacy of SVM-based modeling in forecasting the CS of
high-performance concrete with an R* of more than 0.8.
Amlashi et al [31] explored the three ML techniques,
namely, ANN, SVM, and ANFIS, optimized with PSO to esti-
mate the CS and tensile strength of concrete incorporated
with PW. The outcomes indicate that ANN-PSO achieves a
higher R?* of 0.95 than other techniques. Complex engi-
neering problems are simplified due to the pattern recog-
nition capabilities of these techniques [32]. Although these
models found strong correlations, no mathematical equa-
tion was presented for real implementation due to the
complex construction of these models, which is also consid-
ered to be one of the main obstacles preventing the method
from being widely used [33]. In the majority of neural net-
work-based approaches, a sophisticated mathematical for-
mula is generated to estimate the output depending on the
input parameters. Notably, neural networks (NN) may only
be used to optimize problems under consideration since these
techniques are referred to as black box models (BBMs). Phy-
sical events or any data associated with the problem being
addressed are not considered in BBM. Moreover, overfitting is
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another major issue found in ANN techniques [34]. In one of
our earlier studies, Iftikhar et al. [35] employed GEP to esti-
mate the CS of PSPB. The prediction was based on a dataset
consisting of 135 measurements and 7 input characteristics.
The GEP models demonstrated a high degree of agreement
with the findings, reaching R* values above 0.85. Parametric
analysis (PA) and sensitivity analysis (SA) were carried out to
assess the validity of the suggested models. However, the GEP
approach was limited in that it was unable to combine a few
dissimilar datasets for model construction, hence restricting
its utility. In order to improve the model’s performance, it is
necessary to remove the inconsistent data points from both
the training and validation processes. Furthermore, genetic
operators contain a single chromosome within their program
and are appropriate when the input-output correlation is
quite simple.

In recent years, an improved ML approach known as
MEP has been created to overcome the aforementioned
drawbacks of ANN. MEP, an advanced form of genetic pro-
gramming (GP), is considered superior to other evolu-
tionary algorithms in its ability to produce accurate results
even when the desired level of complexity is unknown [36].
The capacity of MEP to encode numerous chromosomes
within a single computer program is a noteworthy indi-
cator. The optimal chromosome is chosen as the definitive
representation of the solution [37]. The pre-specification of
the final expression form is necessary for other ML tech-
niques [38], while the MEP evolving approach removes
mathematical mistakes from the final expression. Com-
pared with other ML techniques, the decoding process
evolved in MEP is very simple.

Considering the benefits of MEP and the drawbacks of
other ML models, this study employed the MEP technique
for estimating the CS of PSPB. To the best of the author’s
knowledge, no studies have explored the use of both experi-
mental and ML techniques to evaluate the CS of PSPB with
basalt fiber as an additive. In the past, only experimental
investigations or simple mathematical models were used,
requiring a substantial investment of time and financial
resources. Therefore, for the first time, this study integrates
the experimental findings with MEP-based models to esti-
mate and provide predictive equations for CS of PSPB. First,
experimental examinations were performed to assess the CS
of PSPB. Varied mix proportions of plastic and sand with
different sizes of sand were employed. Subsequently, an
extensive experimental record was established, and the
MEP technique was used to forecast the CS of PSPB.
Various statistical methods and PA and SA were per-
formed to assess the models’ effectiveness. This study
aims to provide a sustainable alternative to cement by
experimentally investigating the use of PW instead of
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cement and providing an MEP-based simplified equation
that can be applied in practice for pre-design purposes
of PSPB.

2 Experimental analysis

2.1 Materials
2.1.1 Low-density polyethylene (LDPE)

In this study, the plastic type known as LDPE was utilized
as a hinding material in PSPB. The LDPE was obtained from
the municipal authorities in Abbottabad, Pakistan. Following
the collection process, the material was initially washed com-
pletely, cleaned, and dried to remove any pollutants that
could hinder the melting process. In the end, the plastic mate-
rial was transformed into small fragments using shredding.
Table 1 shows the characteristics of LDPE utilized in this
investigation.

2.1.2 Natural fine aggregates (sand)

The locally available sand was used as a fine material for
the production of PSPB. Initially, two different types of
sands were used to examine the impact of particle size
on CS of PSPB. The properties of sand were assessed by
conducting tests following the ASTM standards, as illu-
strated in Table 2. Specific gravity and sieve analysis tests
were performed to ascertain the fineness modulus (FM) of
both sands. A finer form of sand (Sand-1) was utilized for
subsequent analysis.

2.1.3 Basalt fibers
Basalt fiber is labeled as a green industrial material. Basalt

fiber is formally known as the “21st-century non-polluting
green material” [39]. Quarried basalt rock, when heated to

Table 1: Properties of LDPE

Description Value
Softening temperature 70°C
Modulus of elasticity 0.6-1.4 GPa
Melting temperature 110°C

Density 0.91-0.94 g-cm ™3




DE GRUYTER

Table 2: Properties of sand

Test type Test results Standards
Sieve analysis Sand-1 Sand-2 ASTM_C136
Water absorption 4.1% 5.3% ASTM_C128
Specific gravity 2.64 2.67 ASTM _D854-02
FM 2.92 3.24 ASTM_C125

a temperature of 1,400°C, results in the formation of molten
basalt rock. Extrusion of these molten rocks through small
holes can be used to form basalt fibers. Due to its property to
withstand high temperatures, basalt fiber is generally used
in applications like heat-insulated materials, vehicle braking
systems, and flame-retardant materials [40]. Basalt can be
used as an aggregate, fiber, mesh, and rebar. Being a multi-
performance fiber, basalt fiber has several advantages [41]:
it has high thermal resistance to heat, it is a waste and renew-
able material, it is very light in weight, and it increases the
flexural and CS of PBs. The present study employed basalt
fibers of two different lengths, specifically 4 and 12 mm. Table
3 displays the chemical composition of the basalt fibers.

2.2 Mix design and sample preparation

The samples were produced by mixing LDPE and sand in a
multi-stage procedure, as shown in Figure 2. The LDPE
material was initially melted in an exposed container to
attain the intended flexibility. After being melted, it was
properly blended with appropriate proportions of sand.
In the first stage, the impact of varying particle sizes of
sand (d < 0.420 mm, 0.420 mm < d < 0.595 mm, and 0.59 mm
< d <1.68 mm) on CS of PSPB was determined by keeping
the exact proportions of plastic and sand (25 and 75%).
During the second phase, the sand that showed the highest
level of strength in the initial phase was mixed with LDPE in
various proportions of plastic and sand (15:85, 20:80, 25:75,
30:70, 35:65, and 40:60). In the final stage, the mechanical

Table 3: Chemical composition of basalt fiber

Compound Percentage by weight
MgO 1.3-37

K,0 0.80-4.50

Fe,03 4.0-9.5

Cao 5.21-7.80

Al,05 16.9-18.2

Na,0 2.51-6.4

Si0, 51.6-57.5
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characteristics of the PSPB were improved by adding basalt
fibers of lengths 4 and 12 mm in different amounts (0.1, 0.3,
0.5, 0.7, and 1%) to the optimized specimens.

A total of 114 specimens were carefully produced, with
a precise allocation of six specimens for each scenario, as
shown in Table 4. A mixture composed of liquefied plastic,
fibers, and sand was carefully poured into cubic molds
50 mm in size that had been preheated and coated with
lubricant. The molds were coated with lubricating oil
to make it easier to demolding and were subjected to
a temperature of 100°C to simplify the installation and
compression of the specimens. Following 24 h at ambient
temperature, the specimens were evaluated for CS. The
complete experimental procedure is described in Figure 2.

This experimental study seeks to determine the most
suitable sand grain sizes at a constant plastic-to-sand ratio
and then investigate the optimum plastic-to-sand ratio
using the chosen sand particle size. The plastic-to-sand
ratio that yielded the best results was subsequently used
in combination with basalt fibers of varied lengths and
proportions to evaluate the CS of PSPB.

2.3 CS testing

The CS of PSPB was evaluated using a compressive testing
machine (CTM). The test specimens were placed at room
temperature for 24 h and then tested following the guide-
lines provided by ASTM 109. Loading and strain rates of 20
MP/s and 10 mm-min* were used, as specified in ASTM stan-
dards. The cubic size molds measuring 50 mm x 50 mm x
50 mm were utilized, as depicted in Figure 3. Before testing,
the CTM was provided with specific information regarding
the area. Therefore, CTM automatically computes the amount
of stress experienced by the specimen until it reaches its
breaking point.

3 Machine learning analysis
The current study utilized MEP to estimate the CS of PBs

made with LDPE PW. The method to develop MEP-based
ML models is presented in Figure 4.

3.1 MEP

GP-based soft computing techniques aim to provide precise
and realistic mathematical equations for predicting
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Process Description:

1. Collection of LDPE plastic

2. Shredding and cleaning of
LDPE

3. Collection of sand

Sieve analysis of sand

5. Heating desired proportion of

e

Figure 2: Experimental program.

outcomes based on preset parameters in the data input.
Ferreira Ferreira (2001) initially suggested the genetic algo-
rithm (GA), also known as genetic expressions. This algorithm
was motivated by the Darwinian principle. Similarly, Cramer

LDPE

6. Mixing of sand and basalt fiber
in heated LDPE

7. Preheating of molds

8. Placing sand LDPE in
preheated molds

9. Compaction

10. Sample preparation

11. Placing samples at ambient
temperature for 24 hours

12. Compressive strength testing

first proposed the idea of GP [42]. Koza and Poli [43] made
significant advancements to the concept. The most important
distinction between hoth approaches is that GP uses non-
linear parse trees compared to the fixed-length binary strings
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Table 4: Mix design for PSPB
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Description Code Plastic content by

weight (%)

Sand content by
weight (%)

Particle size of sand No. of samples

Effect of and grain size S1 25
S2 25
S3 25
Varying proportions of plastic-sand P1 15
P2 20
P3 25
P4 30
P5 35
P6 40
Basalt fiber of 4 and 12 mm in length with Fi 30

various proportions of fiber

75 Dia < 0.42 mm 6
75 0.59 mm < Dia < 6
0.42 mm
75 1.68 mm < Dia < 6
0.59 mm
85 Dia < 0.42mm 6
80 Dia < 0.42 mm 6
75 Dia < 0.42 mm 6
70 Dia < 0.42 mm 6
65 Dia < 0.42 mm 6
60 Dia < 0.42mm 6
70 Dia < 0.42 mm 60

Figure 3: CS testing.

used in GA. Several distinct types of evolutionary algorithms
have been developed in recent decades, with linearity being
one of the most significant variations. Oltean proposed a
linear variant of the machine learning evolutionary algo-
rithm called MEP. In MEP, each single entity can be expressed
as a variable length [44,45]. The assumption of linearity dis-
tinguishes the MEP technique from the GEP method. The MEP
employs simplified decoding processes in comparison to the
GP methodology and is given special weight when the com-
plexity of the desired gene is unidentified [46]. In Figure 5,

various steps of the MEP technique are illustrated. The eva-
luation process of the MEP method includes creating a popu-
lation of random chromosomes, selecting two parents using
a binary competition procedure and reconfiguring them
according to the possibility of crossover, mutating the selected
parents to produce two offspring, and then the least effective
population member is replaced with the best one [47]. A
linear form of string instructions made up of a combination
of mathematical operators or terminal variables is used to
express the results of MEP-based analysis [48].

Numerous studies used the GEP approach and neural
network methods to build an empirical model for the
evaluation of various properties of structure materials.
However, the inclusion of a linear variation feature of
MEP makes it simple to distinguish between individual gen-
otypes and phenotypes [45]. MEP is quite useful in material
engineering, where the uncertainty of the intended equation
is unknown, and a little variation in the concrete design
variables may have a significant impact on concrete proper-
ties. In MEP, numerous solutions are encoded in a single
linear chromosome, enabling the software to predict the
result by looking at a larger area [49]. MEP is capable of
handling errors like incorrect expressions and division by
zero and can convert into any terminal symbol to let the
process proceed. This causes a gap in the chromosome’s
structure throughout the assessment procedure. The
apparent advantages of MEP methods over other evolu-
tionary computations would lead to the development of pre-
cise and reliable models for the field of material engineering
[50]. The MEP models have been created in this study to
formulate the CS of PBs incorporated with PW. Developing
areliable, precise, and effective model will aid in using PW as
construction materials. These models could be viable options
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Figure 4: The sequential MEP-based ML analysis used in the current study.

to resolve the issues related to the disposal of LDPE PW.
Additionally, sustainable construction will be prompted,
and it would be useful in the savage of natural resources.

3.1.1 Database

A comprehensive data set for CS of PSPB was obtained by
performing experimental testing in the laboratory. Raincloud
plots with normal distribution curves were used to determine
the potential outliers in the database, as shown in Figure 6. As
can be seen, only a few points deviated from the normal
trend, so those were deleted. The total database comprises
114 data records for CS. All the input variables were consid-
ered to ensure the universality and precision of the proposed
model. Input variables include sand content, fiber content,
plastic content, and size and length of the fiber used. More-
over, CS was considered as output for the development of the
model. The performance and generalization capability of any
model greatly depend on the distribution of input variables
[51]. The frequency distribution histograms of input para-
meters are shown in Figure 7. It is obvious from contour plots

that variables have higher frequencies, and the distribution
of the input variables is not uniform. It is important to keep
in mind that high variable frequencies are necessary for
attaining a better model.

Additionally, Table 5 provides a summary of the statis-
tics indicators and ranges of the various variables included
in the development of the models for CS, making the data
analysis simple. It is clear that sand and plastic contents lie
in the range of 1,140-1,615 and 285-760 kg-m"?’. Moreover,
the values of CS lie in a range of 11-22.43MPa. A smaller
standard deviation indicates that the majority of the values
cluster closely around the mean value. Conversely, a greater
standard deviation indicates a wider dispersion of data.
Skewness refers to the extent to which the probability
distribution of a variable differs from being symmetrical
around the mean. As stated by Sharma and Ojha [52], the
optimal range for kurtosis values is between -10 and +10,
which indicates the type of probability distribution. The
statistical values of skewness and kurtosis indicate that
the MEP-based models are viable for a wide range of input
data, hence greatly increasing their potential applications.
Furthermore, the entire database was divided into two
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distinct sections: the training area and the validation sec- 3.1.2 MEP model development and assessment

tion. The predictive validity of the model was evaluated with

the help of a validation database, and the overall develop- As discussed earlier, to construct a reliable and widely
ment of the model was accomplished with the assistance of applicable model, a number of MEP modeling parameters
training data. must be determined before the modeling process.
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Considering the prior recommendations, a hit-and-trial
method was used in this study to select the best model-fitting
parameters [53]. The size of the population determines how
many programs will be included in the evolutionary pro-
cess. If the population size of the model is large, the model
will be complicated and precise and may take more time
to converge. Overfitting of the model is a potential

0
Fiber Length

"

1

problem when a particular threshold has been reached.
The procedure began with the assumption that there were
ten distinct populations. For clarity, the function set con-
siders just the four fundamental mathematical operators
(+, -, %, and /). The accuracy level of the model greatly
relies on the number of generations. The statistical
mistakes in the algorithm would be reduced by running



DE GRUYTER

Table 5: Statistical description of the developed dataset
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Parameters sand (kg-m) Plastic (kg-m) Fiber (kg-m3) Sand size (mm) Fiber length (mm) CS (MPa)
Mean 1360.00 540.00 0.50 1.57 4.21 16.16
Sample variance 9634.51 9634.51 0.08 3.88 24.59 6.26
Median 1330.00 570.00 0.42 0.63 4.00 15.99
Standard error 9.19 9.19 0.03 0.18 0.46 0.23
Mode 1330.00 570.00 0.42 0.00 0.00 15.54
Standard deviation 98.16 98.16 0.29 1.97 4.96 2.50
Kurtosis 1.47 1.47 412 -0.43 -1.12 -0.12
Minimum 1140.00 285.00 0.42 0.00 0.00 11.00
Skewness 0.51 -0.51 3.95 0.97 0.75 0.19
Range 475.00 475.00 1.27 5.70 12.00 11.43
Maximum 1615.00 760.00 1.69 5.70 12.00 22.43

the program for several generations. The frequency with
which offspring experience these genetic changes is mea-
sured by the crossover rate and mutation. In general, the
crossover rate is between 50 and 95%. Numerous combina-
tions of these parametric settings were tried, and optimum
parametric settings were selected based on the prediction
performance of the models, as displayed in Table 6. Over-
fitting of the data is the major issue in ML-based models. To
prevent this issue, it is suggested that the models should be
trained on unseen data sets [54]. Following this, the whole
data set has been separated into two parts, i.e.,, training and
validation. Both of the data sets have been checked to make
sure they have the same distribution. This work employed
70 and 30% of the dataset for training and validation,
respectively. The proposed models performed well across
both data sets. A commercially available software program,
MEPX v1.0, was used to apply MEP models.

The first step in the model development is to produce
an initial population of viable solutions. The iterative pro-
cedure is implemented, and each successive generation
converges to the solution. Within the solution population,
each generation’s fitness is continuously assessed. The MEP
model will continue to develop until the predetermined
fitness function, such as root mean squared error (RMSE)
or R, no longer shows any indications of alteration. In
order to address the problem of overfitting, the study addi-
tionally evaluates the objective function (OF). Suppose the
findings of the model are not correct for both datasets
(training and validation). In that case, the procedure is
then rerun by progressively increasing both the number
of subpopulations and their overall size. Following that,
the model with the lowest OF is chosen as the best one. It
is important to remember that the evolving time of the
number of generations has an influence on the correctness
of the model. Due to the introduction of additional variables
in such methods, a model may keep evolving continuously.
However, in this study, the model was terminated after 1,000

generations or when the variation in fitness value was
smaller than 0.1%. The efficiency of the proposed models is
determined by determining various statistical error indices.
The metrics used in this analysis are the performance index
(PD), the relative squared error (RSE), the relative root mean
square error (RRMSE), the mean absolute error (MAE), and
RMSE. Similarly, an alternative approach to mitigate overfit-
ting is to select the optimal model by reducing the OF, as
recommended by Igbal et al [55]. This methodology was
chosen to address the problem in this study, and the term
fitness function is used for OF. Eqgs. (1)-(6) show the mathe-
matical expressions for these statistical indices:

n o 2
RMSE = \/Z,=1(expln mod,) ) o)

n
MAE = 2i=1] exp; - mod,| ’ 2
n

3 (mod; - exp,)?
Yie1(EXP - exp,)* ’

RSE = 3

Table 6: MEP model parameter settings

Genetic operators

Generations 1,000
Code length 50
Sub-population size 240
Arithmetic operations + - %,
Sub-population count 10

Size of tournament 4
Crossover probability 0.9
Fitness parameter RMSE
Probability of mutation 0.01

70%
30%

Training data
Validation data
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n o 32
rRusE = L \/ ¥ i1(exp; - mod,) ’ @
|exp| n
R= Y 1(exp; - €Xp ))* (mod; - mod )* -
2 (exp; - &P )2 Tiy(mod; - mod 2
RRMSE
- - 6
Pl=p T (6)
nr — n n
OF = [% o + Z[ﬁ]pv. ™

In the given expressions, exp; and mod; indicate the
experimental and model anticipated outcomes, mod ; and
exp; signify the average model anticipated and experi-
mental outcomes, respectively, and n represents total occur-
rences. A model is considered accurate when it has a high
R-value and minimal statistical errors. Alabduljabbar et al
[56] and Alyami et al. [57] stated that an R-value of more
than 0.8 indicates a strong connection between the
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anticipated and actual results. Since it is not affected by
multiplying or dividing the outcome by a constant, it cannot
be used as a solitary criterion for determining the overall
effectiveness of the prediction models. RMSE and MAE are
indicators that are used to measure the average errors.
However, each of these indicators has its importance.
RMSE gives greater importance to larger errors since they
are squared before a mean is estimated. A high RMSE value
shows that the number of estimates with high error is
notably larger than anticipated and should be avoided.
Meanwhile, MAE gives less importance to larger errors
than RMSE. Both PI and OF values range between 0 and
infinity. According to Liu et al [58], the reliability of an
ML model can be evaluated based on the values of PI and
OF. A lesser value of OF indicates that the overall efficiency
of a proposed model is better. As previously explained, sev-
eral different trial runs were performed, and the model that
produced the lowest OF is the one discussed in this study. In
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Figure 8: CS test laboratory results. (a) effect of sand particle size, (b) effect of plastic-sand proportions, (c) effect of basalt fiber (4 mm), and (d) effect

of basalt fiber (12 mm).
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addition, external validation of the proposed model was
done by using criteria given by various scholars [59].

4 Results and discussion

4.1 Experimental findings
411 cs

The laboratory-derived CS results of PSPB are depicted in
Figure 8. As discussed earlier in the first stage, the effect of
sand particle size on CS was determined, as shown in
Figure 8(a). It can be seen that there is a reverse correlation
between CS and sand particle size, indicating that as particle
size increases, the CS decreases. This can be attributed to
less cohesion between larger grain sizes due to increased
contact area as compared to smaller grain sizes of sand [60].
The maximum CS was 15.93 MPa for the finest sand grain
size of d < 0.420 mm at a fixed plastic-to-sand ratio of 25:75.

The influence of varying plastic-to-sand proportions
on the CS of PSPB is illustrated in Figure 8(b). An increase
in the percentage of plastic content up to 30% results in an
increase in CS. This can be explained by the fact that the
optimal mixture was achieved with a plastic-to-sand ratio
of 30:70. However, a further increase in plastic content
results in a decline in CS. This decline in CS can be asso-
ciated with an increase in the brittleness of the mixture
due to the heating of PW. The highest CS was observed as
17.26 MP at a plastic-to-sand ratio of 30:70.

In addition, varying proportions of basalt fiber (0.1, 0.3,
0.5, and 1%) with lengths of 4 and 12mm were used to
further enhance the CS of PSPB, as depicted in Figure
8(c) and (d). The optimum proportions of the plastic-to-
sand ratio of 30:70 with a particle size of sand less than
0.42mm, as achieved in the initial stages, were used to
determine the influence of fiber content in PSPB. The find-
ings indicate that the addition of basalt fiber increases CS up
to a certain proportion and then decreases. The optimum
results of CS with the basalt fiber of 4 mm in length were
noted as 19.61 MPa, whereas in the case of 12mm, the
highest CS value was measured as 21.65MPa at 0.5% fiber
content. It can be noted that the use of 4 mm basalt fiber
leads to a significant improvement in CS, with an increase of
254% as compared to 12mm, which results in only 13%
enhancement in CS. It is due to the fact that there is a
restriction on the number of fibers that can be mixed
because fibers with a higher aspect ratio and greater lengths
reduce workability noticeably, making the mixing process
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more difficult, which in turn affects their CS [61]. It is worth
mentioning that the typical CS of concrete PBs was deter-
mined to be 19.8 MPa at 28 days’ curing time [62]. The ASTM
standard (ASTM C902-00) specifies that for light vehicular
traffic, the CS of pavement bricks must be a minimum of
20.7 MPa (the mean of 5) and 17 MPa (individual). Therefore,
plastic, sand, and basalt fibers proposed in this study can be
efficiently utilized in low-traffic regions. The addition of
basalt fibers with a length of 4mm at around 0.5% in
PSPB yields optimum outcomes.

4.2 Machine learning results
4.2.1 MEP model’s predictive performance

Figure 9 illustrates the comparison of the experimental
and anticipated CS values of PSPB obtained from the
optimum MEP-based model. The MEP model exhibited
exceptional performance, with R* values of 0.88 and 0.87
during the training and evaluation stages, respectively.
Ideally, the slope of the regression line should approach
a value of 1. The slope values of 0.87 and 0.79 for the
training and evaluation (testing) phases indicate a signifi-
cant connection between the predicted and actual values
in the established model. Moreover, the values demon-
strate a high degree of similarity and closely align with
the desired fit throughout both the training and evaluation
phases. This suggests that the proposed model received
adequate training and possesses a strong predictive cap-
ability, performing equally well on unfamiliar data. This

249 A MEP-Training
A MEP-Testing
y=0.87x +1.88
- 22 4 y=0.79x + 3.38
e
= 204 A YAVA\VAVEAVAVAVAN
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o y
E 144 2B
|.|EJ A MA oA RMSEq,giyng = 0.812
g RMSErgqng = 0.943
121 Ak Rianng = 0.881
RzTesﬂng =0.876
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Figure 9: Experimental vs MEP-anticipated outcomes.
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also illustrates that the issue of overfitting the model has
been much mitigated.

Additionally, in order to comprehend the statistical
analysis for the proposed models, absolute error analysis
was performed, as shown in Figure 10. It can be noted that
the average error in the anticipated values for CS is
4.5 MPa, with a higher error value that does not exceed
11 MPa. Overall, less than 5% of the total data points have
an error value greater than 5 MPa. It is essential to empha-
size the fact that the frequency of occurring maximum
errors is substantially lower. Based on the above analysis,
it can be stated that the developed MEP model for pre-
dicting the CS of PSPB can be used in the design process.

4.2.2 MEP-based formulations

After performing the statistical examination of various
MEP trials, the optimum trial was chosen for additional
analysis. The selected MEP model for CS was decoded to
develop the empirical equations based on five input para-
meters. The development of equations used four arith-
metic operators, namely subtraction (), addition (+), mul-
tiplication (x), and division (+), as previously mentioned.

N
[¢)]
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The explicit formulations are represented as in Eq. (7).
These mathematical formulas can be used to estimate the
CS of PSPB:

CS(MPa) = F + 42(S,) — 16F?

(-6 +P+4.5-S5)
F + 48,

+ 4.F1)(-4 - 3(-6 + F)/4-5%).

- 6(F-S2) +8F-SX(-1  (8)

4.2.3 External validation of the MEP model

The outcomes of statistical criteria employed for the external
validation of the proposed models are shown in Table 7. Khan
et al. [63] reported that for the proposed models to have a
better level of precision, the slope of one of the regression
lines (k or k) that passes through the center should be rela-
tively near to one. For proposed models, these values can be
noted as 0.947, which is in the acceptable range. Furthermore,
if the values of the evaluation metrics (i.e., m and n) are less
than 0.1, then they are regarded as adequate. A number of
researchers have suggested that the squared coefficient (R?2)
of experimental and estimated values should also be near 1
[64]. It can be seen that all of the evaluated models lie in the
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Figure 10: Error distribution in MEP-anticipated CS results.
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Table 7: External validation of the MEP model
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S. no. Equation Model Acceptable range
1 R 0.96 R>038
3 2 Y1 1(exp; - mod®)? 0 _ 14 0.961 R'z =1
R e B °
2 9 _ 4 2itq(mod;-exp))? 0 0.99 R2=1
Ro = 131 o -moapz» €XP; = K x mod; °
4 k=3" (exp; x mod;) 0.971 0.85 < k <115
T LiEl 2
1
5 K =3" (exp; x mod;) 1.032 085 <k'<115
T A=l mo?
1
6 (R2-R2) 0.0441 m<1
ms= "
7 (R2-R$) 0.0535 n<1
=g

recommended range of outcomes, making it obvious that the
recommended models can satisfy the conditions for external
verification. This demonstrates the MEP models’ exceptional
validity, predictive capability, and independent correlations
between the input and output.

4.2.4 SA and PA

While working with ML-based modeling, it is essential to
carry out a wide range of assessments to validate that the
indicated models are reliable and work efficiently when
applied to a diverse set of data. In this study, SA and PA
were done to ensure the validity of the proposed MEP
models. First, SA is studied to determine the relative effect
of input variables (ingredients) on the outcome (i.e., CS) of
the proposed MEP model. The SA is evaluated by using Egs.
(9) and (10) for a given input parameter y;:

Xi =frnax(yi) _fmin(yi)’ ©)
Xi

SA = —
=1, ’
ER¢

(10)

where f . () and f; (y) indicate the largest and
minimum of the forecasted outcome, accordingly on the
basis of the ith input variable, while the other input vari-
ables are kept constant at their mean values. When SA is
performed on the entire dataset, it shows how sensitive a
constructed model is to a particular change in the defined
parameters. The outcomes of the SA are shown in Figure 11.
Among the five inputs being analyzed, the size of sand
particles (S_S) and fiber content (F) have the greatest
impact, contributing 33.02 and 21.56%, respectively, to the
anticipated CS of PSPB. Conversely, the sand content (S)
and fiber length (F_L) are identified as the least influential
factors, contributing just 15.57 and 12.44%, respectively, to

the predicted CS. These findings are highly comparable
with experimental outcomes, indicating the validity of
the models.

To further evaluate the validity of the recommended
models, PA, also known as monotonicity analysis, has been
recommended by various research studies, and thus, it is
also implemented in the presented study. In the parametric
study, one input variable varied while the values for other
input variables were fixed at their mean values. When
these input features are combined with the MEP models
that have been developed, it is possible to determine the
corresponding change in the output parameters, such as
CS. The pattern of CS with a corresponding input para-
meter is presented by fixing all other variables at their
average scores across the full range of defined input vari-
ables. Figure 12 provides the findings of the PA for the

Sensitivity Analysis of Parameters (%)

F_L F
Input Variables

ss

Figure 11: SA CS-MEP.
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Table 8: Statistical summary of MEP and MLR

Integrating experimental study and data-driven modeling for PBs

Model Phase R RRMSE RSE RMSE R MAE PI OF
MEP-CS Training 0.881 0.05 0.157 0.81 0.938 0.554 0.027 0.026
Testing 0.876 0.057 0.084 0.944 0.936 0.724 0.029

MLR-CS Training 0.742 0.075 0.348 1.202 0.861 0.801 0.041 0.04
Testing 0.681 0.055 0.481 0.97 0.825 0.812 0.03
241 4. Experimental CS - @ MEP-Predicted TS MLRPredicted cs  €XDerimental investigations. Likewise, the fiber content
° significantly impacts the CS of PSPB. By maintaining all
221 R . 9';. ° other input components at a similar level, the increase in
20 %0 ° 8§ ° @0 é fiber content up to 0.48% (3 kg:m™>) results in an increase
? : t £.00 @9 in CS; further addition of fiber leads to a decline in CS.
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Data index
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Figure 13: Comparison between MLR and MEP models for CS.

created CS-MEP model. The CS of PSPB is considerably
influenced by increasing the plastic concentration up to a
certain limit and then decreasing. At first, the CS experi-
ences a rapid increase as a result of the initial mixing of the
preheated plastic and sand. Nevertheless, after the addi-
tion of 500 kg'm™> of plastic, this graph approaches a state
of near-constancy. The results align with the findings
of Iftikhar et al. [60,65], which indicates that an increase
in the amount of plastic enhances the bonding between
particles, increasing CS. The optimum amount of plastic
content was noted as 28%, which is very near to the experi-
mental findings, which was 30%. The inverse relationship
between the particle size of sand and the CS of PSPB was
observed. It is clear that an increase in sand size results in
a decline in CS due to greater contact area and lesser cohe-
sion between particles. The same trend was also found in

Table 9: Comparison of proposed models with the existing literature

These findings are well aligned with laboratory-derived
outcomes. The prior research has already highlighted the
identical impact of the fiber content on the CS of PSPB [66].
The sand content and fiber length have a relatively lower
influence on the CS of PSPB. It can be noted that a fiber
length of 4 mm has shown higher strength than 12 mm. In
the case of sand content, the graph remains consistent with
little increment in CS by decreasing sand initially and by
increasing sand later.

4.2.5 MEP model evolution and comparison with multi-
linear regression (MLR)

The size of the database utilized for developing a model
substantially affects the credibility of the model. Previous
studies recommended that the ratio of recorded data
points to the number of input parameters that were used
in both the training and evaluation (testing) stages should
exceed 5. In this study, this ratio is 23, which is much higher
than the recommended values. The efficacy of the sug-
gested model is examined by using statistical measures,
as discussed in Section 3.1.2, and the results are also com-
pared with MLR, as shown in Table 8. It can be noted that
MEP shows enhanced performance as compared to MLR, as
is evidenced by a strong relationship between actual and
anticipated values, exhibiting R values of 0.938 and 0.936
for the training and testing set of the CS-MEP as compared

Proposed models Technique Material used R RMSE MAE References

Cs MEP PW 0.891 0.94 0.554 This study

CS GEP PW 0.87 117 1.001 Iftikhar et al. [67]
(& MEP 0.90 1.115 0.981 Iftikhar et al. [67]
Cs GEP PW 0.89 1.10 0.76
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to MLR, which has R*value 0.861 and 0.825. The high effi-
ciency and generalizability of the proposed MEP models
are also indicated by substantially low values of MAE,
RMSE, and RRSME across both sets. The RMSE for CS is
close to 0.81 and 0.944 MPa, whereas the values for the
MLR model are 1.2 and 0.97 MPa for the training and valida-
tion stages, respectively. The MAE values are 0.54 and
0.724 MPa for MEP, while the MLR model has values around
0.8 and 0.811 MPa. The values for PI are less than 0.20 for
both the training and validation stages of MEP and MLR
models. Therefore, the models have higher accuracy and
prediction performance. Overall, based on comparison, it
can be stated that MEP outperformed MLR with enhanced
accuracy in terms of error analysis. The comparison among
experimental, MEP, and MLR CS values is visually presented
in Figure 13. It is clear that there is a minor difference
between the outcomes, which indicates the better efficacy
of the proposed models.

4.2.6 Comparison with the literature

This study employs a data set from experimental investiga-
tions performed in the laboratory to create models, as pre-
viously stated. Therefore, there are no existing models with
similar datasets to compare the effectiveness of the pro-
posed models. Nevertheless, the outcomes of the present
investigation are compared with alternative machine
learning models that are constructed employing other
databases on PSPB, as depicted in Table 9. The outcomes
that result from the proposed model demonstrate a sig-
nificant similarity to the findings reported in the avail-
able research for different models. The findings of this
study demonstrate that equations derived from the MEP
are reliable and useful pre-design predictors for the eco-
friendly. The probable use of this innovation can signif-
icantly decrease time, expenditure, and allocation of
resources, which represents a notable advancement for
the corresponding field.

4.2.7 Role of Al in sustainable built environments

Al is essential in developing a sustainable environment by
providing efficient waste management methods, such as
using plastic trash as a construction material in concrete
products. Previously, various Al applications have been suc-
cessfully used to address the problems associated with the
environment, such as waste management [68,69]. Al-based
models provide cost-effective and time-saving models with
accurate estimations [70,71]. Considering the above fact, this
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study utilized MEP-based ML models to make fast predictions
and create mathematical formulas for determining the optimum
use of waste plastic in producing PBs. MEP models provide
economical methods for tackling difficulties related to reducing
PW, which enables their incorporation into practical applica-
tions. This novel method not only promotes ecologically sustain-
able environments but also demonstrates the adaptability of Al
in enhancing resource efficiency in handling waste.

The present study utilizes extensive validation approaches
such as statistical evaluations, comparison with MLR, and SA to
assure the dependability of the MEP models. These approaches
evaluate the precision and resilience of the prediction models,
offering a thorough assessment of their performance. Utilizing
these validation methodologies improves the credibility of the
Al-based solutions used for eco-friendly environments. This
study also provides a graphical user interface (GUI) based on
the data gathered from the training database, which will be a
useful tool for estimating the CS of plastic PBs and their
desired elemental proportions. Users can utilize GUI to
assess the CS of PBs by inputting certain parameters inside
the defined data range of the research. The GUI enables easy
access for users and encourages more usage of Al-driven
waste management solutions for sustainable and effective
resource utilization in building applications. The developed
GUI is visually depicted in Figure 14.

5 Conclusion

This study presents comprehensive experimental testing to
assess the viability of using PW as an environmentally

Graphical User Interface for Prediction of Compressive Strength

of Plastic-Sand Paver Blocks
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[ sand || | Kem)
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Figure 14: GUI for estimating CS of PSPB.
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friendly alternative in PBs, addressing substantial con-
cerns regarding PW and CO, emissions associated with
cement manufacture. Varied mix ratios of plastic and
sand with different particle sizes of sand were employed.
Additionally, to enhance the CS and meet the minimum
acceptable level of ASTM (902-15 for light traffic, basalt
fibers, a sustainable industrial material, were also utilized
in the manufacturing process of environmentally friendly
PSPB. Furthermore, using experimental findings, an exten-
sive database was created and used to create MEP-based
models to estimate the CS of PSPB. The efficacy of MEP
models was validated by using various statistical, sensi-
tivity, and parametric evaluations. The following conclu-
sions can be made from this study.

a) In experimental findings, the impact of sand particle
size on the CS of PSBC was initially determined. It was
found that there is a negative correlation between the
CS and sand particle size.

b) Second, the influence of varying plastic-to-sand propor-
tions on the CS was determined, and it was identified
that an increase in the quantity of plastic content up to
30% results in an increase in CS, whereas a further
increase in plastic content results in a decline in CS.

c) The highest CS was observed as 17.26 MP at a plastic-to-
sand ratio of 30:70 using the finest sand particle of d <
0.420 mm.

d) The inclusion of 0.5% basalt fiber, measuring 4 mm in
length, yields further enhancement in outcome by sig-
nificantly improving CS by 25.4% (21.65 MPa).

e) The proposed MEP model demonstrates outstanding results
in accurately describing the correlations between the input
characteristics and CS of PSPB, as indicated by the high R?
of 0.89.

f) The SA showed that the size of sand particles and fiber
content have the greatest impact, contributing 33.02 and
21.56%, respectively, to the anticipated CS of PSPB. The
PA also validated the model performance by showing a
similar trend to that found in the experimental
findings.

g) MEP proposed a simplified closed-form mathematical
formula and GUI for forecasting the CS of PSPB, which
can contribute to sustainable practices by providing a
design tool for using PW as a sustainable alternative for
cement in PBs.

6 Limitations and future work

Although this study provides valuable insights into the use
of plastic in pavers through experimental investigations
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and machine learning optimization, it has several limita-
tions. The proposed equations and the GUI are restricted to
the range of inputs used in this study. This constraint limits
the generalizability of our findings to broader applications.
In future work, it is recommended that the database be
expanded to include a wider variety of parameters and
conditions. This enhancement would allow for more robust
modeling and optimization. Additionally, advanced machine
learning techniques could be employed to improve predictive
accuracy and model performance. Further, SHAP (SHapley
Additive exPlanations) analysis can be conducted to gain deeper
insights into the contributions of different parameters.
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