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Abstract: Using rice husk ash (RHA) as a cement substitute
in concrete production has potential benefits, including
cement consumption and mitigating environmental effects.
The feasibility of RHA on concrete strengthwas investigated in
this research by predicting the split tensile strength (SPT) and
flexural strength (FS) of RHA concrete (RHAC). The study used

machine learning (ML) methods such as ensemble stacking
and gene expression programming (GEP). The stacking model
was improved using base learner configurations ML models,
such as, random forest (RF), support vector regression, and
gradient boosting regression. The proposed models were vali-
dated by statistical tests and external validation criteria.
Moreover, the effect of input parameters was investigated
using Shapley adaptive exPlanations (SHAP) for RF and para-
metric analysis for GEP-based models. The analysis revealed
that the stacking ensemble integrates base learner predic-
tions and demonstrated superior performance, with R values
greater than 0.98 and 0.96. Mean absolute error and root
mean square error values for both SPT and FS were 0.23,
0.3, 0.5, and 0.7 MPA, respectively. The SHAP analysis demon-
strated water, cement, superplasticizer, and age as influential
parameters for the RHAC strength. Furthermore, the SPT and
FS of RHAC can be predicted with an acceptable error using
the GEP expressions in the standard design procedure.

Keywords: rice husk ash, stacking, gene expression pro-
gramming, tensile and flexural strength, parametric ana-
lysis, SHAP analysis

1 Introduction

The construction industry prioritizes sustainable materials,
particularly concrete, which is a high-energy and resource-
intensive material. Consequently, researchers are exploring
alternatives to traditional cement and components that
minimize environmental impact. Rice husk ash (RHA), a
readily available by-product from rice milling, holds pro-
mise as a sustainable concrete constituent [1]. The finished
product, known as husk, is contained within the rice grain.
In the paddy production cycle, 78% of the weight is received
as rice and 22% is husk [2]. Approximately 750 million tons
of rice husk are produced worldwide every year [3]. The
research concludes that RHA consists of 85–95% amorphous
silica [4]. However, this silica is not biodegradable and is
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commonly utilized in landfills. It is widely recognized that
RHA has both filler and pozzolanic effects in mortar and
concrete. The effects of RHA varied among samples due to
factors such as paddy type, crop year, climate, and location
[5]. Researchers found that RHA’s silica generation, carbon
reduction, structure, fineness, ignition loss, increasing filler,
and pozzolanic activity are influenced by incineration tech-
nique, temperature, and burning time [6]. There have been
several attempts to develop and utilize RHA in practical
research. According to reports, concrete’s pozzolanic and
filler action with RHA results in notable microstructural
changes [6–8].

The incorporation of RHA in concrete offers a pro-
mising approach to enhance its properties, including com-
pressive strength (CS), split tensile strength (SPT), and
durability, as demonstrated by numerous research studies.
RHA not only improves concrete performance but also
reduces material costs due to decreased cement demand.
Additionally, it provides environmental benefits through
effective waste management [9]. Chopra and Siddique [4]
investigated concrete strength at various ages using RHA
substitute proportions of 0, 10, 15, and 20%. Results indicate
a 25, 33, and 36% improvement in concrete CS at 7, 28, and
56 days at a 15% substitution rate; similarly, cement repla-
cement with RHA increased SPT by 15%. Singh [10] con-
cluded that SPT increased by 3.9% with 5% replacement
but decreased by 17.5% at 10% replacement. Likewise, flex-
ural strength (FS) increased by 10.9% at 5% replacement
but decreased by 3% at 10% replacement compared to the
control mix. Over 10% replacement, SPT and FS decreased
significantly, with 19.3% SPT decrease at 15% replacement
and 31.7% SPT decrease at 20% replacement. The study
observed that the highest CS, SPT, and FS values were
achieved after 7, 14, and 28 days of curing when the RHA
was replaced by 15%. Additionally, it was found that the
percentage loss of strength and weight increased as the
content of RHA increased from 0 to 25% [11]. Several types
of factors can be influenced by using RHA as supplementary
cementation material, including the aggregate water-to-
cement ratio, particle size, waste content, and compressive
loading ability [12]. Furthermore, using these materials in
concrete enhances its ability to withstand compression,
decreases its emission of greenhouse gases, and improves
its SPT and FS, as depicted in Figure 1.

Although mechanical testing is the most typical method
for evaluating concrete’s CS and SPT, it tends to be time-con-
suming and expensive [2]. Some researchers have developed
a linear regression (LR) model to predict the SPT and FS of
concrete. However, due to the quite nonlinear relationships
between the concrete components and strength, it is challen-
ging to develop accurate predictions [13]. Researchers have

turned to artificial intelligence (AI) algorithms to address
structural challenges [14]. AI techniques such as artificial
neural networks (ANNs) are a pattern recognition system
that determines the pattern between different parameters,
a computational approach that is increasingly used in devel-
oping predictive models [15,16]. Another advantage of AI, in
contrast to traditional regression techniques, is superior
performance, and it can handle complex data and nonlinear
relationships between independent and dependent para-
meters. Therefore, several studies have leveraged AI techni-
ques to predict CS. Among the prevalent AI methods for
analyzing concrete properties are ANN and support vector
machines (SVM) [17]. Recently, a high-performance concrete
strength prediction model was developed using a modified
firefly approach combined with an ANN model, showcasing
impressive predictive capabilities [18]. Such algorithms play
a pivotal role in enhancing the design and performance of
concrete mixes [19,20]. Another study also used the ANN
approach to predict the CS of lightweight concrete rein-
forced with steel fibers [21]. Similarly, the ANN model is
an effective methodology for predicting the mechanical
properties of sustainable concrete [22–25]. Furthermore,
ANNs have been observed to have limited external validity
when employed in analyzing diverse datasets. Additionally,
it is difficult to determine the optimal architecture of neural
networks and the number of hidden layers in the structure.
To address the aforementioned issues inherent to ANNs, it
is essential to provide adequate attention to tree-based
ensemble approaches. Ensemble learning approaches have
become increasingly popular due to their greater prediction
capabilities [26–28]. Some researchers have proposed bagging
and boosting series algorithms for concrete strength prediction.

Figure 1: Manufacturing and effect of RHA concrete.
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To predict concrete strength, Lyngdoh et al. used significant
machine learning (ML) algorithms. According to their outcomes,
the XGBoost model is the most effective [29]. In another study,
XGBoost and CatBoost were employed to predict the concrete
strength, and it was discovered that XGBoost and CatBoost had
considerably fewer mean errors between predicted and actual
values [30]. HybridMLmodelswere used to predict the strength
of ultra-high-performance concrete and were found to have a
better-predicted performance than traditional methods [31,32].
Gene expression programming (GEP) algorithm, simple and
practical mathematical equations predicted ground granulated
blast-furnace slag (GGBS)-based geopolymer concretemortar CS
[33]. Chu et al. [34] concluded that the accuracy and predict-
ability of GEP and multi-expression programming (MEP)
models were evaluated by comparing them with LR and
nonlinear regression (NLR) models. The GEP equation
demonstrated a diminished statistical error and a higher
correlation coefficient than the MEP equation. Moreover,
Table 1 summarizes the prediction properties presented
by various researchers.

While ensemble and boosting techniques have been
established as efficient modeling methodologies across var-
ious engineering applications, there remains a limited
exploration of these techniques for SPT and FS [35–37]. In
addition, very little scientific research has been done on
using stacking ensemble techniques to predict the mechan-
ical properties of RHA concrete (RHAC). The advantage of
the stacking ensemble model is that it combines the best

prediction models and achieves robust prediction results.
Therefore, in this study, stacking-based ensemble models
are created to predict the mechanical properties (SPT, FS)
of RHAC. Ensemble learning models were utilized for base
learners. For individual prediction and model hyperpara-
meter optimization, random forest (RF), support vector
regression (SVR), and gradient boosting regression (GBR)
were employed. The stacking ensemble learning model has
been developed employing LR as the meta-learners and RF
and/or SVR and GBR models as the base learners. In addi-
tion, GEPmodels have been developed to establish empirical
relationships with acceptable error margins for predicting
SPT and FS. Furthermore, various statistical criteria, inter-
pretations, and parametric analyses validated the models’
effectiveness.

2 Research methodology

2.1 Data acquisition

In ML-based prediction models, the greater range of data
with stronger correlation and accurate choice of input
variables can help create a more valuable model with
higher accuracy. In this regard, the models were developed
using a comprehensive database of RHAC sourced from
existing literature [4,10,50–59]. This database comprises

Table 1: Existing research summary of ML algorithm for sustainable concrete

Ref. ML algorithm Dataset size Material Investigated property

[35] DT, RF, SVM, K-nearest neighbors, and ANN 625 GGBFS CS
[38] Adaptive regression splines (MARS) 161 GGBFS CS
[39] Multilayer perceptron neural network (MLPNN) and

bagging ensemble (BE)
145 Alkali activated

concrete (AAC)
Statistic and dynamic yield stress

[40] MLPNN, bagging, and XGB 676 AAC CS
[34] GEP and MEP 311 Fly-ash (FA) CS
[36] SVM and gradient boosting machine (GBM) 81 Ceramic waste and

nylon fiber
SPT and CS

[41] MARS, GEP, M5P Model Tree (M5P) and extreme learning
machine (ELM)

449 Oil palm by-product CS

[42] XGBoost, AdaBoost, and DT 60 Ceramic waste powder CS
[37] SVM 115 FA CS
[43] MARS 21 Crumb rubber with

Silica fume
CS

[44] ANN, GP, M5P, SVM 137 Waste foundry sand (WFS) CS, SPT, and FS
[45] ANN 470, 295 WFS CS, SPT, FS, modulus of elasticity
[46] LR, Multilinear regression, NLR 420 Nanosilica CS
[47] LGB, XGB, RF 1,404 RHAC CS
[48] ANN 236 FA CS
[49] Neuro-imperialism and neuro-swarm) 379 FA CS

Strength prediction models for RHA concrete  3



110 and 67 data points for SPT and FS, respectively. In
addition, the collected data sample experiments were car-
ried out according to the ASTM and IS standards. For modeling
SPT and FS, the independent variables included cement (C),
water (W), fine aggregate (FA), RHA, SP, and age. Table 2(a)
and (b) illustrates the characterizations of the comprehensive
data employed for developing the models. Furthermore, the
model is expected to perform optimally due to the extensive
distribution of the independent variables. For clear model
interpretation, it is essential to understand the interactions
between the model’s parameters. This correlation among spe-
cific components is termed multi-collinearity. In this study,
ensuring a correlation value below 0.8 between pertinent vari-
ables will mitigate this issue, positively influencing the model’s
construction. The correlationmatrix of the dataset is presented
in Figure 2(a) and (b).

2.2 Methods

ML methods can be categorized based on their learning
type, such as supervised, unsupervised, and reinforcement
learning. Regarding the known objective feature in this study,
only the supervised approach was employed. Supervised
learning is an approach employed in the development of
ML models, where a computer algorithm is trained using
input data that has been annotated with specific output labels.

This section describes several supervised ML approaches,
namely SVR, RF, GBR, and GEP. The main distinctness of this
study is the development of a stacking model that integrates
numerous algorithms for ML, based on a metamodel, to attain
the utmost accuracy in prediction. The research methodology
flowchart can be seen in Figure 3.

2.2.1 RF

The RF algorithm was developed as a robust ensemble
learning technique based on classification and regression
trees. The initial RF-based technique was introduced in 1995,
and afterward, an improved version was published by
Breiman [60]. The application of RF algorithms has been
extensively utilized across various domains, demonstrating
outstanding performance, particularly in tasks including clas-
sification and regression is a statistical learning theory-based
methodology that uses the bootstrap resampling technique to
extract multiple samples from the original data [47]. This tech-
nique is employed before modeling the decision tree (DT) for
each bootstrap sample. Ultimately, the forecasts generated by
the different DTs are aggregated and averaged to obtain the
ultimate prediction outcome, as shown in Figure 4, which also
represents the graphical view of the RF algorithm. The RF
algorithm enhances the diversity of DTs by enabling the use
of replacement samples and introducing random variations in

Table 2: Data descriptive statistics for SPT and FS

Statistics parameters C (kg·m−3) W (kg·m−3) FA (kg·m−3) RHA (kg·m−3) SP (kg·m−3) Age (days) Strength
(MPa)

(a) SPT
Minimum 36.80 112.50 482.46 0.00 0.00 7.00 1.39
Mean 360.20 183.12 618.00 46.62 3.34 22.27 3.55
Maximum 550.00 238.00 910.00 165.00 15.00 28.00 8.10
Range 513.20 125.50 427.54 165.00 15.00 21.00 6.71
Standard error 6.46 3.25 11.12 3.45 0.36 0.90 0.16
Standard deviation 67.72 34.07 116.64 36.20 3.59 9.40 1.70
Sample variance 4586.65 1160.52 13604.73 1310.74 12.92 88.27 2.90
Kurtosis 4.83 −0.98 0.55 0.15 4.32 −0.95 0.10
Skewness −0.15 −0.03 1.02 0.63 1.97 −1.03 1.00
(b) FS
Minimum 36.80 112.50 492.58 0.00 0.00 7.00 1.20
Mean 358.18 177.53 596.73 48.19 2.36 22.36 5.76
Maximum 550.00 238.00 750.00 165.00 6.75 28.00 14.10
Range 513.20 125.50 257.42 165.00 6.75 21.00 12.90
Standard error 8.21 4.42 9.47 4.68 0.25 1.15 0.36
Standard deviation 67.22 36.14 77.54 38.33 2.07 9.38 2.97
Sample variance 4517.95 1306.43 6012.74 1469.56 4.29 87.96 8.81
Kurtosis 7.56 −0.84 −0.62 0.28 0.04 −0.89 1.54
Skewness −1.14 0.19 0.52 0.66 0.79 −1.07 1.28
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Figure 2: Correlation metrics between input and output of (a) SPT and (b) FS.

Figure 3: Research methodology flowchart.
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predictor combinations during the evolution of distinct trees.
Further details can be obtained in [61].

2.2.2 SVR

Vapnik [62] pioneered the SVM algorithm as a means of
addressing classification issues, and it was subsequently
extended to include the fixing of regression problems.
The SVM algorithm implements the principle of structural
risk minimization (SRM), which has been demonstrated to
be more effective [63] compared to the usual empirical risk
minimization (ERM) principle. The SRM approach aims to
reduce a limit on the predicted risk, in contrast to the ERM
approach, which focuses on minimizing the error, specifi-
cally on the training data. This distinction gives SVM a
better baseline for generalization, which is crucial for sta-
tistical learning. SVR is a computational technique that
extends the capabilities of SVM to address regression and
prediction tasks. One of the key features of SVR is its objec-
tive to minimize the training error noticed throughout the
learning process. Additionally, SVR aims to minimize the
generalized error bound to get performance that is applic-
able beyond the training data. In regression tasks involving
SVM, the SVR must employ a cost function C to quantify
the empirical risk and then reduce the regression error.

Additionally, epsilon insensitive loss ε controls the smooth-
ness, complexity, and accuracy of the approximation func-
tion of SVR. Greater C and ε are more complex learning of
SVM and vice versa [64]. Figure 5 shows the schematic view
of the SVR algorithm. The SVR problem can be formalized
using the following equation:

Figure 4: Schematic view of RF.

Figure 5: Schematic view of SVR.
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where ω is a vector, which determines the slope of the
fitted line; C is the regularization coefficient; L(ti, g(xi)) is
the insensitive loss function; ζ + i, ζ – i (i 1, 2, …, n) relaxa-
tion variable; δ is the coefficient related to the interval
band; g(xi) is a fitted value; and ti is a sample true value.

2.2.3 GBR

The GBR model was introduced by Friedman in 1999 as an
ensemble technique for regression and classification. The
training set is chosen randomly, and the gradient boosting
approach compares each iteration to the base model.
Regression happens faster when the training data percen-
tage is lower, while the GBR model fits smaller data in each
iteration. The GBR model’s tuning parameters include n
trees and the shrinkage rate. n trees are the number of

trees that must be created, whereas the shrinkage rate is
commonly known as the learning rate that is applied to
each tree throughout the expansion process [65].

The core principle of this algorithm is based on the
concept of boosting. The boosting procedure facilitates the trans-
formation of predictions from a “weak” learner throughout the
process of additive training. One of the main advantages of
GBR algorithms is their ability to mitigate overfitting and
optimize computing resources by utilizing an objective func-
tion. In addition to enhancing output performance, GBR
methods also effectively minimize the specified error func-
tion, as stated in a previous study [66].

2.2.4 GEP

The GEP is a branch of GP that was developed by Ferreira
[67]. A function set, a terminal set, a fitness function, a set
of control parameters, and a terminal condition are the
fundamental components of GEP. The first three parts
control the search space for the algorithm, while the latter
two deal with search speed and quality. Due to GEP’s
multigenic architecture, it is possible to build nonlinear,
multi-part programs. GEP’s primary functionality is the
generation of chromosomes through the use of the Karva

Figure 6: Schematic view of GEP.
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language to express any parse tree capable of decoding and
expressing the chromosome’s stored data. Thus, chromo-
somes convert to expression tree branch structures. Karva
expression (KE) transformation to expression tree (ET)
begins at the initial position and extends through the
string. String generation utilizes the inverse translation
of ET to KE and a record of nodes from the root to the
deeper layer [68]. Numerous solutions are initially created,
and their fitness is determined using the basic GEP algorithm.
The most appropriate chromosomes undergo operator mod-
ification before being passed on to the next generation. The
problem’s answer is then illustrated by eTs. By reading ET
from top to bottom and then from left to right, it is possible to
acquire the mathematical formula [69]. Figure 6 illustrates
the sequential stages of the GEP algorithm. The process com-
mences by generating chromosomes of a certain length for
each individual in a random manner. The fitness of every
individual is evaluated after the chromosomes are expressed
as eTs. Only the most suitable individuals are selected for
the reproductive process. The iteration incorporates indivi-
duals from several generations until an optimal solution is
achieved. Genetic operations, including mutation, crossover,
and reproduction, are employed to influence the popula-
tion [70].

2.2.5 Stacking ensemble

The stacking approach integrates the results from many
learners utilizing a multilayer learning structure [71]. Base
learners denote the first layer of a two-layer learning archi-
tecture, and meta-learners denote the second layer. The pri-
mary principle of the stacking model includes initial data
training of the base learners. This ultimately generates a
new set of data from each base learner output, which is
subsequently trained on this new dataset to develop a final
prediction model employing the meta-learner second layer.

In other words, the ensemble stacking algorithm produces
the training dataset, utilizing the base learner as a training
set for the meta-learner. The meta-learn model might be
susceptible to overfitting in such a case where the base
learner training is done as the new training set [72]. The
framework of stacking is illustrated in Figure 7.

2.2.6 Shapley adaptive exPlanations (SHAP)

The feature relevance of tree-based ensemble learning
methods like RF is intrinsic [73]. This importance can be
found by counting the number of times a characteristic
appears when building the model tree. Analyzing feature
importance scores in distinct ways, however, does not pro-
vide a comprehensive understanding of the overall impact
of features or the positive and negative correlations between
features and the corresponding output. Therefore, it is crucial
to ascertain the overall importance of features inside the
model and their connections to its aims. This is accomplished
by SHAP analysis, as recommended by Lundberg and Lee
[74]. The SHAP analytical approach is based on principles
from game theory. The components of this analysis are
treated as agents that influence the goal variables. The ana-
lysis provides a comprehensive overview of the gaming
engagement of each participant [74]. The outcome is deter-
mined by the SHAP analysis process using Shapley values,
which are based on well-established models. Global feature
relevance in SHAP analysis is calculated by taking the average
of the Shapley values for all features in the dataset. The values
are presented on a plot after being organized in descending
order. Each data point on the figure represents the Shapley
value attributed to a particular feature and instance. The
Shapley values are represented on the x-axis, while the fea-
ture importance is represented on the y-axis. The vertical
position on the y-axis corresponds to the influence of the
attributes on the target variable, while the color gradient

Figure 7: Framework of stacking ensemble.
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reflects their level of importance. Moreover, SHAP-feature
dependence plots clearly illustrate the impact of feature inter-
actions on the target variable using color-coded representa-
tions. This approach provides a more extensive range of
information compared to traditional partial dependence
charts. Additional details regarding the SHAP plots [73].

Lundberg and Lee [74] proposed multiple versions
of the SHAP analysis, including DeepSHAP, LinearSHAP,
Kernel SHAP, and TreeSHAP. This study employed Tree-
SHAP, a method that utilizes a linear explanatory model
and Shapley values [28]. The initial prediction model has
been formulated as

( ) ∑′ = ∅ + ∅ ′
=

j r o qr q,

q

n

1

(3)

where j, r′, and N denote the explanation model, basic
features, and maximum size of the collection, respectively.
The symbol ∅ is used to represent feature attribution. The
estimation of the attribution of each attribute is performed
using the following equations [74]:

( )
[ ( { }) ( )]

{ }

∑∅ =
| | | |

∪
⊆

q

H M H

M

kc H q kc H

! 1 !

!

,

H Z q

(4)

( ) [ ( )| ]=kc H E k c cH , (5)

whereH, Z, and E[k(c)|cH] indicate a subset of features, the
entire set of inputs, and the desired result of the function
on subset S, respectively.

2.3 Model development and performance
evaluation

2.3.1 Stacking model development

Before developing the prediction model, it is important
to determine the best data split so that the model has
a higher generalization capability. Since the established
database differs in size, numerous data splits, such as the
ratio of 70:30, 75:25, and 80:20 for model training and
testing, were investigated in this study. Finally, the dataset
was randomly split into training and testing sets for SPT
and FS at 80, 20, 70, and 30%, respectively. The precision of
the model is significantly influenced by the hyperpara-
meters. Through optimization, the ML model’s performance
can be improved by identifying the hyperparameters that
work best on the dataset. The grid search technique was
utilized to optimize the hyperparameters of the ML model.
The grid search method is a methodical strategy that entails
extensively exploring a range of hyperparameter variations
and training the model numerous times. The configuration

that yields the best outcomes throughout several training
sessions is referred to as the ideal combination of
hyperparameters.

The most effective hyperparameter combinations for
predicting SPT in RHAC are as follows: RF model para-
meters: n estimators = 80, min samples leaf = 2, max depth
= 10, min samples split = 3, and max features = 5. In the SVR
model, the most effective combination of hyperparameters
is degree = 3, gamma = 0.1, C = 10.0, epsilon = 0.3, and tol =
0.001. In the GBR model, the most effective hyperpara-
meter combination is max depth = 3, learning rate = 0.02,
and n estimators = 100.

Similarly, for the FS prediction models, the most effec-
tive hyperparameter combination in the RF model is n esti-
mators = 100, min samples leaf = 2, min samples split = 4,
and max features = 8. In the SVR model, the most effective
combination of hyperparameters is degree = 3, gamma =

0.05, C = 20.0, epsilon = 0.15, and tol = 0.001. In the GBR
model, the most effective hyperparameter combination is
max depth = 3, learning rate = 0.05, and n estimators = 100.

2.3.2 GEP model development

The SPT and FS of RHAC were considered to be functions of
the following parameters:

( )= fSPT, TS RHA, C, SP, Age, CA . (6)

The GEP models were developed in GeneXproTools 5.0.
The parameters, such as population size, were deduced
based on a trial-and-error approach. The program’s execu-
tion time is determined by the population size, which
refers to the number of chromosomes. The population
size evaluated for the prediction models was either 50,
100, or 150, considering their number and complexity.
The design of various models in the program is contingent
upon the size of the head and the number of genes, with
the former deciding the intricacy of each component
and the latter dictating the number of sub-ETs in the
model. In this study, the number of genes was set to 6
for both SPT and TS and two different head sizes: 6 and 8.
The linkage functions for both models are multiplications,
and the function sets considered for the models are addi-
tion, multiplication, subtraction, division, power, square
root, and trigonometric functions. The precise parameters
employed in the GEP method for both models are given in
Table 3.

Several statistical metrics, including root mean square
error (RMSE), relative root mean square error (RRMSE),
mean absolute error (MAE), and correlation coefficient (R),
were used to evaluate the performance of the developed
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models. The range of values for R is bounded between 0 and 1,
where a higher R-value indicates a superior model. Conversely,
when the values of RMSE, MAE, and RRMSE are lower, it sug-
gests that the model exhibits better performance. Furthermore,
the researchers also estimated a performance index (ρ) [75],

which served as a composite measure of the model’s effec-
tiveness by incorporating both the RRMSE and R. The
variable ρ assumes values within the range of zero to
positive infinity, with a lower value indicating a higher
level of model performance. Eqs. (7)–(11) representing
these metrics are as follows:
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Table 3: Hyperparameters of the GEP model for SPT and FS

GEP

Hyperparameters Tuned value for SPT Tuned value for FS

Linkage function Multiplication Multiplication
Chromosomes 150 125
Head size 6 8
Genes 6 6
Tail size 7 9
Gene size 20 26
Dc size 7 9
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Figure 8: Base-learner outcomes for SPT.
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=
+

ρ

R

RRMSE

1

, (11)

where ye
i
is the experimental value, yp

i
is the predicted

value associated with each of the parameters, ye
i
is the

average experimental value, yp
i
is the average predicted

value, and n is the total quantity of data.

3 Results and discussion

3.1 Base-learner and GEP prediction
outcomes for SPT

In Figure 8, the experimental and predicted values for SPT
for all models are shown juxtaposed with the absolute

error and statistical metrics such RMSE, MAE, etc. Figure
8 illustrates the efficacy of the models in precisely pre-
dicting the SPT of RHAC. Determining the GBR, RF, SVR,
and GEP models’ robustness was executed by analyzing
their prediction outcomes and associated errors. During
the training phase, the GBR, RF, SVR, and GEP models
obtained R values of 0.992, 0.987, 0.939, and 0.918, respec-
tively. During the testing phase, the recorded values were
0.991, 0.981, 0.973, and 0.966, respectively. These results
indicate a significant relationship between the experi-
mental and predicted outcomes. The RMSE values for the
models during the training phase were 0.21, 0.28, 0.57, and
0.65, respectively. Similarly, during the testing phase, the
RMSE values were 0.31, 0.36, 0.62, and 0.47. During the
training phase, the MAE values were recorded as 0.17,
0.20, 0.35, and 0.47. In the subsequent testing phase, the
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Figure 9: Base-learner outcomes for FS.
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MAE values were observed to be 0.25, 0.30, 0.41, and 0.32. The
statistics consistently exhibited little variance throughout all
datasets.

3.2 Base-learner and GEP prediction
outcomes for FS

The predicted and experimental results for FS can be seen
in Figure 9. The performance of each ML model is gauged
by the values of statistical indicators, as previously dis-
cussed. For both the training and testing phases, the GBR,
RF, SVR, and GEP models exhibited high R values. Specifi-
cally during the training phase, the R-values were 0.987, 0.993,
0.981, and 0.952, respectively, while in the testing phase, they
were 0.963, 0.968, 0.973, and 0.948. This demonstrates a strong
correlation between the actual and predicted values. In the

training phase, the RMSE values for these models were 0.60,
0.40, 0.60, and 0.99, respectively, and the MAE values were
0.46, 0.30, 0.38, and 0.74. For the testing phase, the RMSE
values were 0.70, 0.66, 0.66, and 0.80, and the MAE values
were 0.55, 0.53, 0.53, and 0.68. All these details are visually
represented in Figure 9.

3.3 Stacking prediction outcomes for SPT
and FS

RF and SVR models for SPT and RF and GBR models for FS
were chosen as the base learners of the stacking model,
while the LR model was used as the meta-learner. The
predicted results of the stacking model for SPT on the
testing and training set are as follows: RMSE = 0.21, 0.30,
MAE = 0.16, 0.23, and R = 0. 991, 0.988, respectively, can be
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Figure 10: Stacking-based outcomes for SPT: (a) scatter, (b) residual, (c) residual histogram, and (d) comparison.

12  Muhammad Waqas Ashraf et al.



seen in Figure 10. Similarly, Figure 11 illustrates the stacking
models’ outcomes for FS on the testing and training set as
follows: RMSE = 0.48, 0.72, MAE = 0.34, 0.50, and R =

0.988, 0.964.
The relationship between the predicted and actual values

of the stacking model for SPT and FS of RHAC is depicted in
Figures 10 and 11. In addition, the residuals and residual
histograms are depicted in the figures. The stacking model
analysis revealed an error range of −0.5 to 0.5 and −1 to 1 for
SPT and FS, respectively. The stacking model outperforms
each basic learner evaluating metrics that are compared
between each of the four base learner models (GBR, RF,
SVR, and GEP). This shows that the meta-learner in the
stacking model corrects the samples that the base learner
inadvertent predicted and increases the model’s prediction
accuracy.

3.4 GEP expressions

The effectiveness of the GEP model was assessed by ana-
lyzing the outcomes and errors of the predictions. By
decoding the results from GEP, an empirical expression
for calculating the SPT and FS of RHAC is derived. These
expressions encompass the effects of all the independent
variables considered in this study. The SPT and FS decoded
equations are presented as Eqs. (12) and (13), respectively.

( )= × × × × ×g g g g g gSPT ,
1 2 3 4 5 6

(12)

whereas
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Figure 11: Stacking-based outcomes for FS: (a) scatter, (b) residual, (c) residual histogram, and (d) comparison.
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(((( ) ) ) )= − − + −
g 33.48 33.48 FA /FA ,

4

2.99

( ((( ) ) ( )))= − × − × − − + −g 11.95 28.61 28.61 FA 21.12 FA ,
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6

2.15
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3.5 SHAP analysis

The SHAP value analysis for the models is depicted in
Figure 12(a) and (b). The beeswarm plot in SHAP analysis
displays color codes and the importance of feature values
on the right side. The SHAP analysis, depicted in a bees-
warm plot, demonstrates that the results obtained from
the RF model are consistent with the experiment results.
Figure 12(a) and (b) demonstrates that the W, C, and age
and W, SP, and age significantly impact the SPT and FS
model’s output, respectively. Lower W and higher C, SP,
and age have shown a positive impact on the model output
(i.e., SPT and FS)

The SHAP dependence plots for SPT are shown in
Figure 13(a)–(f). Figure 13(a) illustrates the SHAP depen-
dence plot for C and W, showing their direct interaction.
The strength tends to decrease when both C and W are
high. However, an optimal W combined with a high C
results in a positive SHAP value (SPT). Figure 13(b) depicts
theW and C, revealing a direct interaction. Elevated values
of both W and C reduce the SHAP value. Figure 13(c)

Figure 12: SHAP analysis beeswarm plot for (a) SPT and (b) FS.
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Figure 13: Feature dependency of the model for SPT. (a) C, (b) W, (c) FA, (d) RHA, (e) SP, and (f) A.

Figure 14: Feature dependency of the model for FS. (a) C, (b) W, (c) FA, (d) RHA, (e) SP, and (f) A.
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presents the interaction between FA and C. FA has a direct
relationship with C. An increase in FA combined with an
optimal C boosts the strength. Lower feature values of both
RHA and FA diminish the strength, while their higher
values enhance it, as depicted in Figure 13(d). Figure 13(e)
depicts the interaction between SP and RHA. A direct rela-
tionship is evident, with an increase in both SP and RHA
leading to greater strength. Figure 13(f) depicts the rela-
tionship between age and W. A higher age (A) combined
with an optimal W increases strength.

Figure 14(a)–(f) display the SHAP dependence plot for
FS. Figure 14(a) depicts the SHAP dependence plots for the C

and W features, revealing an inverse interaction between
them. Specifically, when C is high and W is low, the SHAP
value (TS) decreases. However, the SHAP value turns positive
with an optimal and a higher C. Figure 14(b) depicts the fea-
tures W and C, indicating an inverse interaction. A combina-
tion of lower W and higher C results in increased strength.
Figure 14(c) depicts diagrams for features FA and C. FA directly
interacts with C. An increase in FA combinedwith an optimal C
boosts strength, while higher FA and lower C diminish it.
Figure 14(d)–(f) depict the direct interactions of RHA, SP, and
age with C, respectively. In each case, higher RHA, SP, and age,
when combined with a greater C, enhance the strength.

0 100 200 300 400 500 600

0

2

4

6

8

10

Pr
ed

ic
tt

ed
 S

PT
 a

nd
  F

S

C

 SPT

 FS

100 120 140 160 180 200 220 240 260

0

2

4

6

8

10

Pr
ed

ic
tt

ed
 S

PT
 a

nd
  F

S

W

 SPT

 FS

400 500 600 700 800 900

0

2

4

6

8

10

Pr
ed

ic
tte

d 
SP

T
 a

nd
  F

S

FA

 SPT

 FS

−20 0 20 40 60 80 100 120 140 160 180 200

0

2

4

6

8

10

Pr
ed

ic
tt

ed
 S

PT
 a

nd
  F

S

RHA

 SPT

 FS

−2 0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

Pr
ed

ic
tt

ed
 S

PT
 a

nd
  F

S

SP

 SPT

 FS

5 10 15 20 25 30

0

2

4

6

8

10

Pr
ed

ic
tt

ed
 S

PT
 a

nd
  F

S

A

 SPT

 FS

Figure 15: Parametric analysis for SPT and FS.

Table 4: Performance evaluation of base learners

Training Testing

Model MAE RMSE R ρ MAE RMSE R ρ

SPT GBR 0.17 0.21 0.992 0.03 0.25 0.31 0.991 0.04
RF 0.20 0.28 0.987 0.04 0.30 0.36 0.981 0.04
SVR 0.35 0.57 0.939 0.08 0.41 0.62 0.947 0.08
GEP 0.47 0.65 0.919 0.09 0.32 0.47 0.966 0.06

FS GBR 0.46 0.60 0.987 0.05 0.55 0.70 0.963 0.06
RF 0.30 0.40 0.993 0.03 0.53 0.66 0.968 0.05
SVR 0.38 0.60 0.981 0.04 0.53 0.66 0.973 0.04
GEP 0.74 0.99 0.952 0.08 0.68 0.80 0.948 0.07
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3.6 Parametric analysis

This study performs a parametric analysis in addition to
depending on historical patterns to acquire a deeper knowledge
of the mechanical properties of RHAC. This analysis aims to
verify the GEP expressions and assess the influence of particular
input features on the mechanical properties while maintaining
other variables constant. To observe the impact on the SPT and
FS, one input variable was changed from its minimum to max-
imum value. The results of a parametric analysis using the
constructed GEPmodels are displayed in Figure 15. It was deter-
mined that there is a positive correlation between an increase in
C, RHA, SP, and age and an increase in SPT and FS of RHAC.
Additionally, it was observed that an increase inW results in a
significant decrease in strength. The results of the parametric
analysis are consistent with the experimental investigation and
reinforce the interpretations of previous studies [76].

4 Models’ performances evaluation

The study used an extensive evaluation strategy to evaluate
the effectiveness of the developed models. The evaluation

used various statistical metrics, such as MAE, RMSE, and R.
Tables 4 and 5, Figure 16 demonstrate that all models’ R
values for both the training and testing datasets exceed
0.9. Additionally, the MAE and RMSE values for the stacking
models are better than base learners and lower than 0.75
MPA. The ρ values of the training and testing datasets for all
the models approach zero. Hence, it has been discovered
that all the models are acceptable and can be utilized to
predict the SPT and FS of RHA concrete. Furthermore, com-
paring the matrices results of the base learners, stacking,
and GEP demonstrated that stacking outperforms GEP for
both SPT and TS of RHAC. In addition, the FS stacking results
are comparable to the SVR model. Moreover, considering
the validation of the GEP expression using parametric ana-
lysis, the expressions are applicable and recommended for
the routine design of RHAC SPT and FS.

4.1 External validation conditions

Golbraikh and Tropsha [77] and Roy and Roy [78] both
recommended an external validation criterion to evaluate
the generalization of the models. Numerous research

Table 5: Performance evaluation of stacking

Training Testing

Model MAE RMSE R ρ MAE RMSE R ρ

SPT Stacking 0.16 0.21 0.992 0.03 0.23 0.30 0.988 0.04
FS Stacking 0.34 0.48 0.988 0.04 0.50 0.7 0.965 0.06
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Figure 16: Radar graph for model’s performance evaluation for SPT and FS.
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papers [28,31,64,79] have endorsed this method. The external
validation criteria and the equation to determine the
model’s robustness are given in Table 6. The stacking
and all base learner models have met the external valida-
tion criteria. As evidenced in Table 6, k and k′ are close to
1. In addition, the performance index values, especially m
and n, register values below 0.1. Moreover, R

o

2 and ′R
o

2 are
either nearing 1 or, in some cases, approximately equal to
the R2 of the respective models.

Therefore, the external evaluation results of the models
not only meet the needed standards but also demonstrate an
outstanding capacity to predict the SPT and FS. These
models provide acceptable prediction insights by trans-
cending more connections between independent and depen-
dent variables.

5 Conclusion

This study developed a stacking ensemble learning-based
RHAC SPT and FS prediction model to improve the predic-
tion model’s capabilities. Additionally, generalized expres-
sions based on the GEP model were developed for RHAC’s
SPT and FS. The models were trained on a comprehensive
dataset from the literature comprising 110 and 67 data
points for SPT and TS, respectively. Experimental research
was conducted to determine the superiority of the stacking
ensemble approach and the rationalism of the chosen base
learners in the stacking model. Eventually, the importance
of the variables in the input was assessed using the SHAP
analysis for the RF model and parametric analysis for the
GEP models. The conclusions drawn from this study are as
follows:
1) For SPT and FS, the LR model was employed as the

second-layer meta-learner, while the RF, SVR, and RF,
GBR models were utilized as the first-layer base lear-
ners, respectively.

2) The established stacking model for SPT’s performance
evaluation indications for testing and training are as
follows: RMSE = 0.21, 0.30, MAE = 0.16, 0.23, and R =

0.99, 0.988, respectively. Similarly, the values for FS
are as follows: RMSE = 0.48, 0.72; MAE = 0.34, 0.50; and
R = 0.988, 0.964. The stacking model effectively integrates
the base learners’ prediction results to enhance the
model’s predictive capability.

3) The GEP model has been trained effectively, showing a
substantial correlation between the actual and pre-
dicted outcomes with low error values. For the model
training, the RMSE, MAE, and R values of the SPT model
were 0.65, 0.47, and 0.92, respectively, and the valuesTa

bl
e
6:

Ex
te
rn
al

va
lid
at
io
n
co
nd

iti
on

s
of

pr
op

os
ed

m
od

el
s

S.
N
o.

Eq
ua

ti
on

s
Co

nd
it
io
n

SP
T

FS

St
ac
ki
ng

G
BR

RF
SV

R
G
EP

St
ac
ki
ng

G
BR

RF
SV

R
G
EP

1
k

(
)

=
∑

×
=

y
e

y
p

y
e

n

i
i

i

i
0

2

0.
85

<
k
<
1.
15

0.
99
4

1.
00

9
1.
01
9

0.
99
4

0.
99
4

0.
97
2

1.
00

6
0.
97
2

1.
04
0

1.
04
7

2
(

)
=

∑
×

=
k

′

y
e

y
p

y
p

n

i
i

i

i
0

2

0.
85

<
k′
<
1.
15

1.
01
4

1.
00

0
0.
99
4

1.
04
1

1.
01
4

1.
03
8

1.
00

7
1.
03
8

0.
98

7
0.
98

6

3
=

m

R
R

R‒
2

O2

2

m
<
0.
1

‒
0.
01
9

‒ 0.
00

3
0.
01
1

‒
0.
11
3

‒
0.
06
7

‒
0.
02
6

‒ 0.
07
3

‒ 0.
02
6

0.
06
8

0.
04
9

4
=

n
′

R
R

R‒
2

O

2

2

n
<
0.
1

0.
01
0

‒
0.
01
7

‒ 0.
03
5

‒ 0.
03
4

‒ 0.
03
5

0.
04
1

‒0
.0
71

0.
04
1

‒ 0.
04
7

‒ 0.
10
1

5
(

)
⎜

⎟
=

⎛ ⎝
⎞ ⎠

=
×

∑ ∑
(

)
= =

R
K

1
‒

,
y

e
y

e
i

O2
y

p
‒

y
e

y
p

‒
y

p

o

i

n

i
i

n

i
i

i
1

o
2

i
1

o
2

R
O2
≈
1

0.
99
6

0.
98

6
0.
95
1

0.
99
9

0.
99
6

0.
95
5

0.
99
6

0.
95
5

0.
88

0
0.
85
4

6
(

)

(
)

=
⎛ ⎝

⎞ ⎠
=

×
∑ ∑

= =
R

′
1

‒
,

y
p

K
′

y
e

i
O

2
y

e
‒

y
p

y
e

‒
y

e

o

i

in

i

in

i

1
i

o
2

1
i

o
2

R
′ O

2

≈
1

0.
96
6

0.
99
9

0.
99
6

0.
92
9

0.
96
6

0.
89

2
0.
99
5

0.
89

2
0.
99
0

0.
99
0

7
(

)
=

√|
|

R
R

R
R

1
‒

‒
m

2
2

O2
>

R
0

.5
m

0.
84

0
0.
92
2

0.
86

2
0.
61
1

0.
69
9

0.
78
3

0.
68

6
0.
78
3

0.
70
4

0.
70
8

18  Muhammad Waqas Ashraf et al.



calculated for the testing were 0.47, 0.32, and 0.97.
Similarly, for the FS model, the RMSE, MAE, and R
values for the model training were 0.99, 0.0.74, and
0.95, respectively, while for the model testing, values
were 0.80, 0.68, and 0.95. The GEP expression effectively
incorporated the influence of input variables for pre-
dicting RHAC’s SPT and FS. The parametric analysis
validates the robustness of the model.

4) The SHAP analysis investigation for the RF reveals that
W, C, W, SP, and age are the most influential variables
that impact the SPT and FS of RHAC, respectively.
Moreover, the parametric analysis of GEP models identi-
fied that C, RHA, SP, and age have a positive correlation,
and W has a negative correlation for each respective
strength attribute.

The developed ensemble-based learners, staking model,
and GEP expressions apply specifically to the given range of
datasets. The generalizations of the stacking and GEPmodels
can be further enhanced by using a vast range of datasets
and considering the age of RHAC. In addition, different
expression techniques such as multi-GEP, hybrid genetic
and simulated annealing, and neural network models could
be developed to compare the results of stacking and the GEP
models.
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