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Abstract: This study explores the possibilities of a new
binding material, i.e., marble cement (MC) made from
recycled marble. It will assess how well it performs when
mixed with ash from rice husks and fly ash. This research
analyzes flexural strength of marble cement mortar (FR-
MCM), a mortar that incorporates MC, fly ash, and rice
husk ash. A set of machine learning models capable of
predicting CS and FS (flexural and compressive strengths)
were developed. Gene expression programming (GEP) and
multi-expression programming (MEP) are crucial in creating
these types of models. Statistics, Taylor’s diagrams, R*
values, and comparisons of experimental and theoretical
results were used to evaluate the models. Stress testing
also showed how different input features affected the
model’s outputs. The accuracy of all GEP models was shown
to fall within the acceptable range (R* = 0.952 for CS and R* =
0.920 for FS), and all MEP prediction models were deter-
mined to be exceptionally accurate (R* = 0.970 for CS and
R?=0.935 for FS). The statistical testing for error validation
also verified that MEP models were more accurate than GEP
models. According to sensitivity analysis, curing age and rice
husk ash exerted the most significant influence on the pre-
diction of CS and FS, followed by fly ash and MC.
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1 Introduction

One to eight percent of the world’s greenhouse gas emis-
sions arise from making regular Portland cement, widely
known as OPC, and it is predicted that this figure will rise
by 8% by 2050 [1,2], which casts questions on the practi-
cality of achieving the zero-emissions objective. If the OPC
sector is serious about reducing its CO, emissions, it must
find less harmful alternatives to OPC [3,4]. On the flip side,
marble is a material that is gaining popularity all over the
globe. Throughout the globe, people are enthused about
the marble that is produced. There are about 300 billion
tons of marble in the sphere. The quarrying process involves
blasting, which results in the waste of over 50% of the
marble that is mined [5,6]. The deficiency of a central system
for waste disposal means that the quarries continue to col-
lect trash from all over. Marble comes in huge chunks from
quarries and is processed into tiles and other valuable
stones. Rough blocks should not be refined and trimmed.
The exact proportion varies with each processing method,
but 20% of these blocks are finely powdered [7]. Companies
usually dump waste in open locations. Drying into a fine
powder can cause allergic reactions to the skin, cancer of
the lungs, and discomfort in the eye. Sludge increases water
contamination [8]. Tiny marble particles on plant shrub-
beries and stems cause dehydration in older hedges and
trees, highlighting a drawback of plant diversity [9,10].

The composition of OPC is 60-65% CaO, 20-25% SiO,,
and 4-8% Al,03;, rendering to Neville and Brooks [11].
According to the study, limestone is the primary compo-
nent of cement due to its calcium oxide content. Limestone
and water-soluble Portland cement (WMP) have several
molecular components, one of which is the excessive con-
tent of CaO [12,13]. Marble cement (MC) was made by
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Figure 1: Process for producing MC [15].

blending WMP with a silica-rich substance, like clay, as
shown in Figure 1 [14,15]. According to the findings of an
X-ray diffraction study that was carried out by Khan et al,
MC encompasses 3.7% C3S, 52.51% C,S, and 23.11% free lime
in its phase chemistries. Low amounts of C3S and high
concentrations of C,S and CaO resulted from slow cooling.
The MC pellets were gently brushed by the chilly wind. C3S
reverted to C,S and CaO at around 1,100°C after that. C3S
that is produced at high temperatures is retained by
quickly cooling the cement clinkers during the OPC manu-
facturing process [16]. The decreased water demand and
lack of slaking, which results in a greater concentration of
free lime in MC, were the reasons for the shorter setting
time of the cement when compared to OPC. Increases in the
concentration of free lime are accompanied by an increase
in the OPC. The immense internal pressure produced by
cement grids accelerates the degradation of mortar and
concrete mixed with them. As the permitted lime concen-
tration increases, the compressive strength (CS) of cement
generally decreases due to the high amount of ground-up
calcium hydroxide (Ca(OH),) [17].

In order to increase the ingestion of free lime content,
researchers suggested using pozzolanic materials as a par-
tial substitute for MC. For a wide range of waste by-pro-
ducts, researchers are currently investigating pozzolanic
applications [18-20]. Thermal coal power plants utilize
coal powder as their fuel. As a result of the combustion
process, fly ash (F) and bottom ash are produced. Minus-
cule particles of fly ash are carried in automobile emis-
sions. By incorporating precipitators prior to the chimney,
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it may be extracted from the exhaust gases. Prior to the
exhaust gases entering the chimney, the precipitators filter
out any fly ash [21,22]. Globally, rice is also grown. “Rice
husk” refers to the brittle outer covering that shields each
rice grain [23]. This trash turns to ash after being burned in
a controlled environment. The pozzolanic properties of
rice husk ash (R) are particularly noteworthy due to the
finely powdered nature of the ash [24].

Research on cement-based materials (CBMs) has been
extensive due to the significance of their mechanical char-
acteristics [25]. The flexural strength (FS) and CS of CBM
offer valuable insights into its properties. These character-
istics are inherently linked to a wide array of mechanical
and durability properties of the mortar [26,27]. To reduce
unnecessary testing, analysts are developing analytical
models to determine the material strength. It is common
practice to use best-fit curves and other conventional
models to reproduce material properties found by regres-
sion analysis. However, conventional regression algo-
rithms could incorrectly presume the material’s intrinsic
behavior because CBMs are nonlinear [28]. The applica-
tion of artificial intelligence (Al), i.e., machine learning
(ML), has led to the advancement of more complex models
in this domain [29-33]. These models must be experimen-
tally validated for accuracy before they can produce trust-
worthy predictions based on input features. More and
more ML algorithms are being used to forecast CBM char-
acteristics [34-36].

This research utilized ML techniques, particularly multi-
expression programming (MEP) and gene expression
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programming (GEP) to forecast the CS and FS of marble
cement mortar (FR-MCM) incorporating rice husk ash and
fly ash. This prediction is based on data from studies that
have already been published. Statistical tests, the distribu-
tion of anticipated outcomes, and the R* coefficient were
among the metrics used to gauge the enactment of ML
algorithms. The main intent of this research was to assess
the predictive capabilities of ML methods for material
properties. Exploratory experiments or database analysis
could provide the data needed for ML algorithms. Machine
learning algorithms may be able to learn more about mate-
rial properties by examining these data. Using experi-
mental data and four input parameters, this study assessed
the capability of ML approaches to forecast the FS and CS
of FR-MCM. Raw material relevance was further investi-
gated using sensitivity analysis. One possible use for the
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newly acquired characteristics and ML models is to aid in
the creation of CBM blends or to add to the existing data-
base for environmentally friendly materials.

2 Methods of study

2.1 Data gathering and analysis

Using a dataset from prior research [15] and applying MEP
and GEP methodologies, this study intended to approxi-
mate the FS and CS of FS-MCM. The estimation of the FS
and CS of FR-MCM was conducted using four input para-
meters: MC, fly ash (F), curing age (A), and rice husk ash (R).
The images of the lab work conducted are shown in Figure 2.

Figure 2: Images of specimens for CS and FS within molds, dried, and during testing [15].
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Initially comprising 84 data points, the dataset was
expanded to 500 points. The executed Python code adhered
to a specific process for adding new data points to the
dataset. The script begins by launching a Tkinter-powered
file dialog box for users to select a database file. Once
imported into a Pandas DataFrame, the script verifies the
present number of data points. A new file is then created to
store the merged dataset, which includes both the synthetic
data and the original DataFrame. The script makes state-
ments that clarify the issue as the data are being enhanced.
In these declarations, one can find details like how many
data points were added, how many data points were
synthesized, and where the stored file was located. In addi-
tion, the script accounts for cases where resampling is
required or when no file is selected. Data gathering and
categorization were aided by data preparation. The widely
recognized task of discovering fresh insights from avail-
able data frequently faces a notable challenge. A common
strategy to surmount this hurdle is the preparation of data
for data mining. Data preparation is cleaning data of any
extraneous or noisy information. The model analysis made
use of statistical approaches such as error dispersion and
regression. The models’ efficacy and reliability were also
evaluated. Histograms in Figure 3(a)-(f) depict the fre-
quency distribution of values, offering a visualization of
the overall dataset frequency distribution by integrating
all components’ distributions. The distribution of the col-
lection’s value can be better understood with the use of a
relative frequency distribution.

Using Pearson’s correlation coefficient (r) is a typical
approach to discovering parameter dependencies [37]. The
results of the distinctive association map plot are shown in
Figure 4. When looking to prove multicollinearity or para-
meter dependency, the R* test is a good tool to utilize [38].
The r-value can take values between -1 and +1; 0 indicates no
connection, while +1 indicates a significant positive relation-
ship [39]. The bottom row of Pearson’s array displays the
association between the independent variables and the
dependent variables, in this case, CS and FS. Multicollinearity
is an important point to make about ML algorithms [40]. In
order to prevent multicollinearity issues, ML models must
ensure that no two variables have a correlation coefficient (r-
value) greater than 0.8 [41]. As can be observed in Figure 4,
the r-value falls inside the acceptable range. Therefore, mul-
ticollinearity in correlational models is highly unlikely.

2.2 ML modeling

The CS and FS of FR-MCM were tested in a supervised
environment. Four inputs were used to generate the
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results (CS and FS). More advanced ML methods, like
MEP and GEP, were used to predict the CS and FS of FR-
MCM. When evaluating ML algorithms, it is a common
practice to compare the results with the input data. The
ML models were trained using 70% of the dataset, while
the remaining 30% was held aside for testing. A high R
score for the expected outcome indicates that the model is
correct. R* is low for a large fluctuation, indicating that
the anticipated and actual values differ by a small amount
[42]. The correctness of the model can be confirmed
through various methods, including statistical analysis
and error assessments. An illustration of a scenario model
is depicted in Figure 5. All of the GEP and MEP model
hyperparameter parameters are included in Table 1.

2.2.1 GEP model

J. H. Holland’s genetic algorithm (GA) is primarily founded
on Darwin’s theory of evolution [44]. The chromosomal
endpoint is defined by an ordered succession of GAs and
contains chromosomes of a particular length. Koza came
up with the phrase “gene programming” to describe one
novel GA approach [45]. An evolutionary model is gener-
ated via generalized problem-solving (GP) using GAs [46].
The adaptation ability of GP is derived from its capacity to
replace binary strings of fixed length with nonlinear struc-
tures like parse trees. According to Darwin’s theory, pre-
sent Al programs deal with reproduction-related problems
by using genetic components that occur naturally, such as
procreation, crossover phenomenon, and modification [47].
With GP, wasteful programs are systematically removed
from successive iterations. Just like in the previous example,
removing the undesired trees is an integral part of replanting
the region using the selected method. However, evolution
safeguards early convergence [47,48]. Five key considera-
tions must be settled upon before the GP approach can be
put into action. Priorities by area, fitness evaluation, key
functional operators (including crossovers and populace
capacity), and approach-surgical incision results [47]. The
majority of the parse trees were created by an integrated
genomic processor, even though GP develops models fre-
quently [48]. As a result of the fact that they must function
as both genotype and phenotype, nonlinear GP forms pro-
vide expressions that are difficult to understand for desired
features [48].

First proposed by Ferreira, GEP is an adaptation of GP
that he developed [48]. The GEP model follows the notion
of population formation and uses static-length linear
chromosomes to build parse trees. Although GEP is an
enhanced variant of GP, GP still employs medium-sized
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Figure 3: Frequency distribution plots illustrating the database's input and output characteristics: (a) MC, (b) fly ash, (c) rice husk ash, (d) age, (e) CS,
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program development using simple chromosomes of a
specific length. Among GEP’s several advantages is its
high-reliability prediction capabilities for complex and
nonlinear problems [49,50]. As with GP, this one has a
fitness function, an end set, and specified termination

<] 1

E A

Taylor’s
diagram

criteria. The “Karva” dialect really recognizes chromo-
somes before they are formed, even if the GEP process
produces them with seemingly random numbers. GEP is
fundamentally based on a constant-length linear struc-
ture. Conversely, in GP’s data processing algorithm, parse
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Table 1: Hyperparameters for GEP and MEP models (parameters comparable to the study of Amin et al. [43])

MEP
Parameters Settings Parameters Settings
Stumbling mutation 0.00141 Code length 40
Chromosomes 200 Number of generations 250
Leaf mutation 0.00546 Number of runs 15
Random chromosomes 0.0026 Replication number 15
Data type Floating number Cross over probability 0.9
General CS, FS Mutation probability 0.01
Constant per gene 10 Number of generations 500
Linking function Addition Number of treads 2
Lower bound -10 Error MSE, MAE
Upper bound 10 Operators/variables 0.5
Mutation rate 0.00138 Number of sub-populations 50
Genes 4 Sub-population size 100
Inversion rate 0.00546 Terminal set Problem input
One-point recombination rate 0.00277 Function set +, =, X, ¥, square root
IS transposition rate 0.00546 Problem type Regression
Gene recombination rate 0.00277
Function set +, =, X, +, square root
RIS transposition rate 0.00546
Gene transposition rate 0.00277
Two-point recombination rate 0.00277

trees of varying lengths are observable. Chromosomes
with a constant length are the original name for these
unique cords. Thus, dynamic manifestation/parse trees
with prong morphologies of varied sizes are used to
represent chromosomes [47]. Several phenol strains and
genotypes have unique genetic codes [48]. GEP eliminates
costly structural alterations and duplications by preser-
ving the genome.

Normally, a chromosome will have two halves that
complement each other, called the “head” and the “tail”
sections. Interestingly, this can occur when a single chro-
mosome produces many genes [47]. These genes include
the instructions for performing Boolean operations, as
well as mathematical reasoning and numeracy. Program-
mers provide genetic coding cells with specialized func-
tions. Inferring these chromosomes’ contents using the
new language Karva can establish the framework for
empirical formulations. The journey starts in Karva on
the ET, which is followed by a leading revolution. Ren-
dering to Eq. (1), ET places the connected nodes in the
sublayer [49]. The amount of ETs dictates two parameters:
the duration and intensity of GEP gene K expression:

ET GEP = logli _ %] )

The independence of GEP’s results from pre-existing
relationships highlights its advanced nature as an ML

technique. The development of a GEP mathematical equa-
tion involves several stages, as illustrated in Figure 6. An
individual’s chromosomal count remains constant at birth.
After verifying these chromosomes as expression trees
(ETs), a comprehensive evaluation of each individual’s fit-
ness is performed. The most accomplished individuals
undergo an iterative method to refine and achieve the
optimal solution, granting reproductive rights to the fittest
and strongest individuals. Ultimately, breeding, mutation,
and crossover yield the final numerical expression.

2.2.2 MEP model

There is a cutting-edge, linear-based genetic programming
technology known as MEP. This technique relies on linear
chromosomes. As far as their core software is concerned,
GEP and MEP are completely interchangeable. A number of
software components (substitutes) may be encoded into an
individual’s genome using MEP, in contrast to its fore-
runner, the GP method. The desired result is achieved by
selecting the most advantageous chromosomes through fit-
ness evaluation [40,51]. Rendering to Grosan and Oltean
[52], this hypothetical scenario occurs after a bipolar
arrangement re-establishes itself, resulting in two succes-
sive generations adopting one parent as their own. Until
the condition for termination is satisfied or the best



8 =—— HuaSietal

Terminate
Keep
best
solution

Figure 6: Methodology of the GEP flowchart [43].

program is identified, the process keeps running, as shown
in Figure 7. Modifications in infants take place during this
process. Similar to the GEP model, the MEP paradigm
enables the combination of numerous components. Key
considerations in MEP include algorithm or code length,
number of subpopulations, number of functions, and the
potential for crossover [53]. When there are as many bun-
dles as there are people in a population, evaluation and
management get quite complicated and time-consuming.
Code length has a significant impact on the number of
mathematical expressions. MEP parameters required to con-
struct a solid model of mechanical properties are shown in
Table 1.

In both the assessment and simulation phases, both
methods extensively utilize literature datasets [54,55]. There
is evidence suggesting that established linear GP methods
like GEP and MEP excel in estimating the attributes of eco-
logical mortar and concrete. Grosan and Abraham asserted
that a fusion of linear genomic programming and maximal
entropy programming (METP) represents the utmost active
neural network-based method [56]. The mode of operation
utilized by the GEP is slightly more complicated than that
utilized by the MEP [53]. Despite MEP’s lower density in
comparison to GEP, several notable distinctions exist: (i)
MEP explicitly encodes references to function arguments;
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Figure 7: Process flow diagram for MEP operation [43].

(ii) there is no necessity for non-coding sections to be posi-
tioned at a fixed point within the genetic factor; and (iii)
MEP permits code reprocessing [57]. Further thorough eva-
luations of these genetic approaches to engineering chal-
lenges are, hence, absolutely needed. Signals at the “head”
and “tail” of the GEP chromosome facilitate the creation of
syntactically correct software programs, leading many to
believe it is more capable [52]. Therefore, comprehensive
evaluations of these genomic engineering methods are
essential.

2.3 Model’s validation

A test set was utilized to conduct a statistical analysis of the
MEP and GEP models. From the literature [55,58—-61], seven
numerical measures were figured for every one of the
models: Pearson’s correlation coefficient (R), relative root
mean square error (RRMSE), mean absolute error (MAE),
Nash-Sutcliffe efficiency (NSE), relative squared error
(RSE), root mean square error (RMSE), and mean abso-
lute percentage error (MAPE). Numerous statistical
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measures can be calculated using the following formulas
(Egs (2)-(8)):

R= nZi=1(ai - ai)(fi - D) ’ ®
V2iz(ai - a)* Zi=1(pi - ﬁl)z
MAE = lZ|Pl-—ai|, )
nia
1)
RMSE = ,/Z(RT‘IJ, @
MAPE = MZM’ (5)
=1
Yia(a; - p)*
RSE= o——, (6)
2i=1(@ - a;)?
Yia(a; - )
NSE=1- o ——, )
2ii(a; - p)?
noo 2
RRMSE = &, 2@ @®
|al n

In a data set with n points, the ith actual value is a; and
the average predicted value is p;; for each data point i, n
represents the total number of points. One reliable method
of gauging a model’s predictive capability (a; and p,) is to
look at its correlation coefficient, R. A large value for R
designates a highly correlated connection between the
anticipated and real levels of production [62]. Nevertheless,
Ris unaltered by division and multiplication operations. At
the intersection of the actual and anticipated outcomes, the
R? statistic was calculated in order to ascertain the actual
value. Greater efficiency in model construction is indicated
by R? values that are closer to 1 compared to other methods
[63,64]. The proposed model demonstrates significantly
improved performance with smaller errors, where both
RMSE and MAE approach zero. Similarly, they exhibit
substantial improvement as error sizes increase [65,66].
Although, after additional investigation, it turns out to be
abundantly evident that MAE operates exceptionally well
in databases that are both uninterrupted and uniform [67].
Reducing the levels of the mistakes mentioned before often
leads to an improvement in the model’s performance.

Two of the most useful ways to evaluate a model’s
predictive power are the Taylor diagram and statistical
validation. This statistic helps show which models are
more accurate and dependable by showing how far they
are from the truth, which serves as a benchmark [68,69].
Determining the best model placement requires the inte-
gration of three essential metrics: the standard deviation,
represented on the model’s horizontal and vertical axes;
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the correlation coefficient, shown by radial lines; and the
RMSE, depicted as concentric circles centered around the
point of the true value. In prediction tasks, the most reli-
able model is identified by its highest accuracy rate [68].

3 Results and interpretation

3.1 GEP models
3.1.1 CS-GEP model

Using mathematical conclusions based on genomic number
and head dimensions, the GEP technique (as shown in
Figure 8(a)—(d)) created models that calculated the CS using
ETs. Most sub-ETs in predicting FR-MCM’s CS utilized funda-
mental arithmetic operations such as dot product, multipli-
cation, subtraction, addition, and square root. Deciphering
these sub-ETs through the GEP approach yields equations.
By inputting data into Eq. (9), future CS values of FR-MCM
can be predicted. The resulting model outperforms an ideal
model under perfect conditions when sufficient data are
available. As demonstrated in Figure 9(a), the continuous
line signifies a seamless fit to the data, whereas broken lines
indicate variations of up to 20% from this line, visually
demonstrating the arrangement between trial and esti-
mated CS findings. Predicted CS values from the GEP model
closely matched measured values, indicating its effective-
ness. An R* of 0.952 and a CS prediction inside the 20%
threshold 96% of the time indicate that the model achieved
significantly improved accuracy. Figure 9(b) plots the abso-
lute error compared to trial data, showing how the GEP
model aligns with experimental results. The predictions
showed minimal deviation, with an absolute error ranging
from 0.00 to 3.477 MPa and an average error of 1.01 MPa.
Additionally, Figure 10 illustrates that the distribution of
error values closely resembles that of a bell-shaped curve.
The pressure measurements ranged from 54 (<0.5 MPa) to
75 (>1.0 MPa). The range from 37 to 54 was between 0.5 and
1.0 MPa. It is important to note that maximal error frequen-
cies occur very seldom:

CS(MPa) = (+/3.635) + (MC + (\/ JJMC X R) + 2F ))

(3R + (MC + F))
(12125 - A) x (A - 8.554) |

9

+(JA7—MC)+[

where MC represents the marble cement, A represents the
curing age, R represents the rice husk ash, F represents the
fly ash, and CS represents the compressive strength.



10 — HuaSietal DE GRUYTER

Sub-ET 1

Sub-ET 2 [ +

Sub-ET 3
s
\
! 1
[
\ 7
pette
e T~
e ‘\\ ’/ \‘
\osqrt L do ;
‘~__I__— .
i
1
P
4 \
! \
{ d3
\ ’
\N_—/
(©)
Sub-ET 4 P
\
\
L/
\ 7
pa—r g
==z - ':-—~\
/ AN / \
{ 1 [
L+ \ /
\\ 'I S 4
Sl AT
- S~~ - S=<
~~a - ~.
i S~ = s
4 \ 4 A SN N
1
L+ |+ { -} [+ )
AN / \ \ / \, J
> Se<, - Sseel
- - -~ -l -~ 4""‘\ =7 .
TN N ST TN Pty ., L=< Pl

(d)

Figure 8: Illustration of the CS-GEP model’s ET: (a) sub-ET 1, (b) sub-ET 2, (c) sub-ET 3, and (d) sub-ET 4.



1

Producing sustainable binding materials for building materials

DE GRUYTER

[ =\
L=/
[N --
{ ey
{ L=
! A, /
1N, 4
{ A
{ /
H {
! {
{ prry
! Y]
| (v
] IAS A\ ST,
/ A =\ e N
[} { \ A
N ! P AN
= ! \/ NS
\ { Voo X
] { \, AN,
i i St N TN
v ! Voo
\ { PN
Vo] R )
Py K
[ PN
Ly n £ N
e’ A Q)
\ AN
/ S e
\ L~ X
\ A N e
[} ING_AN ~
\ {7 N 20
\ ! =
[y 2
(¥4 /q.
VoY
AN 7T,
NIV N
\ i \
\ i’ = ’
\ -, 7 ¢/ 4
VTN S
- v \/ -
= v \w, =
= ANANEEN =
] Vs Y ]
& Vo) &
N
3
3 5
®©
/. =
\ 3
e N s
\ Q[ v ﬂw
. . o - &
\ \ =SS
* N 1
Mo @'\ 9 [
A\ ” \ -
.8 .
. &
N . “ /.
N\ /.
) \
£ \
N\
N . v
+ \ - \ -
N \
N .
5 g "
=] N )
= S0 L=
~ M \
) AN
= £ *
2s :
L2 e e AN
L=IRINESN . . -
Y @ > >
Lo a \
-"H--EAnEe ,/
® 11 N\,
- N
[
T T T T b
3 w < %) = B
& «Q - —

(o}
(edIN) SD PaIpaLq

Test CS (MPa)

@

P
\
[EE=IR}
— AT
PN
/w\ S’
N e
AN N
TN o)
=N
rll g
27T,
\
A3
- \f \s
N A
%
A

e’ N S \
(Y
e
¢ll 4

5
e ',
\
[
—_— A
. ’
/w\ PN
A
= RN
-
fll g

_

I
&
-2
A N
MC
T
wn 2
oL
273
D
= A
L
¢
Lo

I Absolute error

Sub-ET 3
o=z
d.

30 4

o} N — —
(edIN) YISua.s darssdaduio)

40 60 80 100 120 140 160

20

Data point no.

(b)

GEP model for CS-FR-MCM: (a) trial-projected CS correlation

and (b) trial-projected CS error spread.

Figure 9

Sub-ET 4

(d

Figure 11: Illustration of the FS-GEP model’s ET: (a) sub-ET 1, (b) sub-ET 2,

(c) sub-ET 3, and (d) sub-ET 4.

Absolute error

Figure 10: Violin diagram for CS-GEP error dispersion.
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3.1.2 FS-GEP model

Figure 11(a)-(d) illustrates how the GEP method utilizes
arithmetical associations based on genomic number and
head dimension to construct ET-based models for FS. In
FR-MCM’s FS forecasts, the majority of sub-ETs are con-
structed using basic arithmetic operations (+, %, —, +, and
square root). Deciphering these sub-ETs through the GEP

CS(MPa) = (2(y <24 */V24 )-

DE GRUYTER

3.2 MEP models
3.2.1 CS-MEP model

To ascertain the CS of FR-MCM, an empirical formula was
derived based on MEP findings that incorporate the effects
of the four primary constituents. The final set of formu-
lated equations is presented in Eq. (11):

Wz [

(VV~N2A *J24 ) + (FA + Y24 + RHA) + [WM\

LA+ V24

MC ’

method yields arithmetic formulas. By inputting data into
Eq. (10), the future FS of FR-MCM can be estimated. Pre-
dicted FS values from the GEP model closely matched the
measured values, highlighting its effectiveness. The model
achieved an R* of 0.920 and predicted FS inside the 20%
limits 97% of the time, representing significantly improved
exactness. Figure 12(b), which plots the absolute error
versus the experimental data, shows the GEP model. The
absolute error range for the test findings and the predictions
provided by the GEP equation was 0.001-0.476 MPa, with an
average of 0.207 MPa. A bell-curve distribution was observed
for the error value (Figure 13). Overall, 45 values were more
than 0.3 MPa, 70 values were in the range of 0.1-0.3 MPa, and
51 values were lower than 0.1 MPa. Note that maximal error
frequencies are extremely rare occurrences:

(-15.657 - F) +

FS(MPa) =

A2 - MC

+ ((((5.109 - MC) - R) — (MC + 2.174)) )

A
(32.406 + (

+ (2F - (MC + R))) + e

ot F)

+ ((((RHA x MC) + R) + 0.150)

+ ((MC + 0.108) - 0.108)),
where MC represents marble cement, A represents curing
age, R represents rice husk ash, F represents fly ash, and CS
represents compressive strength.

(FA + \V24) - RHA

(11)

where MC represents the marble cement, A represents
the curing age, R represents the rice husk ash, F repre-
sents the fly ash, and CS represents the compressive
strength.

Figure 14(a) illustrates that the MEP model exhibits
robustness and is well-trained, as indicated by its high R*
value of 0.971. To top it all off, it works fine with new,
untested data. The R* value of the CS-MEP model is higher
than that of the CS-GEP model, indicating that the former
is more accurate. Figure 14(a) displays a line that is per-
fectly in line with the data, which is the solid black line,
and dotted lines that are off by as much as 20%. With very
similar predicted and observed values of CS, the MEP
model was able to accurately predict the CS of FR-MCM.
The MEP method successfully detected CS, with 100% of
its predictions falling inside the 20% cutoff, showing
remarkable precision. The results of comparing the target
and actual values in the MEP simulations are shown in
Figure 14(b). The data indicate that MEP estimate error
margins ranged from 0.016 to 2.806 MPa, with an average
of 0.841 MPa. To be more specific, 59 errors were less than
0.5 MPa, 47 were in the range of 0.5-1MPa, and 73 were
higher than 1 MPa. The MEP model is superior to the GEP
model in predicting values that are deemed outliers.
The MEP model decreases error correlation and stan-
dard deviation, as shown in Figure 15’s violin figure.
Due to its generalizability and ease of use, the MEP
equation is a popular tool. With fewer mistakes and a
greater correlation coefficient, the MEP model beats the
GEP model.
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3.2.2 FS-MEP model

An empirical formula was developed based on MEP find-
ings to predict the FS of FR-MCM and incorporate the

effects of the four primary constituents. The final set of

formulated equations is presented in Eq. (12):

(2dIN) WBuos dAssaadI0)

40 60 80 100 120 140 160
Data point no.

20

JVA
\/\/\/(ZRHA+ VAR 44 = i S

FS(MPa)

(b)

, (12)

Figure 14: MEP model for CS-FR-MCM: (a) correlation between trial and
projected CS and (b) error spread between trial and projected CS.

JV@RHA + VA)1 + FA) + 4
MC + FA - 2RHA - /A - FA(ZRHA + JA)

+
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where MC represents the marble cement, A represents the
curing age, R represents the rice husk ash, F represents the
fly ash, and CS represents the compressive strength. Figure
16(a) demonstrates a well-trained MEP model with an R?
value of 0.935, indicating its capability to handle com-
plexity effectively. With a higher R* value, the FS-MEP
model also proves to be more accurate than the FS-GEP
model. The predicted values of FS are closely aligned
with the measured values, highlighting the MEP model’s
efficiency in predicting the FS of FR-MCM. The MEP method
achieved remarkable accuracy in predicting FS, which was
consistently inside the 20% benchmark. Figure 16(b) com-
pares the target and actual values calculated in MEP simu-
lations. The results showed that 0.001-0.419 MPa were the
values that made up the MEP forecasts, with a standard
deviation of 0.172 MPa. Specifically, 56 errors occurred at
pressures below 0.1 MPa, 71 at pressures between 0.1 and
0.3 MPa, and 39 at pressures over 0.3 MPa. The MEP model
outperformed the other in terms of predicting outlier
values. The MEP model reduced the standard deviation
of errors, as shown in the violin plot in Figure 17. The
MEP equation has received a lot of praise for being both
simple and widely used. It is evident that the MEP model
works better than the GEP model due to its greater R* and
reduced error levels.

3.3 Model’s validation

Table 2 presents the results of efficacy and inaccuracy
metrics (R, RSE, RMSE, NSE, MAE, and RRMSE) derived
from calculations using Eqs (2)-(8). A lower error score
indicates that the produced models are more accurate in
their predictions. The performance metrics of the GEP and
MEP models for predicting the properties of FR-MCM high-
light notable differences. The FS-GEP model achieved an
MAE of 0.207 MPa, while the CS-GEP model recorded a
higher MAE of 1.011 MPa, with corresponding RMSE values
0f 7.10 and 6.50%, respectively. In contrast, the MEP models
demonstrated improved accuracy, with the FS-MEP model
achieving a lower MAE of 0.172 MPa and the CS-MEP model
showing an MAE of 0.841 MPa. These results indicate that
the MEP approach consistently outperformed the GEP
method in both flexural and CS predictions for FR-MCM.
However, the RMSE values of the CS-MEP and FS-MEP
models were significantly reduced to 5.70 and 5.90%,
respectively. There was a surprising similarity between
the CS and FS models, as demonstrated by additional
error-based statistical metrics. These metrics encompassed
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Table 2: Results of statistical analysis

Property CS model FS model
GEP MEP GEP MEP

MAE (MPa) 1.011 0.841 0.207 0.172
MAPE (%) 6.50 5.70 7.10 5.90
RMSE (MPa) 1.305 0.987 0.244 0.210
R 0.976 0.985 0.960 0.967
RSE (MPa) 0.284 0.244 0.266 0.248
NSE 0.948 0.969 0.917 0.929
RRMSE (MPa) 0.602 0.322 0.548 0.372

RSE, RMSE, and relative root-squared error (RRMSE). Along-
side error-based validation, two measures, namely NSE and
Pearson’s coefficient (R), were employed to assess the effec-
tiveness of the constructed models. If a model can become
more efficient, it indicates that it can make more accurate
predictions. With respect to the CS-GEP model, the NSE value
was 0.948, whereas that of the FS-GEP model was 0917.
Nevertheless, these values considerably increased to 0.969
and 0.929, respectively, in the CS-MEP and FS-MEP models.
When examining the generated CS and FS models using
Pearson’s coefficient (R), the outcomes were comparable.
Figure 18(a) and (b) illustrates the Taylor diagram com-
paring all the different prediction models. MEP models
exhibit notably higher accuracy compared to GEP models
in calculating the CS and FS of FR-MCM, which holds across
the various types of models. Previous research has estab-
lished that MEP models are the most accurate ML-based
analysis technique for forecasting the CS and FS of FR-
MCM. Their R? values are the highest, their error rates are
the lowest, their efficiency is the highest, and their standard
deviation is the lowest.

Standard Deviation

Standard Deviation

m  Test CS
0.2 ® CS-MEP
0.4 . ®m CS-GEP

0.6 ‘&
'5‘60
%

Standard Deviation
(@)

B Test FS
0.2 ® FS-MEP
m  FS-GEP

Standard Deviation

(b)

Figure 18: Taylor diagrams: (a) CS-models and (b) FS-models.
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3.4 Sensitivity analysis

Examining how various input parameters impact CS and
FS prediction for FR-MCM is the primary objective of this
research. The predicted outcomes are highly associated
with the input variables [70]. Figure 19 illustrates the
impression of various variables on the CS and FS of FR-
MCM, offering insights into the long-term development of
mortar and construction materials. The extrapolation of CS
for FR-MCM was most influenced by a curing age of 86%,
followed by 2.0% fly ash, 4% MC, and 8% rice husk ash.
Similarly, for FS prediction, the curing age (A) had the
greatest impact at 80%, followed by fly ash at 5.0%, MC
at 3.0%, and rice husk ash at 12.0%. The outcomes were
proportional to the number of model parameters and data
points utilized in the sensitivity analyses. It was discovered
that varied input parameters, including the amounts of
mortar mix used while applying the ML approach, had
distinct effects on the analytical outcomes. By comparing
the values of the data input features in Eqs (13) and (14)
their relative significance was determined.

N; = fmax(Xi) - fmm(xi)»
_ N
i

13)

\Y (14)

where f ;. (x;) is the minimum expected value and f,, (x;)
is the maximum predicted value for all ith outputs.

Marble cement
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8 —a— CS
——FS

6

4

2

Curing - Fly ash
age
Rice husk ash

Figure 19: Radar plot for the sensitivity analysis.
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4 Discussion

The findings of this research are specific to FR-MCM
because the GEP and MEP models employed are tailored
to handle values within a defined range of four input para-
meters. The accuracy of CS and FS projections is ensured
by the use of consistent unit measurements and testing
procedures across all models. MEP achieves higher accu-
racy than GEP due to its linear representation of multiple
expressions within a single chromosome, which simplifies
the evolutionary process. MEP’s efficient genetic opera-
tions and ability to simultaneously evaluate multiple solu-
tions enhance its optimization capabilities and predictive
performance, leading to more accurate outcomes. For the
most part, the models can only understand the mix’s
design and the impact of each input component by con-
sulting mathematical formulas. All four inputs to the com-
posite analysis, when used in any combination, will make
the predicted models meaningless. Incorrect pairing with
the training data could cause these models to fail to per-
form as anticipated. Inconsistent or out-of-date units of the
input parameters put the models in danger of under or
over-predicting the results. Consistently maintaining the
unit sizes is crucial for the models to perform successfully.
Improvements in energy efficiency, risk assessment,
quality control, predictive maintenance, and material
strength prediction are just a few of the many construc-
tion-related uses for ML models. These models must, how-
ever, conquer certain challenges. One potential pitfall is
relying on human input, which might lead to erroneous
outcomes due to human error. Possible directions for
future study include incorporating IoT gadgets, creating
hybrid models, making sustainability a top priority, using
explainable AI techniques, and tailoring data collection
and delivery to certain businesses. These strategies could
significantly enhance ML-based solutions and address
existing limitations. These efforts aim to enhance ML-
based solutions and address current limitations effec-
tively. Emerging technology has the potential to radically
alter the construction industry by facilitating more
efficient, transparent, and interpretable processes and
better-informed decision-making. These enhancements
have the potential to promote more sustainable practices,
lessen project delays, and increase safety precautions.
The results of this study have the potential to promote
the use of more sustainable building practices and mate-
rials in the future.
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5 Conclusions

This work aims to assess and predict the FS and CS of

marble cement mortar (FR-MCM) that contains fly ash

and rice husk ash using GEP and MEP. Using 500 CS and

FS data sets from lab studies, the models were built, tested,

and validated. A summary of the main points from the

study is as follows:

1) The research showed that compared to other GEP
models, MEP models had the best data prediction accu-
racy. The most effective model, MEP, achieved an R?
value of 0.971 for the mechanical properties of FR-MCM.

2) The efficiency and predictability of the created models
were confirmed by statistical testing; the MEP models
were determined to be the most accurate in estimating
the mechanical properties of FR-MCM.

3) MEP models had a lower standard deviation compared
to GEP models, indicating that the MEP approach was
more precise according to Taylor’s diagram evaluation.
Specifically, for CS prediction, the standard deviation
for MEP models was 5.80 compared to 5.94 for GEP
models, and for FS prediction, the standard deviation
for MEP models was 0.865 compared to 0.868 for GEP
models.

4) The sensitivity study revealed that curing age was the
most important input parameter positively correlated
with FR-MCM’s mechanical properties.

The unique mathematical methodologies offered by
GEP and MEP are essential for predicting features in other
databases. Engineers and scientists leverage the mathema-
tical models derived from this study to optimize, improve,
and evaluate mortar mixture proportions effectively. These
models serve to refine and enhance the formulation process,
ensuring optimal performance and reliability in construc-
tion applications.
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