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Abstract: Self-compacting concrete (SCC) is well-known for
its capacity to flow under its own weight, which eliminates
the need for mechanical vibration and provides benefits such
as less labor and faster construction time. Nevertheless, the
increased cement content of SCC results in an increase in both
costs and carbon emissions. These challenges are resolved in
this research by utilizing waste marble and glass powder as
cement substitutes. The main objective of this study is to
create machine learning models that can predict the compres-
sive strength (CS) of SCC using gene expression programming
(GEP) and multi-expression programming (MEP) that produce
mathematical equations to capture the correlations between
variables. The models’ performance is assessed using statis-
tical metrics, and hyperparameter optimization is conducted
on an experimental dataset consisting of eight independent
variables. The results indicate that the MEP model outper-
forms the GEP model, with an R? value of 0.94 compared
to 0.90. Moreover, the sensitivity and SHapley Additive
exPlanations analysis revealed that the most significant
factor influencing CS is curing time, followed by slump
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flow and cement quantity. A sustainable approach to SCC
design is presented in this study, which improves efficacy
and minimizes the need for testing.
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1 Introduction

Self-compacting concrete (SCC) was introduced in Japan
two decades ago as a contemporary advancement in the
concrete industry [1]. SCC finds practical implementation
in the reinforcement of in situ concrete and the reinforce-
ment of heavily fortified regions [2]. The advantages of SCC
are shown in Figure 1. However, the production of SCC
incurs a cost increase of 20-50% in comparison to conven-
tional concrete [3]. The increased expense associated with
SCC is due to the considerable quantity of Portland cement
and chemical admixtures needed to attain the intended
fluidity [4]. Extensive and noteworthy research has been
undertaken in recent years concerning SCC [5]. By virtue of
the infill material present in the SCC composite, SCC is
distinguished from conventional concrete. The influence
of infill materials on the properties of SCC has conse-
quently been the focus of numerous studies. The incor-
poration of infill materials into SCC leads to improved
workability and reduced cement percentages [6]. It is
also possible to achieve reduced shrinkage fractures and
low hydration temperatures by incorporating infill mate-
rials, such as pozzolanic materials. In contrast to heat hydra-
tion, the long-term performance of SCC can be enhanced
with fine materials exhibiting a range of particle sizes and
morphologies. This is achieved through an increase in com-
pactness and a reduction in the risk of cracks [7]. In addi-
tion, as cement is the most costly constituent of cementitious
composites, reducing the cement concentration could be
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Figure 1: Advantages of waste-derived SCC [9].

considered an economical strategy. Furthermore, by filling
the spaces between the particles, impermeable cementitious
composites might be produced. As a result, the resilience of
concrete is further enhanced [8]. In fact, improved work-
ability and cohesiveness are the outcomes of incorporating
pozzolanic materials, which improve particle grading and
bonding [1].

Several scholars are currently dedicating more time to
the examination of the intersection between the utilization
of renewable resources and global environmental preser-
vation [10,11]. Sustainable development seeks to simulta-
neously improve living conditions and meet the requirements
of future generations. The organization’s goals consist of
addressing fundamental necessities, enhancing quality of
life, and advocating for the conservation and governance of
ecosystems [12]. There is a significant surge in the worldwide
reuse of various types of industrial waste as a response to
rising public concerns regarding ecological degradation,
depletion of fossil fuel, and sustainable development [13].
In general, the production of cement, which is an essential
component of concrete, generates significant quantities of
hazardous gas emissions, including carbon dioxide [14].
Recent studies have centered on the reduction of construc-
tion expenses and the partial substitution of cement with
industrial byproducts [15]. The reduction of waste and
proper waste management are widely recognized as the
most pressing concerns in most emerging countries [16].
Waste marble and glass exhibits promise as an alternative
for cement in concrete [17-20]. The incorporation of marble
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and glass powder into concrete results in enhanced durability,
improved flowability, and increased strength, in addition to
cost-effectiveness and sustainable building practices [21,22].
Research has been conducted to incorporate waste glass and
marble in SCC [1,23]. However, those are mostly experimental
studies. Therefore, to gain a more thorough understanding of
the performance of waste marble and glass-based SCC, it has
become imperative to employ modern tools that can forecast
their various properties.

Compressive strength (CS) is a critical mechanical
property of a building material that influences the service
life of a structure. Cementitious composites can be charac-
terized as heterogeneous mixtures comprising numerous
elements in which nonlinear interactions among each
constituent impact the composites’ strength [24]. The pre-
vailing method employed to assess the strength of cemen-
titious composites is mechanical testing. Nonetheless, it is
important to acknowledge that this methodology has labor-
intensive and financial requirements [25]. The CS of cemen-
titious composites has been predicted by a number of
researchers through the administration of linear regres-
sion models [26,27]. Making accurate predictions is challen-
ging because of the nonlinear relationship that exists
between cementitious composite elements and mechanical
strength [28,29]. Researchers have originated the applica-
tion of artificial intelligence (AI) methodologies in order to
address the aforementioned problems [30-32]. Utilizing a
data-driven strategy to establish a nonlinear correlation
between the ingredients of cementitious composites and
their mechanical strength is an emerging trend [33,34].
The strength of cementitious composites has been pre-
dicted by utilizing supervised machine learning (ML) tech-
niques [35-37]. In recent times, the majority of scholars
have used ML techniques to forecast the parameters of
conventional cementitious composites [38,39]. A limited
number of researchers have utilized ML methods to analyze
SCC strength [40,41]. However, no mathematical expression
has been developed using gene-expression programming
(GEP) and multi-expression programming (MEP) for the vali-
dation and future prediction of waste glass and marble-
based SCC. Developing ML-based models with mathematical
expressions could facilitate such predictions in the future
and conserve resources and time.

This study aims to develop prediction models for the
CS of waste glass and marble-based SCC using ML methods.
Traditional experimental procedures to determine SCC
properties require significant financial investment, time
commitment, and physical effort due to the complex proce-
dural requirements. These requirements include acquiring
the necessary ingredients, casting the samples, curing the
samples to achieve their strength, and conducting the
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Table 1: An analysis of the variables using statistical methods
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Parameter Water- Cement Marble Glass Water Slump Density Curing CS (MPa)
binder (kg'm~3) powder powder (kg-m™3) flow (mm)  (kg-m7) time (day)
ratio (kg'm3) (kg'm3)
Mean 0.452 320.706 38.353 40.941 180.784 753.445 2509.643 41.590 31.462
Standard error  0.002 2.030 1.374 1.345 0.679 2.231 3.256 1.545 0.371
Median 0.45 320 40 40 180 750 2542 28 32.32
Mode 0.45 320 40 40 180 725 2490 28 34.54
Standard 0.038 45.852 31.021 30.385 15.334 50.379 73.540 34.891 8.378
deviation
Sample 0.001 2102.448 962.311 923.277 235.140 2538.090 5408.179 1217.362 70.192
variance
Kurtosis -1.294 -0.328 -1.333 -1.263 -1.294 -1.061 -0.578 -1.466 0.488
Skewness -0.067 -0.011 0.07 -0.039 -0.067 0.039 -0.496 0.546 0.466
Range 0.1 160 80 80 40 170 266 83 40.44
Minimum 0.4 240 0 0 160 660 2366 7 16.12
Maximum 0.5 400 80 80 200 830 2632 90 56.56
Sum 230.5 163,560 19,560 20,880 92,200 384,257 12,79,918 21,211 16045.54
Count 510 510 510 510 510 510 510 510 510

subsequent testing phase. By applying sophisticated mod-
eling techniques, such as ML, the construction industry
may be able to alleviate these obstacles and gain substantial
benefits. Therefore, GEP and MEP are utilized because of
their advantage in yielding mathematical expressions to
accomplish the research objective. The evaluation of each
model’s approximation accuracy is performed by executing
statistical tests and comparing the predicted outcomes to the
true test results. Additionally, sensitivity analysis and SHapley
Additive exPlanations (SHAP) analysis are conducted to
examine the impact and interaction of input parameters
on the model predictions. The database necessary for ML
techniques can be acquired through laboratory experiments
or scholarly literature. Consequently, the dataset may be
applied to the execution of ML algorithms, prediction of
material characteristics, and relative effects analyses. An
experimental dataset is utilized in this research to evaluate
the efficiency of GEP and MEP ML methods in forecasting the
SC of SCC. The outcomes of this research may aid researchers
and relevant industries in optimizing the mix design of SCC
and eliminate repeated experimental processes.

2 Data description

By amplification of an initial database of 51 points to 510,
this study estimated the CS of SCC with the aid of eight
input parameters (water-binder ratio, cement, glass powder,
marble powder, density, water, slump flow, and curing
time) [42]. The water-binder ratio was selected as an input
variable due to its critical role in determining the properties

of concrete, specifically its CS, despite the fact that the
majority of input parameters are expressed in kg'm>. It is
imperative to optimize the mix design, as [43]. It is also
essential to recognize that the proportions and interactions
of a variety of mixed components, such as waste glass,
marble, cement, and water, are significantly influenced by
the water-binder ratio. The allocation of data for model
development is as follows: 30% is designated for the training
phase, and 70% is allocated for the testing phase. The exe-
cuted Python code adhered to a specific protocol in order to
augment points of the database. It begins by displaying a
Tkinter-based file dialog window from which the user can
select a database file. The file is subsequently imported into
a Pandas DataFrame after its selection, and the script veri-
fies the existing point count. A novel file is produced, which
comprises the dataset resulting from the integration of the
synthetic data and the initial DataFrame. During the process
of supplementing the data, the script presents insightful
statements. The declarations encompass various pieces of
information, such as the exact location of the saved file,
the quantity of synthetic data points added, and the overall
count of data points added. In addition, the script accounts
for scenarios in which resampling is required, or no file is
selected. The collection and organization of the data were
facilitated by data preparation. Utilizing data preparation as a
buffer to overcome a significant obstacle in the well-known
process of extracting new insights from old data is a common
approach [44].

When demonstrating ML techniques, it is also critical
to implement diverse configurations of identical assets. In
descriptive statistics, for instance, a compilation of illustrative
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coefficients can be utilized to derive conclusions regarding the
entire dataset or a subset thereof. Descriptive statistics
employed the following measures: standard deviation,
mode, mean, and median. Descriptive research results com-
prise a heterogeneous assortment of information derived
from the raw data gathered during the research process.
The outcomes of the statistical investigation of the data
are displayed in Table 1. Specifically, the distributions of
cumulative and standard scores are presented. Descriptive
statistics offer a comprehensive overview of the entire
dataset by succinctly summarizing the most notable charac-
teristics of the investigated variables. The range and stan-
dard deviation quantify the dispersion relative to the mean,
while the mean itself quantifies the central tendency. The
determination of the distribution’s shape can be achieved
through the computation of skewness and kurtosis, metrics
that quantify whether the data are asymmetrical or possess
hefty tails. Furthermore, the count signifies the dataset’s
sample size, thereby ensuring the results’ dependability.

In order to prevent the performance of ML models from
being disproportionately influenced by features with larger
values, data autoscaling and standardization are essential.
The model’s accuracy and stability are improved by ensuring
that each variable contributes equally through data normal-
ization. Especially in complex datasets, this procedure is crucial
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for obtaining interpretable and dependable results. Prior to the
ML algorithms commencing their analysis, it was imperative to
normalize the original data. The computational stability is
enhanced by the normalizing procedure, which also eliminates
the undesirable feature scaling effects [45]. Each parameter
was standardized to fall within the range of 0-0.9 using Eq.
(1). As a collective, these numerical values establish the founda-
tion for subsequent examination and deliberation by offering
an understanding of the attributes of the dataset. Determining
the magnitude and direction of the linear association between
the two variables is possible through the utilization of correla-
tion coefficients, as depicted in Figure 2. The magnitude of
coefficients is quantified on a range ranging from -1 to +1.
Values approaching +1 indicate a robust positive correlation,
while values approaching -1 indicate a robust negative corre-
lation. A coefficient in the vicinity of zero indicates that the
variables have little to no linear relationship. Coefficients play
a crucial role in statistical analysis as they offer valuable
insights into the strength of the relationship between distinct
data elements

= ggx Y " Fmin)

max Y min

y m

where y represents the original value, y,;, represents the
minimum value of the feature, y, . represents the utmost
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Figure 2: The coefficient of correlation for the parameter.
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value of the feature, and y’
value.

represents the normalized

3 Research methods

The application of ML techniques in a variety of fields
allows for the prediction and comprehension of the beha-
vior of materials. For the purpose of this investigation, the
CS of SCC is predicted by employing ML-based methods,
which include the GEP and MEP. This selection was made
due to the fact that these methods are frequently employed,
have consistently anticipated findings in the research that
are linked to them, and are considered to be the most excep-
tional data mining algorithms. The flow chart for this inves-
tigation is presented in Figure 3.

Dataset collected from
literature review

| |

Input parameters Output ‘
(raw materials) Parameters (CS)

Development of MI-based
models

Validation of MI-based
models

_ !

l Statistical [ R2 ]

checks
Impact on the input
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Figure 3: Research process flowchart.
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3.1 GEP

GEP is an evolutionary algorithm that integrates genetic
algorithms (GAs) and genetic programming (GP) to develop
models and resolve intricate issues. It represents solutions
as linear chromosomes, which are subsequently expressed
as nonlinear entities or parse trees. This approach enables
GEP to investigate a broad spectrum of potential solutions
and produce explicit mathematical equations that charac-
terize the relationships between the input variables and the
output. GEP is particularly effective for symbolic regression,
which involves the identification of a mathematical expres-
sion that most closely matches a specific set of data. In the
genetic algorithm, sequences of a fixed size are utilized.
Koza expanded upon GA and proposed GP as an alternative
solution [46]. Figure 4 is a representation of the process of
designing a computer program to solve a problem by
employing the GP methodology. By integrating a spatial
parser architecture, GP can function as an effective ML tech-
nique. Nevertheless, despite the identification of three genetic
operators in GP, their practical implementation is limited to
tree crossover, resulting in an immense population of parse
trees [46,47]. An additional limitation of the GP algorithm is its
disregard for neutral genomes. The GP algorithm’s phenotype
and genotype both necessitate a nonlinear configuration,
which renders the formulation of a widely used and straight-
forward empirical equation unattainable [48]. Ferreira intro-
duced the GEP approach as an alternative variant of the GP
approach with the intention of mitigating its inconsistencies
[48]. A fundamental aspect of GEP is the integration of parse
trees and simple fixed-length linear chromosomes. An essential
alteration in GEP consists of solely passing on the genome to
the next generation; this obviates the necessity of replicating
the complete structure, as all modifications transpire within a
linear function. An additional noteworthy aspect pertains to
the development of a model comprising a solitary chromosome
comprised of distinct genes, subsequently classified as tail
and head [49-51]. Each gene in the GEP model is represented
by mathematical operators, a terminating function, and a
constant parametric length. Additionally, the genetic code
operator maintains a secure link between the chromosomes
and the junctions. The essential information for constructing
the GEP model is encoded in chromosomes, and a novel lan-
guage, karva, has been developed to deduce this information.
Figure 5 depicts the procedure utilized in the GEP method. It
begins with the determined generation of span chromosomes
at random for each individual. The resulting values are subse-
quently converted to expression trees (ETs), and the fitness
potential of each individual is assessed. Before the optimal
result is attained, the repetition with novel individuals con-
tinues for many generations.



6 =—— Qing Tao Guan et al.

DE GRUYTER

No

y

~ ~ Build Initial Population Run: = Run + |
Run: =0 Gen: =0 to Run Randomly f
Yes | Set Outcomes
Termination Criteria Satisfied for Run? to Run
No
Add Fitness Measure to The Population’s Individual
/'y l
i=M? =i+l
l Yes
i:=0
Gen: = Gen + | Yes i=M? =i+l
No
Choose Genetic Operation |
Pr | Choose One Fitness Carry Out Export into New
Based Individual Reproduction Population "
Pc | Choose Two Fitness Carry Out Offspring Insertion
Based Individual Crossover into New Population -
Pm | Choose One Fitness Carry Out Mutant Insertion
Based Individual Mutation into New Population -

Pa_|  Architectural Altering Operation
Selection Via Its Specified

|

Choose One Fitness
Based Individual

Do Architectural

Altering Operation

Offspring Insertion
into New Population

Figure 4: A flowchart that the GP algorithm employs [52].
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Figure 5: A flowchart that the GEP algorithm employs [52].

3.2 MEP

MEP is a sophisticated form of genetic programming that
incorporates numerous potential solutions within a single
chromosome. The algorithm is capable of evaluating and
selecting the most effective expressions simultaneously, as
each chromosome in MEP can represent multiple expres-
sions. This method frequently results in more precise and
resilient models by simultaneously investigating a more
extensive solution space. MEP is particularly advantageous
for issues that necessitate high precision and depend-
ability, such as the prediction of the CS of materials such
as SCC. Oltean [53] introduced MEP, an evolutionary opti-
mization method that can be implemented to address opti-
mization challenges. The algorithm operates by generating
a program that can be utilized to solve the problem
through the evolution of a series of mathematical expres-
sions [54]. Programs are represented in MEP as collections

Iterate

Genetic Alteration

Replication or Mutation

A

Best Tree Selection

of mathematical expressions, whereas in GEP, they are
represented by a series of symbols, which can be inter-
preted as expressions in the field of mathematical analysis.
Furthermore, it has been observed that MEP produces a
greater variety of expressions compared to GEP, poten-
tially enhancing its efficacy in navigating the search space
and locating optimal solutions [55]. The functional prin-
ciple of MEP-based models is illustrated in Figure 6. The
algorithm initializes a population of candidate programs as
its initial step. Every program is mathematically depicted
as a collection of expressions. Once the programs have
been initialized, their suitability for the population is eval-
uated by employing a fitness function that quantifies the
degree to which the programs accomplish the optimization
problem. The optimal programs are then selected from the
population using the selection procedure. The greater the
suitability of the program, the greater its probability of
being chosen. Through variation, the chosen programs



8 —— Qing Tao Guan et al.

are utilized to generate new programs. In the process of
variation, genetic operators like crossover and mutation
may be utilized. The newly implemented programs are sub-
sequently employed to substitute certain programs within
the population. The replacement procedure may be deter-
ministic, in which the least desirable programs are substi-
tuted, or stochastic, in which a selection of programs is
replaced at random. Iterations of the algorithm persist until
a termination condition is satisfied. A specific fitness level or
a limited number of iterations may constitute the termina-
tion stage. In conclusion, the algorithm returns the optimal
program as the resolution to the efficiency challenge. MEP
has been highly implemented in the construction sector
over the last several decades.

4 Performance evaluation and
model development criteria

Developing a suitable prediction model through the imple-
mentation of Al commences by carefully choosing the most
significant input parameters. To achieve this objective, a
thorough examination of every input parameter listed in
the database was undertaken, and the effects of several
preliminary trials were assessed to determine which para-
meters exert the most substantial influence on the CS of
SCC. Through the use of Eq. (2), the forecasting model for
the CS of SCC was developed.

CS(MPa) = f(w/b, C, MP, GP, W, S, D, CT). ¥)

For the construction of a dependable and scalable GEP
and MEP model, it is crucial to define several hyperpara-
meters. These hyperparameters play a key role in the
model’s performance and need to be carefully calibrated.
The process of finding the most optimal values for these
hyperparameters involves a combination of trial and error
and referencing previous research studies. This meticulous
approach ensures the precision and accuracy of the model
[57]. By population size, program quantity development is
determined. The degree of sophistication and accuracy of
the model increases in tandem with the population size.
Nevertheless, the process of generating the most appro-
priate model may necessitate a more extended period of
time. This comprehension guarantees resilient performance
and reduces the likelihood of overfitting or skewed out-
comes. This procedure assists in determining the optimal
hyperparameter values that improve the accuracy and gen-
eralizability of the model. In order to make a prediction
about the model, the genexpro tool was utilized for the
GEP method, and the mepx software version 2023.4.3.0
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Figure 6: A flowchart that the MEP algorithm employs [56].

was applied for the MEP. The range of hyperparameter
values that were determined to be optimal for predicting
the CS of SCC is shown in Table 2.

4.1 Development of the GEP model

The duration of a program’s execution is determined by
the population size (chromosomes). In consideration of the
model’s complexity and difficulty, 250 chromosomes are
allocated. The architectural design of the GEP model is
established based on two factors: the quantity of genes
and the magnitude of the head. Through the process of
adding up all the sub-ETs of the model, the head has the
ability to ascertain the level of difficulty associated with
each expression. As a result, the population size, number of
genes, and head size are assumed to be 250, 3, and 7,
respectively. The configured configurations of the GEP
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Table 2: Configuration of hyperparameter optimization for the ML
models

Hyperparameter GEP MEP Optimized value
Code length — 20-50 30
Number of runs — 10-30 20
Operators/variables — 03-06 04
Cross over probability — 0.3-0.8 0.8
Number of sub- — 20-100 50
populations

Number of generations 50-500 200-600 450
Genes 1-5 1 3
Chromosomes 50-300 — 250
Head length 5-50 — 20
Tail length 5-50 — 10
Crossover rate 0.5-1.0 — 0.8
Mutation rate 0.01-01 — 0.05
Population size 50-500 — 200

parameters utilized in the generation of a precise GEP
model are presented in Table 3. In addition, in conjunction
with other arithmetic operations, the linkage function is
utilized in GEP modeling.

4.2 Development of the MEP model

The MEP modeling process commenced with a subpopulation
size of 10. To generate a straightforward and simple final equa-
tion, the fundamental arithmetic operations, square root, multi-
Pplication, division, subtraction, and addition, were considered.
The threshold for the model’s accuracy prior to termination is

Table 3: Configuration of GEP parameters
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established by the number of generations. A program that is
executed with a greater number of generations in consideration
would produce outcomes with reduced error. The likelihood
that progeny will endure genetic functions is similarly deter-
mined by the rate of mutation and crossover. The crossover
probability varies from 50 to 95% [54]. Numerous combinations
were tested, and the most effective one is shown in Table 4. It is
important to highlight that the accuracy of the anticipated
model is influenced by the duration of generation evalua-
tion. The model’s evolution persists indefinitely due to
the incorporation of additional variables into the system.
This study, conversely, establishes 2000 generations as the
halting criterion for model evolution, or the point at which
the fitness function changes by less than 0.1%.

4.3 Criteria for model evaluations

To evaluate the performance of a model on a training or
testing set, statistical errors, including mean absolute error
(MAE), R-square value (R?), root mean square error (RMSE),
root mean squared logarithmic error (RMSLE), are employed.
R% which is alternatively known as the determination coeffi-
cient, measures the probability that predictions generated by
a model will be accurate [58,59]. As a result of progress made
in AI modeling techniques, more precise estimates of the
mechanical attributes of composites are now feasible. By cal-
culating the error criterion, both the MEP and GEP models are
statistically evaluated in this study. A multitude of metrics
may contribute to the understanding of the model’s impreci-
sion. In addition, the efficacy of the model can be evaluated
by utilizing the standard deviation and variance. The

Table 4: Configuration of MEP parameters

Parameters Settings

General cs MEP

Chromosomes 250 Parameters Settings
Head size 7

Constant per gene 10 Code length 30

Genes 3 Number of sub-populations 50
Function set + = x5V Cross over probability 0.7

Data type Floating number Sub-population size 100

Linking function Addition Number of generations 450
Inversion rate 0.00546 Number of runs 20

Gene recombination rate 0.00277 Function set +, =, %, 5
Lower bound -10 Mutation probability 0.01

Upper bound 10 Operators/variables 0.4
Mutation rate 0.00138 Terminal set Problem input
Stumbling mutation 0.00141 Replication number 15

RIS transposition rate 0.00546 Error MSE, MAE
Gene transposition rate 0.00277 Problem type Regression
Random chromosomes 0.0026 Number of treads 2
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accuracy and validity of the model can be verified by exam-
ining the R% Models exhibiting R* values exceeding 0.50
demonstrate unfavorable results, whereas models featuring
R* values ranging from 0.65 to 0.75 demonstrate encouraging
outcomes. The R* value can be determined by employing Eq.
(3). The output and units employed in MAE are identical. On
occasion, a model with an MAE value within a specified range
may contain substantial errors. Eq. (4) is utilized in the calcula-
tion of MAE. The average of squared errors between observa-
tions and predictions is denoted by the RMSE. When calcu-
lating error squared, the squared errors are summed
together. This method places greater emphasis on anomalies
and significant exceptions than its predecessors, resulting in
significant squared differences in certain circumstances and
lesser squared differences in others. By providing an input, the
RMSE can be utilized to estimate the average computation
error of the model. RMSEs of variation are reduced in models
that have been enhanced. As RMSE values decrease, the pre-
cision of the algorithm’s forecasting of data also diminishes. Eq.
(5) is utilized to determine the RMSE. RMSLE took into account
the degree of inaccuracy between anticipated and actual out-
comes. It represents the variation between the predicted and
observed values expressed as a logarithm. Eq. (6) is utilized in
the computation of RMSLE. A comprehensive overview of the
diverse statistical parameters is presented in Table 5

27':1(17,- - )

R=1- ¢, 3
ST - D)
vag = 215 Bl @
n
m o _ 32
RMSE = M, (5)
n
m _ 2
RMSLE _ Zj=1(10g(x + 1) log(y + 1)) ) (6)

n

where t; represents the experiment data prior to the
model’s development, p; represents the predicted outcome
of the model, f denotes the intended average value, and m
denotes the total number of occurrences used in the

Table 5: The ranges of error are associated with different statistical
metrics

Evaluation criteria Range Model accuracy

MAE (0, ) More accurate if less
R? value 0,1 More accurate if high
RMSE (0, o) More accurate if less
RMSLE (0, o) More accurate if less

DE GRUYTER

modeling process. While the actual outcome is denoted
by y, while the predicted result is denoted by x.

5 Results

5.1 GEP model performance

As shown in Figure 7(a)-(c), the ETs represent the output of
the optimal GEP model generated by GeneXproTools. ETs
are decoded so that a mathematical equation can be
derived to forecast the CS of SCC. Eq. (7) represents the
most basic predictive equation, employing only the five
fundamental arithmetic operators, namely +, -, /, v, and
x. Furthermore, it is comprised of three discrete variables,
namely A, B, and C, which were obtained from Sub-ET 1, 2,
and 3, in that order. Equations embody the decoded equa-
tions derived from each Sub-ET

CS(MPa) =A + B+ C, @)

A= \/ld3 - % + dl] - (d1x6.24) (7a)

_ d1x (d7 + d0) x (4.37)

(d4 % d5) x (d1 x d2) (7b)
4 [d1
_ | _ 7
C= 505 %\ gg * (@ dO) (70)

where d0 represents the water-binder ratio, d1 represents the
cement (kg-'m ), d2 represents the marble powder (kgm ), d3
represents the glass powder (kg‘m ), d4 represents the water
(kgm™), d5 represents the slump flow (mm), d6 represents the
density (kg'm™), and d7 represents the curing time (days).

5.2 GEP outcomes from the model

As illustrated in Figure 8, the GEP model in this particular
situation has exhibited a noteworthy performance, as
demonstrated by its R* value of 0.90, which signifies a robust
correlation between the anticipated and actual CS values.
The error distribution between predicted and actual values
is illustrated in Figure 9. It indicates that 48.4% of the pre-
dicted CS values have an error of no more than 1 MPa. This
demonstrates the model’s ability to make precise CS predic-
tions with a minimal margin of error. Furthermore, it is
noteworthy that 28.8% of the predictions lie within the
interval of 1-3 MPa, suggesting a marginally wider extent of
error that is still deemed acceptable. Nevertheless, 22.8% of
the forecasts demonstrate inaccuracies surpassing 3 MPa,
indicating that there are difficulties in precisely forecasting
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©

Figure 7: Expression trees were obtained via the GEP model: (a) Sub-ET 1, (b) Sub-ET 2, and (c) Sub-ET 3.

higher CS values. The model exhibits its shortcomings in represented by Eq. (8); these equations can be employed to
effectively managing extreme cases, as evidenced by the denote the resultant CS. Five arithmetic operators com-
highest error value of 5.61 MPa, whereas its capability to gen-  prise the ETs: +, -, /, x, and V.

erate precise predictions in specific situations is demon- 3d1) x 0 + VA= a5
strated by the lowest error value of 0.1 MPa. The mean error e = B d-ds V2d7 x d4 x d3 + d2)
value for the predicted CS values is 1.72 MPa, suggesting that — 300y - [
the overall performance is reasonably precise. . | ’% +d7-d2x Jd6 ¥ —— B
% D gy (8)
\/ 2(d3) 0
d4

5.3 MEP model performance ar-2]% gy

"0 - 2d2) \/E X
When attempting to predict the CS of SCC, multi-nominal
expression models are constructed in this section. In addi- where d0 represents the water-binder ratio, d1 represents
tion, empirical equations derived from ETs for the SCC are  the cement (kg'm™), d2 represents the marble powder
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Figure 8: Correlation between actual and predicted findings for the GEP model.

(kg'm™>), d3 represents the glass powder (kg'm ), d4 repre- 5.4 MEP outcomes from the model

sents the water (kg'm ), d5 represents the slump flow

(mm), d6 represents the density (kg'm>), and d7 represents The MEP model exhibits a remarkable level of perfor-
the curing time (days). mance, as denoted by its R* value of 0.94. As illustrated
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Figure 9: Error distribution for the GEP model.
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Figure 10: Correlation between actual and predicted findings for the MEP model.

in Figure 10, this result indicates a strong correlation between
the predicted and observed CS values. The model’s effective-
ness is demonstrated through the error analysis depicted in
Figure 11. The results indicated that specifically, 59.5% of the
predicted CS values contained errors of less than 1MPa,
demonstrating the model’s capability to predict CS within a

50

)
Hl,‘

Y
o
1

il

o) et | T
| nﬁdﬂ “ﬂl

w
o
1

“L\ Y

Values (MPa)
S
1

-
o
1

’r

limited range precisely. In addition, it is worth noting that
28.1% of the predictions are situated between 1 and 3 MPa,
indicating a marginally wider but still satisfactory margin of
error. Nevertheless, the fact that a mere 12.4% of predictions
exhibit errors surpassing 3 MPa suggests that it is difficult to
predict with precision higher CS values. The model exhibits
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Figure 11: Error distribution for the MEP model.
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limitations in managing extreme cases, as evidenced by the
highest error value of 4.57 MPa, whereas its capability to gen-
erate precise predictions in specific scenarios is highlighted
by the smallest error value of 0.02 MPa. The mean error value
for the predicted CS values is 1.21 MPa, indicating that the
overall performance is consistently precise.

5.5 Evaluation of statistical checks for the
GEP and MEP models

Statistical analyses that compare the efficacy of the MEP and
GEP models reveal significant differences, as illustrated in
Figure 12. The MAE for GEP is 1.723, while MEP has a com-
paratively lesser MAE of 1.217. This discrepancy suggests
that MEP provides a more accurate prediction of the target
variable. In a similar vein, the mean absolute percentage
error (MAPE) for MEP is 4.40%, which is lower than that of
GEP’s 6.00%, further emphasizing MEP’s improved preci-
sion. Furthermore, the RMSE of GEP is 2.34, while MEP
attains a diminished RMSE of 1.71, demonstrating the
enhanced efficacy of MEP in mitigating prediction errors.
Moreover, in relation to the RMSLE, GEP demonstrates a
greater value of 0.076 in contrast to MEP’s lower value of
0.057; this discrepancy underscores the superior predictive
accuracy of MEP, even when the logarithmic scale is taken
into account. In general, MEP exhibits superior perfor-
mance to GEP across a range of statistical metrics, thereby
showcasing its effectiveness and capacity to generate more
precise forecasts in diverse applications.

2.5
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5.6 Sensitivity analysis

The current study investigates the influence of various
input components on the precision of CS prediction for
SCC. The degree of accuracy of the predicted results is
notably influenced by the parameters provided as input
[60]. According to the findings of the sensitivity analysis,
the most significant factor in the development of SCC
strength is the curing time, which has the maximum
impact at 42.7%. This is because the curing time directly
impacts hydration and the subsequent production of prop-
erties. Cement, which comprises 14.3% of the mixture,
serves as the principal binder and is critical for imparting
the structure with cohesion and strength. At 2.7%, the
water-binder ratio is crucial for achieving a balance
between workability and strength. In contrast, the water
contents of marble powder, glass powder, and glass were
3.1, 0.9, and 5.3%, respectively. The slump flow influenced
the CS of SCC by 23.4%, whereas density influenced it by
7.6%. Figure 13 shows how the CS prediction is related to
each input parameter. The quantity of data points utilized
in the model’s construction and the number of input vari-
ables have an impact on the results of the sensitivity
analyses. Nevertheless, the employed ML technique is
capable of ascertaining the individual contribution of
each parameter. The results obtained from these evalua-
tions lack coherence due to the inclusion of additional
input variables. By applying Egs. (9) and (10), the impact
of each variable on the output is computed

Ivi = fmax (Xi) - fmin (Xi)) (9)

—
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Figure 12: Statistical checks for the GEP and MEP models.
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Figure 13: Sensitivity analysis of SCC in forecasting the CS.
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N

SA = (10)

where f; () is the output with the smallest model pre-
diction, f,.(x;) is the output with the highest model pre-
diction, and iisthe showing input variable range while
fixing all other variables.

5.7 Interaction study using SHAP analysis

The interaction study using SHAP analysis, as illustrated
in Figure 14, provides a comprehensive insight into the
relationships between various variables and their SHAP
values. Each dot in the figure is color-coded, with red indi-
cating high values of the most dependent variable and blue
indicating low values. This visual representation highlights
the correlation between the variables and their SHAP
values. For instance, an increase in CT shows a positive
effect, further amplified when the density of SCC also
increases, resulting in high SHAP values (Figure 14(a)).
Conversely, the amount of cement initially increases den-
sity but then decreases it when excessive, with an optimum
value identified at 325kg'm™ (Figure 14(b)). A negative
correlation exists between SF and CT, where increasing
SF decreases CT (Figure 14(c)). An increase in GP combined
with lower CT yields lower SHAP values, with an optimal
GP value at 40 kg'm™ (Figure 14(d)). Lower water-binder
ratios coupled with higher cement levels lead to high SHAP
values (Figure 14(e)). Density was found to be more detri-
mental, with moderate density and higher CT producing
higher SHAP values (Figure 14(f)). Higher levels of MP and
SF result in lower SHAP values, with the optimal MP value

at 40 kg-m™® (Figure 14(g)). The impact of the water ratio
remains unclear due to limited variation in the dataset
(Figure 14(h)). This analysis underscores the intricate inter-
play between these variables and their effects on SHAP
values, guiding the identification of optimal levels for var-
ious components.

6 Discussions

The research utilized two genetic ML techniques, MEP and
GEP, to evaluate the CS of waste marble and glass-based
SCC. The most accurate predictor was determined through
a comparison of the precision of two genetic-based ML
approaches. As indicated by statistical measures, specifi-
cally the R? value, the MEP model demonstrated improved
reliability in comparison to the GEP model, as well as the
variations between observed and model-predicted results.
However, the outcomes derived from the GEP model also
exhibited an acceptable degree of concordance with the
empirical data. Previous research has reported that the
MEP approach demonstrates superior accuracy when pre-
dicting various attributes compared to GEP [61-64]. Table 6
provides a comparison of the current study with the pre-
vious researchers that have employed ML algorithms. The
efficiency of an ML technique is significantly impacted by
the number of input variables and the database utilized
to implement the methods [65]. This presents difficulties
in identifying and suggesting the most appropriate ML
approach for forecasting results across various research
areas. The implementation of ML studies applications in
the construction sector has the capacity to improve the
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Table 6: ML assessment of the current study’s results in the context of relevant prior research

Ref. Material examined Investigated mechanical ML techniques applied The model with the
properties best result

Present study Self-compacting concrete cs GEP and MEP MEP

[64] Metakaolin-based concrete  CS GEP and MEP MEP

[61] Rice husk ash concrete CS GEP and MEP MEP

[67] Chalky and clayey soft CS and tensile strength (TS) Linear genetic programming (LGP), LGP and MEP

limestone GEP, and MEP

[68] Fly ash-based mortar cs ANN, NLR, MEP, and M5P-tree MEP

[62] Plastic sand paver blocks cs GEP and MEP MEP

[69] Marble cement cs GEP and MEP MEP

efficacy of devising economical methods that facilitate
expeditious assessment of material properties [66].

The MEP and GEP models developed in this study pro-
vide advantages due to their ability to operate within a pre-
defined set of eight independent variables (water-binder
ratio, cement, marble powder, glass powder, water, slump
flow, density, and curing time). This attribute ensures that
the forecasts produced are customized for the use of waste
marble and glass as a replacement for cement in SCC. The
dependability of the CS predictions produced by the models is
established through their utilization of identical unit mea-
surements and adherence to a standardized testing proce-
dure. The ML models’ prescribed arithmetic equations are
of paramount importance in comprehending the proportions
of the mix design and the influence of individual independent
variables. However, if more variables are added to the model
equations further than the mentioned eight variables, it may
impair the applicability of the ML prediction models [70]. The
created models were specifically developed to handle a spe-
cific set of input variables and may not function well when
confronted with new input variables. The prediction models
may also produce inaccurate findings if changes or discre-
pancies in the input variable units are made. To ensure the
models are considered effective, it is crucial that the input
parameter models’ units be the same as in this study.

ML prediction models offer a wide range of practical
uses in the construction sector [71]. For example, predicting
material characteristics, optimizing energy efficiency,
assessing risks, and performing foretelling maintenance.
Nevertheless, it is crucial to recognize that ML models
possess specific constraints that must be considered [72].
These constraints encompass obstacles concerning the avail-
ability of data, the degree of accuracy demonstrated by the
models, the required exertion, and the necessity for human
involvement. The development of standardized rules for
database collection and distribution in the field, the incor-
poration of sustainability considerations, the Internet of
Things, and the execution of comprehensible Al techniques

may be the subject of future research. The aforementioned
constraints are being addressed in an effort to improve the
performance of ML-based solutions. These advancements are
capable of producing more precise and current information,
optimizing operational efficiency, improving interpretability,
promoting transparency, and facilitating informed decision-
making. As a result, they possess the capacity to mitigate pro-
ject delays and improve safety, thus making a significant
contribution to the overall sustainability of the construction
industry.

7 Conclusions

The experimental dataset, which consisted of eight inde-
pendent variables, was utilized to analyze the CS of SCC
containing waste marble and glass powder using GEP and
MEP in the present study. In order to obtain the most accurate
predictions, hyperparameter optimization of GEP and MEP
was implemented. Statistical checks were implemented to
evaluate the constructed models, and the disparity between
the predicted findings of the target and the model was
assessed. The primary findings of the investigation are as
follows:

1) Both GEP and MEP models were effective in estimating
the CS of SCC, with MEP performing at a higher accu-
racy. The R? of 0.94 was noted for MEP and 0.90 for GEP,
demonstrating their predictability performance.

It was observed from the analysis of the difference
between the actual and model predicted results that
the average error for the MEP was 1.21 MPa, while the
same for the GEP was 1.72 MPa in estimating the CS of
SCC. These error values further confirmed the predict-
ability of both models, with MEP yielding the least
deviation from the targets.

The other statistical checks, like MAE, RMSE, and
RMSLE, also validated the model’s predictability

2)

3)



18 —— Qing Tao Guan et al.

performance. GEP exhibited an MAE of 1.723 MPa, while
MEP achieved a lower MAE of 1.217 MPa, indicating
enhanced precision in MEP’s predictions.

4) Sensitivity analysis revealed curing time as the most
influential factor, followed by slump flow, cement, density,
glass powder, water, water-binder ratio, and marble powder,
affecting the models’ predictions.

5) A SHAP analysis revealed that curing time, cement
quantity, and density positively influenced the CS of
SCC. Whereas glass and marble powder may yield the
optimum CS at 40 kg'm > in the SCC mixture.

The current study advances concrete technology toward
sustainability and efficiency by optimizing mix designs using
GEP and MEP algorithms to forecast the CS of SCC with waste
marble and glass powder. These findings offer environmen-
tally friendly and cost-effective alternatives for the construc-
tion sector. The mathematical equations from the MEP and
GEP models are crucial for understanding mix design propor-
tions and the impact of each variable. However, this study
was limited to eight input parameters, and other factors like
curing regime, manufacturing procedure, and environ-
ment may influence strength characteristics. Future
research should incorporate these variables into a com-
prehensive database for more accurate strength analysis
models. Additionally, employing advanced ML techniques for
SCC can revolutionize concrete design, promoting resilient
and sustainable infrastructure.
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