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Abstract: The cementitious composite’s resistance to the
introduction of harmful ions is the primary criterion that
is used to evaluate its durability. The efficacy of glass and
eggshell powder in cement mortar exposed to 5% sulfuric
acid solutions was investigated in this study using artificial
intelligence (AI)-aided approaches. Prediction models
based on Al were built using experimental datasets with
multi-expression programming (MEP) and gene expression
programming (GEP) to forecast the percentage decrease in
compressive strength (CS) after acid exposure. Furthermore,
SHapley Additive exPlanations (SHAP) analysis was used to
examine the significance of prospective constituents. The
results of the experiments substantiated these models.
High coefficient of determination (R values (MEP: 0.950
and GEP: 0.913) indicated statistical significance, meaning
that test results and anticipated outcomes were consistent
with each other and with the MEP and GEP models, respec-
tively. According to SHAP analysis, the amount of eggshell
and glass powder (GP) had the most significant link with CS
loss after acid deterioration, showing a positive and negative
correlation, respectively. In order to optimize efficiency and
cost-effectiveness, the created models possess the capability
to theoretically assess the decline in CS of GP-modified
mortar across various input parameter values.
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1 Introduction

The annual global consumption of cement-based materials
(CBMs) is second only to that of water [1]. Derivatives of
CBMs are widely employed in construction owing to their
low cost and high durability [2,3]. Durable CBMs are char-
acterized by their ability to maintain their functionality,
mechanical performance, and quality even after being sub-
jected to ecological conditions [4]. The resistance of CBMs
to chemical assaults, weathering, abrasion, and other types
of corrosion [5] is one indicator of their durability. CBMs
decay when exposed to various harsh elements. The source
of the attack could be internal or external, and the attacking
method could be mechanical, physical, or chemical. Physical
and chemical assaults can ruin the composite’s paste and
aggregate [6]. Several different types of harmful factors [7]
reduce the strength and durability performance of CBMs; thus,
their effectiveness in an aggressive setting is the main con-
cern. Products derived from cement are frequently attacked
by acid, sulfate, and other harmful elements because of the
rapid expansion in the business sector. Currently, the building
industry is primarily concerned with creating a material that
can endure severe surroundings and maintain its expected
lifespan [8].

Ion resistance affects CBM durability. Porosity can be
estimated from CBM absorbency, void volume, and pore
connectivity [9]. Items made of cement are highly vulner-
able to corrosion when exposed to sulfuric acid (H,SO,)
[10]. Hydroxide gas can hasten the deterioration and even-
tual collapse of cement-based concrete structures. Ions that
dissolve in water due to reactions between cement paste’s
calcium-silicate-hydrate (CSH) gel and Ca(OH), when sub-
jected to weak or strong acids dissolve the components of
CBMs [7]. H,SO, is one of the most destructive acids for
CBMs due to the presence of sulfate in its assault [10]. As a
result of sulfates’ chemical attack and salt crystallization’s
physical attack [11], the rapid degradation of CBMs can be
accelerated by sulfate attack. CSH decomposition results in
the production of new chemicals that exacerbate cement-
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based products’ durability problems [11]. Therefore, it is
crucial to investigate how acid attacks can reduce the dur-
ability of CBMs.

Energy-intensive and carbon dioxide release with cement
production is a major contributor to climate change [12]. Recy-
cling and reusing debris could help cement manufacturers
lower production costs and carbon dioxide output [13-15].
Therefore, there is an urgent need for cement-based products
that are beneficial to the environment in the building sector
[16]. Furthermore, natural aggregate extraction results in sig-
nificant carbon dioxide emissions and resource depletion [17].
Cement that has been treated with recycled glass powder (GP)
and eggshell powder (EP) is a popular choice among construc-
tion materials due to its accessibility and affordability [18,19].
Replacing 10-20% of the cement or sand with GP can enhance
the mechanical properties of the material, including its com-
pressive and flexural strengths [20]. Also, using EP as cement
or sand replacement in cementitious composites may enhance
the strength properties [21]. Reduced cement demand and CO,
emissions, conservation of natural resources, and simplifica-
tion of waste management are all outcomes of utilizing GP and
EP in place of cement [22,23].

Performance forecasting models for materials and
structures are now being developed by professionals in
order to cut costs and save time [24]. Attribute estimates
are made using forecasting models, such as regression-
based approaches [25-27]. Machine learning (ML) and
other artificial intelligence (AI) techniques are currently
at the forefront of model creation in this field [28,29].
Many fields use a variety of modeling tools, not just ML,
to probe a wide range of questions [30]. The urge for ML
techniques for estimating the functionality of construction
materials has increased. Despite the fact that most current
ML studies have focused on traditional CBM strengths
[31,32], for CBMs modified with GP and EP, only a small
number of research have focused on property predicting
[12,21,33,34]. Table 1 summarizes past ML studies. However,
empirical equation-based ML models using gene expres-
sion programming (GEP) and multi-expression program-
ming (MEP) have not been developed for estimating the
loss in compressive strength (CS) after an acid attack.

Table 1: Literature-ML research
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The objective of this work was to scrutinize the impact
of acid assault on CS in GP-and EP-modified cement mortar
using ML approaches. Models of ML estimation were devel-
oped using data collected during the experimental strategy.
The research objectives were attained by employing ML
techniques, such as MEP and GEP. The unique mathema-
tical formulas provided by MEP and GEP allow for the
estimation of features in a different database, which is
why it is so important, contrary to the other ML techni-
ques. The mathematical models used in this research can
facilitate quick evaluation, improvement, and rationaliza-
tion of mortar mixtures proportioning by scientists and
engineers. Various methods were utilized to evaluate the
performance of ML algorithms, including the R? coefficient,
statistical analyses, and the variability of predicted results.
The primary goal of this research was to evaluate how
effectively ML techniques can predict material quality.
These ML approaches require a dataset, which can be cre-
ated through exploratory experiments or by examining
existing data sources. Input from this data set could be
used by ML models to approximate material qualities.
The capacity of ML approaches to foretell changes in CS
following an acid assault on cement mortar with GP and EP
was evaluated using seven input parameters in conjunction
with experimental data. To go even further into the impor-
tance of raw components, SHapley Additive exPlanations
(SHAP) analysis was conducted. These models, using algo-
rithms like GEP and MEP, enhance the accuracy of predic-
tions for factors such as CS, durability, and performance
under various conditions, thereby improving construction
quality and safety.

2 Overview of ML methods

2.1 GEP

Holland was the first person to present the genetic algo-
rithm (GA) [40]. Its foundation rests on Darwin’s idea of
natural selection. An accumulation of GAs is used to

Ref. Materials investigated Attributes projected ML technique utilized

[35] RHA-based concrete (&) AdaBoost, Extreme gradient boosting, and Gradient boosting
[36] GP-mortar Flexural strength BR, and support vector machine (SVM)

[371 Geopolymer concrete cS MEP and GEP

[38] Mining waste-based cement (&) SVM, decision tree, and RF

[39] Metakaolin-centered concrete Mechanical characteristics MEP and GEP
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illustrate the advancement of the genomic process and
chromosomes of constant length are used to illustrate the
resolution of the process. In his proposal, Koza suggested a
variation of GA that he referred to as gene programming
(GPg) [41]. The GPg approach is a generic method for sol-
ving issues that employ genetic evolution to automatically
develop a model [42]. Parse trees and other nonlinear
structures are utilized in place of binary strings of a fixed
length, which is one of the reasons why GPg is such a ver-
satile technique. To handle reproduction-associated chal-
lenges in line with Darwinian theory [43], a well-established
machine intelligence software uses chromosomal para-
meters (such as mutation, crossover, and reproduction)
that occur naturally. GPg eliminates poor-performing pro-
grams during reproduction. As was the case in the previous
instance, the trees that are the least suitable for the region
are cut down, and the ones that are left are used to repo-
pulate the area. Protecting early model convergence is the
function of the evolution process [44]. GPg eliminates poor-
performing programs during reproduction. The process is
the same as before: the worst trees are chopped down, and
the best ones are planted back into the ground. The evolu-
tion process protects early model convergence [43]. A large
number of the parse trees are generated by a crossover
chromosomal processor despite the fact that GPg is capable
of automatically generating a model [45]. The creation of
nonlinear GPg forms necessitates dual roles as genotype
and phenotype, resulting in convoluted representations for
desirable features [46].

Ferreira is the one who initially presented the GEP,
which is a version of the GPg [46]. Parse trees and fixed-
length linear chromosomes are used in GEP modeling,
which follows the population generation hypothesis. An
improved GPg, GEP, uses chromosomes of set length to
encrypt small software programs. GEP can predict complex
and nonlinear issues with mathematical equations [47,48].
In accordance with the GPg standard, the fitness operation,
the ultimate set, and the final criteria have all been set. The
GEP method generates random chromosomes, which are
identified and numbered using “Karva” language. GEP uses
static-length lines. GPg contemplates parse trees of dissim-
ilar lengths while programming with data. These unique
strings are expressed as nonlinear expression/parse trees
with branch forms that range in size to represent the chro-
mosomes after being coded as fixed-length genomes [49].
Furthermore, these genotypes, in addition to certain forms
of phenol, are encoded [46]. One benefit of genetic engi-
neering is its ability to transfer genomes directly from one
generation to the next without causing structural muta-
tions or duplications. This is one of the reasons why genetic
engineering is so beneficial.
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Typically, a chromosome is made up of two parts: the
“head” and the “tail.” Consequently, the creation of crea-
tures from a single gene that contains a large number of
genes is yet another distinctive characteristic [43]. These
genes encode a diverse array of operations, encompassing
logical, mathematical, arithmetic, and Boolean logic func-
tions. It is the responsibility of the operators of the genetic
code to connect cells to the roles that have been allocated
to them. In order to obtain and infer the information that is
contained in these chromosomes, a whole new language
known as Karva is utilized. The development of empirical
formulas is facilitated by this language. Next, starting with
Karva, a leading revolution is used to traverse the expres-
sion tree (ET). This then follows the previous step. In accor-
dance with Eq. (1), the nodes that are located in the layer
that is the lowest are moved to the bottom and recorded by
ET [47]. It is conceivable that variations in the quantity of
the GEP gene and the duration of K-expression could be
influenced by an unequal distribution of ETs. This is some-
thing that deserves more investigation.

ET GEP = log[i - % . &)

Due to the fact that its outcomes are not reliant on any
established associations, GEP is considered to be an advanced
ML technique. Figure 1 depicts in detail the various steps that
were used to develop the GEP mathematical equation, which
offers a comprehensive overview of these processes. During
birth, the number of chromosomes that are present in each
individual is predetermined. After that, these chromosomes
are formally designated as ETs after evaluations have been
conducted on the health of all individuals. One of the mem-
bers of the population who is the healthiest is selected to
reproduce. Iterative processes, which include the participa-
tion of the most appropriate individuals, are used to arrive at
the best possible answer. There are three genetic processes
that are finally utilized in order to get at the ultimate numer-
ical expression. These processes are mutation, crossover, and
breeding.

2.2 MEP

The MEP encrypts solutions using a novel linear-based GPg
approach that has been proven effective. Similar to the
MEP, the GEP is based on the system. A distinctive feature
of MEP, a relatively recent advancement derived from the
GPg method, is its ability to encode multiple software com-
ponents (variants) on a single chromosome. The fitness
values are then used to choose the best chromosome [50],
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Figure 1: GEP technique flow diagram [35].

yielding the ultimate solution. According to Grosan and
Oltean [51], choosing between two parents is the conse-
quence of a method in which a binary environment is
recombined to produce two different children. As pre-
sented in Figure 2, the procedure remains until the most
suitable platform is discovered, which occurs before the
criteria for termination are satisfied. This is the location
where mutations that occur in newborns take place. Ana-
logous to how the GEP model permits the fitting of several
factors, the MEP method also allows for this option. The
key regulators of MEP are variables such as the range and
size of the subpopulation, the chance of crossover, and the
function set [52]. When the population size is all programs,
itis harder to estimate and slower to account for. Similarly,
the code length strongly affects the mathematical expres-
sion size. Table 3 shows all MEP parameters used to esti-
mate the CS credibly.

The appraisal and simulation stages of both approaches
commonly make use of data sets that are derived from the
literature that is pertinent to the situation [53]. The methods
of linear generalization, such as the GEP and MEP methods,
are becoming increasingly popular and can be used to make
more correct forecasts concerning the potential of sustain-
able concrete. Combining linear chromosomal program-
ming with maximum likelihood estimation (MEP) was the
most effective neural network-based technique, according to
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Figure 2: Step-by-step method of MEP [35].

Grosan and Abraham. This held true when contrasted with
alternative methods that relied on neural networks [54]. The
mechanism of the GEP is comparatively more complicated
than the mechanism of the MEP [52]. MEP recycles code does
not require non-coding items to be exhibited at a static place
in the chromosomes, and uses explicit encryption for func-
tion argument references. The density of MEP is lower than
that of GEP [55]. It has been observed that its chromosome
has the usual GEP head and tail, which include codes that
neatly encode syntactically correct software [51]. Therefore,
more study is needed to establish causality and assess the
efficacy of these two chromosomal methods for solving cer-
tain engineering problems.

3 Research strategy

3.1 Data collection

With the utilization of 225 experimental results taken from
the literature as a dataset [56,57], the MEP and GEP models
were used in this investigation to calculate the CS of
cement mortar that has been modified by GP and EP as a
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Table 2: Descriptive statistics of dataset retrieved from previous studies [56,57]

Descriptive Cement sand (kg-m) Water SF (kgm™) SP (kgom™) GP (kgm3) EP (kgm~3)  %CS-loss
statistics (kg'm~3) (kg'm~3)

Mean 730.42 734.16 191.15 152.15 38.13 32.58 30.98 10.82
Standard error 2.50 2.55 0.44 1.10 0.09 1.91 1.90 0.21
Median 721.00 729.00 191.00 153.00 38.00 0.00 0.00 10.49
Mode 760.00 810.00 191.00 153.00 38.00 0.00 0.00 6.81
Standard deviation 53.05 53.99 9.29 23.43 1.82 40.58 40.29 4.46
Sample variance 2814.78 2915.01 86.26 548.88 3.31 1647.02 1623.49 19.88
Kurtosis -0.51 -0.64 -1.46 -1.46 -1.45 -0.70 -0.62 0.23
Skewness -0.26 -0.30 0.08 -0.12 0.17 0.88 0.93 0.59
Range 198.00 198.00 23.00 58.00 4.50 121.50 121.50 24.37
Minimum 612.00 612.00 180.00 122.00 36.00 0.00 0.00 1.1
Maximum 810.00 810.00 203.00 180.00 40.50 121.50 121.50 25.48
Sum 328687.00 330371.00 86016.00 68467.00 17157.50 14658.80 13939.80 4870.92
Count 450.00 450.00 450.00 450.00 450.00 450.00 450.00 450.00

consequence of an acid attack. Cement (C), water (W),
recycled GP, sand (S), EP, superplasticizer (SP), and silica
fume (SF) were the seven independent variables that were
employed to make an estimation concerning the percen-
tage loss in CS (%CS-loss) of mortar that occurred after an
acid attack. The data were prepared in order to facilitate its
collection and organization. The dataset was expanded
from its initial 225 data points to 450 with the assistance
of a Python code that adhered to a predetermined proce-
dure. The code is initiated by allowing the user to select a
database file from a Tkinter-based file dialog box. After
importing the file into a Pandas DataFrame, the code ver-
ified the current point count. The enhanced dataset was
subsequently stored in a newly generated file combining
synthetic and original data. A similar procedure was also
used in prior research to increase the data points of a
database [58]. Data mining is a well-known technique
that involves the finding of knowledge from data. One
approach to overcome a big impediment in this process
is to prepare the data for data mining. For the purpose of
streamlining the data, many methods for filtering the back-
ground noise and other information that is not important
are included in the data preparation process. Also, many
different types of specialists have speculated that the data-
to-input ratio is the most important factor in how well the
proposed model works. The best model for analyzing data
points in order to find the relationship between the men-
tioned variables calls for a ratio higher than 5 [59]. A ratio
of 64.3 meets the criteria established by the researchers in
this study, which employs seven inputs with 450 data
points. A regression analysis and several strategies for
error distribution were utilized in the analysis of the
model. These data were subjected to descriptive statistics,
and the findings are presented in Table 2. Additionally, the

validation approach was performed in order to evaluate
the accuracy of the models that were utilized. Figure 3 also
shows the frequency distribution of all variables using
histograms, which is crucial. The distribution of all of the
variables that serve as input can be used to provide a
description of the overall frequency of occurrence in a
data collection. In order to acquire an understanding of
the frequency with which certain values arise in a data
collection, one can create a relative frequency distribution.
This can be done in order to gain this information.

3.2 Modeling methods

There are a substantial number of input factors that are
required for ML approaches in order to arrive at the desired
result [60]. In order for the ML method to yield perfect
results, the data sample’s properties must be dynamic. There
is a possibility that the results will be in the middle of the
pack if you use a value that is either static or variable
with restricted change [21,61]. To forecast the CS of GP and
EP-modified cement mortar following an acid assault,
experimental data were analyzed. Water, superplasticizer,
sand, GP, EP, cement, and SF were used as inputs by ML
approaches to predict the CS loss succeeding the acid attack.
A combination of GEP and MEP methods was employed to
achieve the ML study’s aims. In keeping with previous
research, the algorithms were trained using 67% of the
data and tested using the remaining 33% [12]. The R* number
is a measure that quantifies the degree to which the data, as
observed, corresponds to the theoretical predictions. The R
number is a representation of the gap that exists between
the model and the data that has been observed [62]. The
divergence is higher when the value is near zero and
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Table 3: MEP and GEP models with set parameters (parameters similar to ref. [35])
GEP
Parameters Settings Parameters Settings
General %CS loss Code length 25
Head size 8 Sub-population size 1,000
Linking function Addition Number of sub-populations 100
Chromosomes 200 Function set +, -, %, +, square root
IS transposition rate 0.00546 Replication number 15
Stumbling mutation 0.00141 Crossover probability 0.9
Upper bound 10 Mutation probability
Function set +, =, X, +, square root Number of runs 15
Gene transposition rate 0.00277 Operators/variables 0.5
Constant per gene 10 Number of generations 1,000
Two-point recombination rate 0.00277 Terminal set Problem input
Mutation rate 0.00138 Number of treads
One-point recombination rate 0.00277 Problem type Regression
Data type Floating number Number of generations 1000
Genes 4 Error MSE, MAE
RIS transposition rate 0.00546
Leaf mutation 0.00546
Inversion rate 0.00546
Gene recombination rate 0.00277
Lower bound -10
Random chromosomes 0.0026

smaller when it is near one. To further assess the model’s
utility, statistical methods were also employed. Additionally,
statistical validation and SHAP analysis were utilized to
delve deeper into the significance of the raw components.
Figure 4 shows the processes that go into ML-based mod-
eling. What follows is a rundown of the study’s validation
procedures and ML methods.

3.3 Structure development of GEP and MEP
models

Selecting suitable input parameters is the initial stage in
building an AI model. For this study, seven input variables
were chosen for their possible effect on the percentage of
CS loss in GP and EP-modified cement mortar. GEP com-
pleted the construction of these models with the help of
GeneXproTools version 5.0. Code is generated using
GeneXproTools, a data generator after the variables are first
classified, and then their missing values are randomly gen-
erated and processed. When compared to the prototype that
came before it, the version that was developed is more effi-
cient and, in general, of superior quality [63]. A variety of
programming languages, including Visual Basic, C++, and
MATLAB, facilitate both the creation of programs and models
[64]. After a great deal of trial and error, as well as comparison

to earlier research, the GEP parameters that were utilized in
this investigation were established [65,66]. To test how chan-
ging GEP parameters affected the accuracy of predictions, the
best starting combination was found via trial and error.
Optimal ordering of GEP hyper-parameters was selected
and included in the modeling process for the purpose of
making accurate predictions and converting them into com-
prehensible mathematical expressions (refer to Table 3). A
higher chromosome and gene count, together with a larger
head size, is associated with an increase in complexity. It
will take more time to run the application as these values
increase. A greater number of genes and chromosomes,
however, allows for a more precise model in general. Pre-
vious research on GP and EP mortar looked at two ensemble
ML methods, BR and random forest (RF) [56]. Nonetheless,
GEP and MEP are two distinct genetic ML approaches, and
this study compares and analyzes their results. The results
of the present study are compared in Table 3 according to
the quality of their hyper-parameters tuning, the success of
their statistical tests, and the accuracy of their mathematical
expression for future prediction. Also, the previous efforts
[56] failed to incorporate hyper-parameter tuning informa-
tion into the GEP mathematical expression-building process.
Moreover, independently verifying the results of the RF
method is challenging without access to the Python code.
Conversely, two mathematical models related to genomics
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Figure 3: Database input and output frequency distribution.

were employed to present the findings of this study. A
training set, consisting of 67% of the data, was used to develop
the models, while a testing and validation set, comprising 33%
of the data, was used to evaluate them. It is easy to make
predictions about the future using the whole spectrum of data
offered in this study.

It has already been mentioned that the linear variety
of MEP is the most famous kind of genetic programming
[67]. Since the MEP can also provide an equation centered
on the outcomes of the construction cost prediction models
[55], it was used to design the compaction constraints by
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employing a finished 450 datasets within the multi-expres-
sion programming X. Despite being variable-length sub-
strings, MEP genes guarantee that the overall length of
every chromosome is directly proportionate to the number
of genes found there. An endpoint or abstract function
representation is stored by each gene, and pointers to the
arguments provided to a function are also stored by the
genes that code for that function. Over the course of this
study, the indicator values for the parameters of the func-
tion have consistently been found to be lower than the
placement of the relevant function on that chromosome [51].
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A cursory examination of the formulation is performed, and
additional reading material on the expanded GEP approach
and MEP modeling can be found elsewhere [67]. Table 3
describes the hyperparameters used in constructing these
models, which are crucial for tuning the algorithms to
achieve optimal performance. Hyperparameters, such as
population size, mutation rate, and number of generations,
determine the learning process and significantly impact the
models’ accuracy and efficiency.

3.4 Model performance evaluation

The statistical effectiveness of the models generated by
GEP and MEP was evaluated using training, testing, and
validation datasets. Seven distinct arithmetic metrics were
computed for each of the three groups: Pearson’s correla-
tion coefficient (R), mean absolute error (MAE), Nash-
Sutcliffe efficiency (NSE), root mean square error (RMSE),
relative squared error (RSE), relative RMSE, and mean
absolute percentage error (MAPE) [53,65]. All of these sta-
tistical measures are as follows (Egs (2)—(8)):

_ Yia(@- @) - b) o
Vs = @)? Tima(p; — P
MAE = lZIPi - T, ®
nia

. — T2
RMSE = Zw’ 4)
oL Ip. - T
MAPE < 100% Zu’ -
ia T
n (g - p)?
RSE = —z’,; 1@~ p l)z, 6)
2i=1(@ - @)
n (g - p)?
NSE =1- 72;‘1((1 If)z, @)
2i-1(ai - p)
no 2
RRMsE = L[ 2@ TP ®
|a] n

The numbers a; and p;, which represent the ith real
and projected results, respectively, are the symbols that
are used. These symbols denote the mean values of the
actual and predicted results, respectively, with “n” repre-
senting the total number of observations in the dataset.
There is a simultaneous representation of both of these
symbols. The correlation between expected and observed
outcomes (a; and p,) is known as R, and it is a prominent
statistic for evaluating the usefulness of a model. A strong
correlation between the actual and expected production
amounts exists when R > 0.8 [68]. The division and multi-
plication operations do not trigger an output from R. The
factor R* was calculated for both the actual and projected
outcomes since the model is now more functional and
delivers more balanced estimation results. More efficient
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Sub-ET1 higher error levels with ease. Errors have less of an effect
on the enactment of the produced model if the MAE and
RMSE values are smaller [70]. MAE, however, was discov-
ered to be useful primarily for continuous and smooth data
sets [71]. Typically, when the previously computed error
values drop, the model ’s performance increases.

4 Results and analysis

@ 4.1 GEP model development
Using head size and chromosomal number to deduce mathe-
matical linkages, the GEP method (as shown in Figure
5(a)-(d)) generated ET-centered models to predict the per-
centage of CS loss induced by the acid assault. The five
arithmetic operators (square root, +, +, -, X) are used to
create the majority of the %CS-loss following acid assault sub-ETs.
The result is a mathematical formulation produced by encoding
the sub-ETs of the GEP model. In order to predict the future %CS-
loss, the formula in Eq. (9) with these input values can be utilized.
The generated model for GP and EP-based mortar has enough
data points to outperform an optimal model under perfect cir-
cumstances. Figure 6(a) displays regression lines illustrating the
relationship between CS loss, comparing the model’s predictions

O,
‘ @ with experimental data from both the training and validation
oD ©

Sub-ET 3

sets. The strong agreement (R* = 0.913) between the actual and
predicted outcomes indicates that the GEP method was successful
in accurately estimating the CS of mortar modified with GP and

‘ ° EP. Figure 6(b) shows the experimental data plotted against abso-

lute error, which graphically shows the highest percentage of

e @ @ @ error for the proposed GEP equation. With a minimum of
0.016 and a maximum of 3.841, the experimental data and the

© GEP equation show an average absolute error of barely 1.044.

Furthermore, 88 of the error readings are within the range of 1-2
MPa, while 88 is of 1 MPa. Note that maximal error frequencies
really occur very seldom.

Sub-ET 4

-12.629 + (SP - 12.629)
%CS-loss (MPa) =

(EP)3.646 )x [%F]

+(10.379 + (-8.205
+ ({/(EP - SP) + (SF - SP)))) ©)

-9
+1]-8.082 + + /5.508

@ [ (SP - C)

Figure 5: Expression tree representing the finalized model. (a) Sub-ET 1, GP
(b) Sub-ET 2, (c) Sub-ET 3 and (d) Sub-ET 4. + \/ SP + [EP - m]] - 6.598],

model construction is indicated by a larger R* value, which  where S represents sand, SP represents superplasticizer, W
is closer to 1 [69]. Like RMSE, MAE was able to manage represents water, C represents cement, GP represents glass
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Figure 6: The GEP model: (a) test-predicted %CS-loss correlation and (b) test-and-predicted %CS-loss error distributions.

powder, SF represents silica fume, and EP represents eggshell
powder.

4.2 MEP model development

An empirical equation to determine the reduction in cemen-
titious strength percentage in mortar modified with GP and
EP was formulated based on an analysis of the MEP results,

considering the impacts of the seven distinct components.
The full set of mathematical equations used for the modeling
are as follows (Eq. (10)):

SP(~/S + W + SF + EP)
C - SP + 3GP

(10)

%CS-loss (MPa) =

bl

where S represents sand, SP represents superplasticizer, W
represents water, C represents cement, GP represents glass
powder, SF represents silica fume, and EP represents egg-
shell powder.
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Figure 7 shows that the test results and the MEP pre-
diction are correlated throughout the training and testing
stages. An ideal regression line would have a slope close to 1.
Figure 7(a) shows that the MEP model can handle oversim-
plification because it was well-trained; the testing data
R? value was 0.950. Thus, the MEP model appears to be
superior to the GEP model because of its higher R* value.
The disparities between the actual and expected results of
the MEP models are illustrated graphically in Figure 7(b).
Evidence from the given data shows that the MEP prediction

O Predicted %CS loss

of acid assault on CS in GP- and EP-modified cement mortar == 11

errors varied from a low of 0.010 MPa to a high of 2.505 MPa.
An essential point to remember is that the maximum error
of the GEP model occurs more often than the MEP-predicted
outcome’s maximum error. When it comes to making pre-
dictions, the MEP and GEP models are top-notch. The corre-
lation coefficient and statistical error are both enhanced by
the MEP equation. The simplicity and compactness of the
MEP equation are the reasons for its many practical applica-
tions. Table 4 also shows the values of the respective statis-
tical errors of the two models. The MEP model demonstrates

——Linear (Predicted % CS loss)

22
O
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Figure 7: The MEP model: (a) association between the test and the predicted %CS-loss; (b) error distributions for both the test and the predicted %

CS-loss.
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Table 4: Statistics-based MEP and GEP model performance indicators

Parameters MEP GEP

MAE (MPa) 1.044 0.568
MAPE (%) 12.70 6.00

RMSE (MPa) 1.377 0.810
NSE 0.912 0.947
R 0.956 0.975
RSE 0.196 0.244
RRMSE (MPa) 0.226 0.434

superior performance compared to the GEP model, as it
exhibits stronger correlation and lower error levels.

It is possible to further discuss, from different view-
points, MEP outperforms GEP in every conceivable way in
estimating the %CS-loss due to acid assault of GP and EP-
based mortar. One positive feature is the MEP model’s
clarity and openness. For the purpose of calculating mor-
tar’s CS, MEP uses an equation that considers the additive
impacts of each component. Due to the fact that it is simple
to learn and interpret, this equation is useful in practical
calculations. The GEP model, in contrast, relies on a complex
nonlinear equation derived from human DNA. Because of its
intricacy, the equation may be hard to understand and may
not reveal any information about the relationships between
the variables.

4.3 Statistical assessment of the models

The MEP model’s statistical performance is also an impor-
tant consideration. The MEP model successfully explains
95% of the detected variation in the %CS-loss of the mortar
samples, as shown by the relatively high value of R* (coef-
ficient of determination). The MEP model’s improved R?
value during validation further indicates its potential uti-
lity for forecasting data that have not yet been collected.
When the R? value is high, the independent variables
(sand, cement, water, silica fume, superplasticizer, GP, EP,
and %CS-loss) exhibit strong correlations with the depen-
dent variable (%CS-loss). In contrast to the GEP model, the
MEP model provides more precise forecasts with a reduced
RMSE. The MEP model’s projected %CS-loss aligns more clo-
sely with the values observed in the mortar specimens due
to lower values for RRMSE, MAPE, MAE, RSE, and RMSE.
Table 4 demonstrates that the MEP model surpasses the
GEP model in terms of prediction accuracy. This superiority
is evident from considerably lower values of statistical para-
meters such as RMSE, MAE, MAPE, RRMSE, and RSE. Further-
more, Table 4 indicates that the MEP model achieves a higher
NSE value compared to the GEP model, signifying its superior

DE GRUYTER

predictive accuracy. A high NSE indicates that the model is
producing accurate predictions. The MEP model’s correctness
and usefulness can be evaluated using these statistical mea-
sures. Figure 8 uses violin plots to depict the distribution of
errors (faults) in the MEP and GEP models. Violin plots com-
bine box plots and density plots, showing the probability
density of the data at different error levels, which helps in
visualizing the spread and skewness of model errors. This
provides a clear comparison of error distributions between
the two models. The transition from GEP to MEP resulted in a
considerable reduction in model errors.

For the purpose of predicting the percentage of CS loss
in the GP and EP mortar samples, the MEP technique is an
ideal modeling technique. This is due to the fact that it is
user-friendly, it performs well in terms of mathematics,
and it has the ability to incorporate the impacts of GP
into a rectilinear equation. These discoveries may have
applications in the real world, such as understanding
how to change the components of GP and EP-modified
mortar in the most effective manner in order to attain
the required CS in construction projects. Furthermore,
these findings open the door to the prospect of creating
trustworthy prediction models for different kinds of mod-
ified mortar and concrete. These findings also make it pos-
sible to develop building methods that are more ecologi-
cally friendly and efficient.

4.4 SHAP results

Researchers in this study looked at how acid attacks
affected GP and EP mortar and what parts of it were

4.5 -
404 Avg error= 1.044 MPa
3.5
3.0 Avg error= 0.568 MPa
2.5 4
2.0 -
1.5
1.0

0.5 E

0.0

Absolute error (MPa)

0.5

-1.0 .

T
GEP MEP

Figure 8: Violin plot as a means of displaying ML model errors.
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responsible for those impacts. The SHAP tree explanation
is used all across the world to help people better compre-
hend the local and global feature implications of SHAP.
Different input features affect the acid attack %CS-loss
of GP and EP mortar, as shown in Figure 9 of the SHAP
diagram. The x-axis displays the proportion of the SHAP
value attributable to each raw material, while the y-axis
depicts the independent variables. The most important ele-
ment, with a stronger positive correlation with the percen-
tage of CS loss of mortar following an acid assault, was
found to be the EP amount. Implying that incorporating EP
increases the loss in CS with acid attack. Second, the GP
amount was determined to be an important factor with a
negative impact, suggesting that the incorporation of GP
reduces the CS loss with acid. A stronger negative correlation
between cement and the percentage of CS lost following an
acid assault was observed, indicating that the control speci-
mens (those lacking GP and EP) suffered a reduced loss of CS
following the acid attack. The impact of sand was noted to be
both positive and negative. Reduced data variability made it
difficult to draw definitive findings regarding the effects of
water, SF, and SP. The results might be more convincing if a
bigger data set was used along with a wider range of input
variables.

Figure 10 displays the various raw material contribu-
tions to the acid attack’s weakening of GP and EP mortar.
Figure 10(a) shows the EP impact and its interplay. At the
reduced quantity of EP (up to 60 kg'm™), the CS loss after
the acid attack was less, while at the higher quantities of
EP, the strength loss was higher. This might be due to the
lower EP reactivity and dilution of cement at higher EP
levels. The strength loss caused by acid assault was signifi-
cantly decreased up to a GP level of 80 kg'm™>, as shown in
Figure 10(b). The reduction in CS loss with GP usage might

EP TF = T TR PR
GP twMdise s 4y .....*..... roo
Cement . '“""W'" e v
Sand ' "'i*"' :
Water I )
sp |
SF |

-2.5 0.0 2.5 5.0
Shapley Values - Impact on Models

1.5

Figure 9: Impact of input parameters on CS-loss.
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be attributed to the pozzolanic nature and finer particle size
of GP, which made the matrix more dense and restricted the
ingress of harmful ions. Figure 10(c)) implies the correlation
of cement, exhibiting a decreasing trend with increasing
cement quantity in the mix. The impact of sand was noted
to be feasible at reduced quantities, as shown in Figure
10(d). Water, SP, and SF have a negligible impact on the
loss of mortar strength, as shown in Figure 10(e)—(g), due
to less variation in the provided parameters. The outcomes
of the SHAP analysis were notably influenced by both the
type of raw material and the size of the dataset under exam-
ination. The number of samples utilized and the input fac-
tors could affect the results.

5 Discussion

Worldwide, ordinary Portland cement is extensively used
as the only binding material, diminishing raw materials
[72] and emitting approximately 5-8% of global anthropo-
genic emissions [73]. In efforts to mitigate the release of
Ca0, by the OPC industry, identifying alternatives to OPC is
paramount. Supplementary cementitious materials, including
GP, EP, silica fume, fly ash, and rice husk ash, stand out as
promising eco-friendly and energy-efficient construction
materials. These materials have been partially employed to
replace cement and sand in this respect [74]. Using ML and
SHAP techniques, this research sought a deeper comprehen-
sion of the application of GP- and EP-modified cement mortar.
To calculate the percentage of cement strength lost due to acid
attack on GP and EP-modified mortar, this study employed
GEP and MEP ML methods. By comparing their respective
levels of accuracy, we were able to determine which strategy
was the best predictor. The MEP approach yielded more accu-
rate findings than the GEP technique, with an R* of 0.950 for %
CS-loss as compared to the GEP-R* value of 0.913. The differ-
ence between the predicted and actual results (errors) is more
evidence of the MEP method’s superior accuracy. In order to
determine how well the two datasets agree, error analysis is
used to compare the MEP model’s experimental and projected
results with the GEP model. Table 5 displays the results of
previous research that confirm the MEP technique outper-
forms the GEP method when it comes to estimating CBC
strengths. The higher accuracy of the MEP model compared
to the GEP model can be attributed to its enhanced ability to
capture complex relationships within the data. MEP utilizes a
multi-expression approach, allowing it to generate multiple
solutions simultaneously and select the best-performing one.
This flexibility results in a more robust and accurate model.
Additionally, the MEP structure helps in avoiding overfitting
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Table 5: Previous techniques used for modeling

Most effective model (R*value)

Attribute investigated

Material studied

Method

Ref.

0.96)

0.93)

%CS loss after acid attack

cs

GP and EP-based mortar

GEP and MEP
GEP and MEP

Present study

[37]

FA-based geopolymer concrete

MEP

cs

Mixture of sand and cement, including metakaolin clay

Eco-friendly sand paver bricks made of plastic

Viscose-based eco-friendly pavement

MARS, MEP, and ANN

GEP, MEP

[26]

cs

[75]

MEP

CS, STS (split tensile strength)

MLPNN, MEP, and ANFIS.

[76]
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by balancing model complexity and prediction accuracy more
effectively than GEP.

Statistical approaches were also used to evaluate the
accuracy of the ML methods. Model accuracy is directly
proportional to the magnitude of the R* value and the
size of the deviations (MAE, RMSE, MAPE, etc.). The perfor-
mance of algorithms for attribute forecasting across var-
ious study topics is heavily influenced by the number of
inputs and data samples utilized, making it challenging to
determine the ideal ML technique. To compare the predic-
tions of the two models, several statistical tests were
employed, including root mean squared error, mean per-
centage error, root mean squared relative error, and MAE.
When compared to GEP, the data demonstrated that MEP
was far more accurate. To further investigate the interplay
between the constituent materials and their impact on GP-
and EP-modified mortar’s CS, an SHAP analysis was con-
ducted. Due to the high link between mortar strength loss
from acid attack and EP and GP, these input characteristics
were determined to be significant, implying their use in
optimal limits.

The fact that the GEP and MEP models can be made to
function with only seven inputs is the source of the value
that both of these models possess. Because of this charac-
teristic, it is guaranteed that the forecasts that are derived
are unique to the application of GP and EP in CBCs to be
accurate. Since all models utilize consistent unit measure-
ments and rely on the same testing technique, the output
forecasts they generate are considered reliable. The math-
ematical equations provided by the models facilitate a
better understanding of mix design and the impact of
each input parameter. On the other hand, once the initial
seven inputs have been taken into consideration, the incor-
poration of additional parameters into the composite analysis
may have an impact on the applicability of the anticipated
models. It is likely that the models that were developed will
not work successfully when they are confronted with unex-
pected inputs. This is due to the fact that the models were
calibrated to cope with a specific collection of data as they
were being generated. Deviation from consistent units or
alterations in input parameters could lead to inaccuracies
in the results of the predictive models. It is critical that the
units used stay constant if we wish to think of the models as
helpful.

6 Conclusions

A research investigation was undertaken to explore the
impacts of recycled GP and EP on acid-affected cement
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mortar, employing ML models. Two ML models, GEP and

MEP, used experimental data to predict the percentage of

CS loss in acid-attacked GP- and EP-based cement mortar.

The following are important conclusions of the research:

1) The GEP approach provided sufficient precision (R* =
0.931), whereas the MEP method had greater precision
(R* = 0.950) for estimating %CS-loss.

2) On average, 1.044 and 0.568 MPa, respectively, separated
the experimental test from the predicted CS (errors) in
the GEP and MEP methods. These error statistics further
demonstrated that the MEP technique was more precise
than the GEP models in forecasting the %CS-loss of GP
and EP-modified mortar.

3) Statistical validation confirmed that the models used
were effective. The accuracy of ML models was demon-
strated by lower errors and better R%. The MAPE for %
CS-loss prediction was 12.70% in the GEP model and
6.00% in the MEP model. Likewise, the RMSE values
were 1.377 MPa for the GEP model and 0.810 MPa for
the MEP model. Statistical results indicate that the
MEP model outperformed the GEP model in predicting
the percentage of CS loss in GP and EP mortar.

4) It was found from the SHAP results that EP and GP
quantities were the most influential factors with posi-
tive and negative correlations, respectively, followed by
cement with negative and sand with both positive and
negative correlations.

5) The SHAP interaction plots showed that increasing the
EP quantity up to 60 kg'm™> and GP quantity up to
80 kg'm~> exhibited a greater resistance to the acid
attack.

The reason that GEP and MEP are so important is that
they provide a novel mathematical expression for predicting
outcomes by varying the values of input parameters. In
order to facilitate rapid evaluation, improvement, and
justification of mortar mixture proportioning, mathema-
tical models that have been derived from this study can
be applied by specialists in the fields of science and
engineering.
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