DE GRUYTER

Reviews on Advanced Materials Science 2024; 63: 20240035

Research Article

Ahmed A. Alawi Al-Naghi*, Muhammad Nasir Amin*, Suleman Ayub Khan*, and

Muhammad Tahir Qadir

Modeling the strength parameters of agro waste-
derived geopolymer concrete using advanced
machine intelligence techniques

https://doi.org/10.1515/rams-2024-0035
received March 11, 2024; accepted June 04, 2024

Abstract: The mechanical strength of geopolymer concrete
incorporating corncob ash and slag (SCA-GPC) was esti-
mated by means of three distinct AI methods: a support
vector machine (SVM), two ensemble methods called bag-
ging regressor (BR), and random forest regressor (RFR).
The developed models were validated using statistical
tests, absolute error assessment, and the coefficient of
determination (R?). The importance of various modeling
factors was determined by means of interaction diagrams.
When estimating the flexural strength and compressive
strength of SCA-GPC, R? values of over 0.85 were measured
between the actual and predicted findings using both indi-
vidual and ensemble AI models. Statistical testing and
k-fold analysis for error evaluation revealed that the RFR
model outperformed the SVM and BR models in terms of
accuracy. As demonstrated by the interaction graphs, the
mechanical characteristics of SCA-GPC were found to be
extremely responsive to the mix proportions of ground
granulated blast furnace slag, fine aggregate, and corncob
ash. This was the case for all three components. This study
demonstrated that highly precise estimations of mechanical
properties for SCA-GPC can be made using ensemble Al tech-
niques. Improvements in geopolymer concrete performance
can be achieved by the implementation of such practices.
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Abbreviations

Al artificial intelligence

BR bagging regressor

CCA corncob ash

CS compressive strength

FA fine aggregate

FAS fly ash

FS flexural strength

GPC geopolymer concrete

GGBFS ground granulated blast furnace slag
MAE mean absolute error

MK metakaolin

MAPE mean absolute percentage error
ML machine learning

PC Portland cement

RFR random forest regressor

RHA rice husk ash

RM red mud

RMSE root mean squared error

SCMs supplementary cementitious materials

SF silica fume
SVM support vector machine
SCA-GPC  concrete incorporating corncob ash and slag

1 Introduction

The long history of concrete as an essential building mate-
rial has highlighted the environmental impact of concrete
over years [1]. With the global demand for cement and
concrete expected to triple by 2,050, carbon emissions
are projected to increase, and biodiversity is likely to
decline at a faster rate than previously anticipated [2].
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Due to its large energy and carbon footprint, Portland
cement (PC) has been the target of researchers seeking to
create alternative binders [2]. In the manufacturing pro-
cess of PC, crucial for concrete binding, approximately 1.80
metric tons of raw materials are utilized, resulting in the
emission of 0.8 metric tons of CO, [3]. Thus, cement output
must be mitigated immediately to reduce environmental
change [2]. One methodical and technical approach to
ensuring materials’ long-term viability is to recycle them
into fresh construction materials from agricultural and
industrial waste [4]. There are societal, economic, and envir-
onmental benefits to producing supplementary cementi-
tious materials from recycled agricultural and industrial
waste [5,6]. Using recycled materials in place of PC has
been proven to be an efficient, affordable, and long-term
strategy for reducing one’s carbon footprint [7-9].

Sustainable concrete, also known as geopolymer con-
crete (GPC), replaces the PC with recycled agro-industrial
resources, making a cementitious binder redundant [10,11].
The utilization of alkali hydroxide and alkali silicate appears
to be a component of the activation process for raw mate-
rials based on the aluminosilicate structure [12]. There is a
wide variety of reprocessed agronomic and manufacturing
materials that have potential as precursors, including fly ash
(FAS), red mud (RM), geopolymers (alumino-silicates), rice
husk ash (RHA), ground granulated blast furnace slag
(GGBFS), silica fume (SF), and metakaolin (MK) [13-18].
GGBFS in producing GPC presents minimal environmental
repercussions alongside favorable cost-effectiveness, heigh-
tened rigidity, and exceptional resistance to chemical degra-
dation. Moreover, it holds promise as a key ingredient in
eco-friendly and economically viable concrete formulations
[19-23]. The corncob ash (CCA) component, instead, is novel.
More traditional pozzolanic components, including FAS and
RHA, can be replaced or supplemented with CCA due to its
elevated level of silica. The usage of on-the-spot heated GPC
is associated with a number of problems; thus, researchers
are considering creating this green concrete at room tem-
perature instead. It is also critical to know that there are
other criteria for judging performance outside of reaching
strength norms. Evaluating a structure’s resistance to envir-
onmental and other pressures is essential for accurately
estimating its lifespan. GPC is a prospective concrete solu-
tion that could be used in ecologically sensitive places because
of its improved mechanical capabilities and improved resili-
ence [31]. All of the aforementioned factors point to GPC’s
unique chemical makeup as the source of the material’s excep-
tional mechanical capabilities and endurance [18,24,25]. Using
nano-silica and reused plastic particles has allowed GPC to
perform better in recent years [26-28]. Waste-based GPC has
numerous advantages, as can be seen in Figure 1.
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Figure 1: Advantages of waste-derived GPC in construction [29].

Experts in the fields of science, engineering, research,
and computer programming are starting to notice that Al is
having a major influence on how new products are devel-
oped and enhanced. Problems exist in the engineering
industry, and there is a high demand for individuals who
can find ways to integrate Al into their jobs. Nevertheless,
there are still certain downsides and performance issues
with Al-based systems, even though the future seems
bright. Artificial intelligence programs have formidable
obstacles when it comes to tasks that people typically
take for granted, such as object identification and natural
conversation understanding [30]. This poses a challenge
for modern Al in creating appropriate alternatives for
training computer perception. Al systems have utilized
machine learning (ML) to tackle these issues [30,31]. ML
algorithms allow computers to gain the necessary expertise
for autonomous action by analyzing a sufficiently large
dataset [32,33]. Getting back to the qualities that make
the most explicit data is the first step before putting the
plan into action. The term “feature extraction” is now used
to describe this procedure. Then, ML is used to train
sample data, attributes, and pattern separation instruc-
tions [30,34,35]. Modern civil engineering research relies on
statistical methods and Al to address ever-increasingly com-
plicated issues. Estimating concrete’s compressive strength
(CS) is a typical use case for these techniques in civil engi-
neering [15,36]. The ability to forecast self-compacting con-
crete’s slump and impact strength [37], varied column axial
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bearing [38], and shear behavior of beams in a structure [39],
as well as the forecasting of chloride contamination [40] are
some of the harder challenges solved utilizing these strate-
gies. These estimates assist in decreasing the number of test
configurations for future investigations, shortening their
duration and expense. ML approaches such as artificial
neural networks, gradient boosting (GB), expression trees
(ETs), Gaussian process regression (GPRs), decision trees
(DTs), support vector machines (SVMs), and extreme gra-
dient boosting (XGB) may estimate concrete strength
[41-43]. The mechanical properties of GPC were better
predicted by the individual and ensemble models than
by any of the other models.

This study used experimental data and AI algorithms
to forecast the mechanical properties of slag and corncob
ash-centered geo-polymer concrete (SCA-GPC), a GPC com-
posed of slag and CCA. One standalone ML method and two
ensemble ML processes were employed in the study to
accomplish its goals. One method to evaluate the models’
accuracy involved comparing the predicted and actual out-
comes, using statistical tests, and performing K-fold ana-
lysis. Carrying out experiments is difficult because of the
lengthy and complex procedures involved in collecting mate-
rials, casting samples, curing them to increase strength, and
evaluating them. Modern modeling techniques like ML can
significantly aid the construction industry by overcoming
these challenges. Conventional testing methods struggle to
assess the overall impact of all parameters on SCA-GPC
strength. To identify the most important variables, this study
employed interaction graphs. Data necessary for ML
approaches can be gathered from existing research. The
dataset now has a plethora of potential uses, such as in
ML algorithms, impact studies, and material property esti-
mations. Utilizing an experimental dataset, this article vali-
dates the efficacy of ensemble ML algorithms in predicting
SCA-GPC strength. The study’s findings might pave the way
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for greener construction methods, which would enhance
GPC’s value to the business.

2 Study methods

2.1 Collecting and evaluating data

The research employed ML models, including SVM, bag-
ging regressor (BR), and random forest regressor (RFR),
to predict the CS and FS of SCA-GPC. The experimental
investigation yielded a dataset comprising 260 data points
[44]. According to the eight input variables (NaOH pellets
[SHP], molar concentration [MC), GGBFS, curing day [CD],
fine aggregate [FA], water [W], CCA, and concrete grade
[CG]), the CS and FS of SCA-GPC were predicted. The data
were collected and organized using data preparation. Data
preparation for mining data is the standard technique for
knowledge discovery from data to minimize major obsta-
cles. Data preparation involves eliminating noise and unne-
cessary details from the dataset. Descriptive statistics in
Table 1 provide a comprehensive summary of key charac-
teristics within the refined dataset, offering valuable
insights into its central tendencies, variability, and distribu-
tion. These statistics serve as fundamental tools for under-
standing the dataset’s structure, facilitating informed
decision-making and hypothesis testing in subsequent
analyses. One common way to find parameter dependencies
is to use Pearson’s correlation coefficient (r) [45]. Two Figure
2(a) for CS and 2(b) for FS, show the results of the association
map plot for the attributes. The r-squared test is useful for
demonstrating parameter dependency and multicollinearity
[46]. Within the range of -1 to +1, a strong negative relation-
ship is provided by -1, a strong positive link by +1, and no
correlation at all by 0 for the r-value [47]. This correlation

Table 1: Variable descriptions using statistics (parameters similar to [48-50])

Parameters Mean Standard Median Mode Standard Sample Kurtosis Skewness Minimum Maximum
error deviation variance
GGBFS (kg-m'a) 218.65 9.54 228.00 0.00 153.90 23685.60 -1.12 0.12 0.00 488.00
CCA (kg~m_3) 215.24 9.48 195.00 0.00 152.78 23341.70 -1.12 0.13 0.00 488.00
FA (kg-m’3) 818.12 3.53 841.00 841.00 56.90 3237.34 -1.41 -0.14 728.00 899.00
W (kg-m’3) 3522 0.3 35.16 37.86 2.15 4.63 -1.53 0.04 32.64 37.86
SHP (kg~m'3) 2338 0.3 23.44 20.74 2.15 4.63 -1.53 -0.04 20.74 25.96
CD (days) 4525 193 42.00 7.00 31.20 973.43 -1.34 0.25 7.00 90.00
MC (M) 14.00 0.10 14.00 12.00 1.65 2.72 -1.53 0.00 12.00 16.00
CG (MPa) 3496 031 30.00 30.00 5.01 25.10 -2.02 0.02 30.00 40.00
CS (MPa) 3590 0.76 36.04 29.04 1219 148.64 -0.74 0.17 10.67 64.09
FS (MPa) 5.36 0.06 5.47 5.00 1.01 1.03 -0.58 -0.24 2.81 7.45
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between the input variables and the output (CS and FS) is

displayed in the bottom row of Pearson’s array.

2.2 ML modeling

Laboratory studies were used to assess the mechanical

properties of SCA-GPC. While CS and FS need ten inputs,
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the prediction models were built using just eight of the
variable inputs. The SCA-GPC’s CS and FS were predicted
using advanced ML algorithms that included SVM, BR, and
RFR. The study achieved its goals by using Python code in
the Spyder environment of Anaconda Navigator (version
5.1.5). Typically, ML algorithms are utilized to compare out-
puts with inputs throughout the process. Researchers allo-
cated 70% of the data for training ML models, reserving the
remaining 30% for testing. Additionally, the R* value of the
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Figure 2: Parameter correlation heat map: (a) CS and (b) FS.

Q
S

(b)



DE GRUYTER

Dataset generated from
literature

Raw mateuals as Test 1esults as
input parameters output (CS, FS)

| Developing machine learning-
/' based prediction models

! ! v

SVM |[ BR l RFR I

—

| Validation of prediction models

Statistical R? ] K-fold l
checks ) method

{{:}Q}) I‘ Interaction diagram
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predicted outcome served as an indicator of the model’s
reliability. A low R* score signifies a significant deviation
between predicted and actual outcomes, highlighting sub-
stantial discrepancies in the model’s predictive accuracy.
This metric serves as a crucial indicator of the model’s effi-
cacy in capturing the variance within the dataset, with
lower scores suggesting a less accurate representation of
the observed data [51]. The correctness of the model was
validated by a number of analyses, which included statistical
examinations and evaluations of errors. A simple graphical
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representation of an event model is shown in Figure 3, which
may be seen hereunder.

2.2.1 Support vector machine

For supervised ML tasks like data regression and classifi-
cation evaluation, there is the support vector machine (or
SVM). SVM classification systems employ diverse categor-
ization strategies aimed at maximizing the separation
between different classes to the greatest extent possible
within practical constraints. This approach ensures robust
classification performance by effectively delineating bound-
aries between distinct categories in the feature space. For
the purpose of depicting the samples, this method makes use
of points on a plane or line. The additional instances are
arranged in a manner that corresponds to their orientation
along the vector, as shown in Figure 4. Figure 5 delineates
the systematic approach for implementing SVM models,
meticulously designed to deliver a holistic assessment of
material strength considering multiple influential factors.
This framework empowers users to fine-tune SVM model para-
meters using sophisticated optimization techniques, thereby
augmenting its predictive precision and utility in material
strength analysis.

2.2.2 BR

The BE technique is illustrated in Figure 6, a simplified flow
diagram. A comparable ensemble method is the most effec-
tive way to describe the steps required to augment the fore-
cast model with additional training data sets. Asymmetric
sample statistics are substituted for the original set of sta-
tistics. With each new batch of training samples, it is
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Nonlinear data after mapping in space
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Figure 5: Process flow diagram for SVM [53].

possible to find the same or similar results. Once the bagging
procedure is completed, each component has an equal
chance of being included in the updated dataset. The
overall projection quality remains unaffected by the
size of the training dataset. The divergence could be
significantly reduced if the target output is more accu-
rately approximated. For each run of the simulations,
this ensemble takes the average prediction and uses it.
The median prediction from several simulations is uti-
lized in regression [54]. Twenty separate models are
used separately to optimize the SVM-based bagging tech-
nique and find its best output.
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Figure 6: Bagging ensemble model: a schematic explanation [55].

2.2.3 Random forest

Random split selection, in conjunction with bagged deci-
sion trees, allows for the attainment of RFR [56]. The
assembly and operation of the RFR model are depicted in
a simplified diagram, as shown in Figure 7. There is a
random selection process for both the training data and
the input parameters required to create each branch split
in the forest’s trees [57]. The natural diversity of the tree is
enhanced by the presence of this variable. When it comes
to the forest, only completely developed binary trees are
there. In the realm of universal regression techniques, the
RFR method has been demonstrated to be effective. When
the amount of variables exceeds the maximum number of
possible clarifications, it has been demonstrated that com-
bining the results of a large number of decision trees that
were chosen at random yields more accurate results. It is
useful for both planned and unplanned learning activities
because the significance of its indications shifts signifi-
cantly throughout the course of time [56].

2.3 Model’s validation

For the purpose of ensuring that the ML models had an
accurate representation of the data, a number of distinct
mathematical techniques and k-fold procedures were devel-
oped and implemented. The k-fold technique is frequently
applied for the purpose of determining whether or not a
procedure is considered to be effective. This strategy involves
arbitrarily dividing the data set into ten different categories
[59]. As depicted in Figure 8, ML simulations are trained using
nine distinct sets, with only one reserved for validation. ML
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Figure 7: Random forest modeling and structure [58].

methods exhibit good performance in scenarios with low
error and high R%. Additionally, to yield positive outcomes,
the treatment needs to be conducted a total of ten times. The
precision of the model, which was previously quite excel-
lent, is greatly improved by this procedure. Various ML
approaches were also correlated by employing statistical
error evaluation metrics like mean absolute percentage error,
mean absolute error (MAE), and root mean squared error.
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Figure 8: K-method operational procedure [52].

Egs. (1) and (3), obtained from previous works, were employed
to statistically test the precision of the ML methods’ esti-

mates [60,61]
Y
RMSE = JZ@, (6]

1 n
MAE = =) |P; - Til, )
nia

MAPE =

100% & |P; - Ti
_Ozg 3)

=

In this context, n stands for the total number of obser-
vations, P; refers to the anticipated results, and 7; indicates
the actual measured values.

2.4 Input parameter interaction analysis

Python and Jupyter Notebook 6.4.12 simulated input fea-
ture interaction. Matplotlib was used to create interaction
graphs. Jupyter Notebook enables users to write and share
interactive code, graphs, equations, and text documents
online [62]. Among the numerous uses for this platform
are filtering of data and alterations, mathematical simula-
tion, arithmetical modeling, and data conception, among
others [63]. For visualizing two-dimensional data arrays,
Matplotlib is one of the Python libraries that is used the
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most frequently [64]. Initiating the plot() method, pre-
paring the data, and establishing the required dependen-
cies are all prerequisites to starting. In order to display a
plot, the show() method must be used. Matplotlib is a
Python library that uses NumPy, an extension for Python
used in numerical mathematics [65]. It includes a variety of
graphs: line, bar, scatter, and histogram. The study utilized
scatter plots to visually depict the relationship between the
input variables, a method commonly employed in numerous
comparable investigations [66,67].

3 Results and analysis

3.1 CS models
3.1.1 €S-SVM model

Figure 9 shows the results of estimating the CS of SCA-GPC
using the SVM model. Figure 9(a) graphically illustrates the
agreement between the anticipated and observed CS. The
dotted lines indicate a 20% deviation from the solid black
line, which represents a perfect match with the data. Pre-
dictions for CS from the SVM model and the measured
values were very close. To effectively determine the CS of
SCA-GPC, the SVM technique was utilized. The results dis-
played a notable level of accuracy, with 83% of predictions
falling within the 20% criterion and an R? value of 0.8745.
Figure 9(b) shows the range of differences (errors) between
experimental and predicted values using the SVM method
is illustrated. The erroneous values exhibited a standard
deviation ranging from 0.09 to 9.50 MPa, with an average
of approximately 3.42 MPa. Specifically, there were 17 values
below 1MPa, 20 falling between 1 and 3 MPa, and 41
exceeding 3 MPa. Despite the scattered data, the error
distribution suggests that the SVM model can effectively
predict the CS of SCA-GPC.

3.1.2 CS-BR model

Figure 10 presents the outcomes of estimating the CS of
SCA-GPC using the BR model. Figure 10(a) shows a distinct
correlation between observed and predicted CS values,
where the solid black line represents an ideal fit, and the
dotted lines indicate a deviation of up to 20%. The experi-
mental CS values closely align with the predictions from
the BR model. The BR technique demonstrates remarkable
performance, achieving an R* value of 0.9365 and with 97%
of predictions falling within the 20% deviation threshold,
indicating significant accuracy enhancement. Figure 10(b)

DE GRUYTER

® Testing data . . s
o
60 Best fit line +20%, °
7 Y
- - -(20%) ,
- = -(+20%) , s’ 2 -
~ 504 . .
2 L0 5 e 00 o T 20%
% ~ o o0
wn 40 - ° ‘. o . _
Q ’ >
E 3 57
5 30 ow e -
2 o B
g Y S ov
= ’ e e
A 20 , V2 .
rd
L2
rd
] ’:/ - y = 0.8312x + 6.825
” R?=0.8745

0 T T : . . :

‘ 10 20 30 40 50 60 70

Experimental CS (MPa)

@

70 - - Experimental CS (MPa)
@ @ Predicted CS (MPa)

¥ Ml Error
}

Compressive strength (MPa)

Data point no.

(b)

Figure 9: (a) Connection between experimental and predicted CS in the
CS-SVM model and (b) scattering of errors and predicted CS.

shows the range of errors between experimental and pre-
dicted values using the BR technique, with incorrect results
exhibiting a standard deviation ranging from 0.07 to 7.42 MPa
and an average of 2.19 MPa. The data are categorized into 19
instances below 1 MPa, 27 falling between 1 and 3 MPa, and 22
exceeding 3 MPa. Error distribution analysis indicates that the
BR model provides more precise predictions for SCA-GPC CS
compared to the SVM model, albeit with slightly narrower
variability in measurements.

3.1.3 CS-RFR model

Figure 11 shows the utilization of the RFR model to estimate
the CS of SCA-GPC. Figure 11(a) illustrates the agreement
between observed and predicted CS values. The CS values
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predicted by the RFR model closely resemble those obtained
experimentally. The RFR technique exhibits remarkable
accuracy in estimating the CS of SCA-GPC, boasting an
impressive R value of 0.9688, with 99% of predictions falling
below the 20% threshold, as depicted in Figure 11(b). The
error range, depicting the differences between experimental
and predicted values using the RFR approach, varies with a
standard deviation ranging from 0.01 to 11.56 MPa and an
average of approximately 1.32 MPa. Further analysis reveals
that among the total values, 48 were below 1MPa, 21 fell
between 1 and 3 MPa, and only 9 exceeded 3 MPa. The error
distribution underscores the superior accuracy of the RFR
model in predicting the CS of SCA-GPC compared to both the
SVM and BR models, with significantly reduced error spread.
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Figure 10: (a) Connection between experimental and predicted CS in the
CS-BR model and (b) scattering of errors and predicted CS.
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3.2 FS models
3.2.1 FS-SVM model

Figure 12 shows the result of using the SVM model to
approximate the FS of SCA-GPC. Figure 12(a) shows the
agreement between the expected and observed FS. In
terms of FS, the predictions made by the SVM model
were pretty comparable to the values that were measured.
An effective estimation of the FS of SCA-GPC was achieved
through the utilization of the SVM analysis. A high level of
accuracy was exhibited by the model, which, similar to the
CS-SVM model, had an R* value of 0.8853 and had a 100% of
its predictions falling below the threshold of 20%. As
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Figure 11: (a) Connection between experimental and predicted CS in the
CS-RFR model and (b) scattering of errors and predicted CS.
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Figure 12: (a) Connection between experimental and predicted FS in the
FS-SVM model and (b) scattering of errors and predicted FS.

shown in Figure 12(b), the SVM method’s projected values
differ from the experimental values by a wide variety of
margins. The erroneous results had a standard deviation ran-
ging from 0.003 to 0.763 MPa, with an average of approxi-
mately 0.276 MPa. Additionally, the analysis unveiled that 45
of the values were below 0.3 MPa, 27 fell within the range of
0.3-0.5 MPa, and 6 were found to exceed 0.5 MPa. It is clear,
after examining the distribution of the errors, that the FS of
SCA-GPC may be predicted by applying an SVM model despite
the fact that its measurements (errors) are widely dispersed.

3.2.2 FS-BR model

For the purpose of approximating the FS of SCA-GPC, the
BR model was utilized, as shown in Figure 13. Figure 13(a)
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Figure 13: (a) Connection between experimental and predicted FS in the
FS-BR model and (b) scattering of errors and predicted FS.

shows the graphic representation of the agreement between
the observed and projected FS. The experimental results for
FS were very close to the predictions made by the BR model.
A remarkable level of accuracy was achieved when the BR
approach was used to efficiently identify the FS of SCA-GPC.
The method’s R? value was 0.9293, and all of its predictions
fell inside the 20% criterion. Figure 13(b) illustrates the
range of discrepancies (errors) between the BR-predicted
and experimental values. The error values, averaging
approximately 0.205 MPa, had a standard deviation ranging
from 0.003 to 0.591 MPa. Moreover, 56 of the values were
below 0.3MPa, 18 fell between 0.3 and 0.5MPa, and 4
exceeded 0.5MPa. The BR model’s FS prediction of SCA-
GPC was noticeably more accurate than the SVM model’s,
with slightly lower spread measurements (errors), as can be
seen from the distribution of the errors.
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Figure 14: (a) Connection between experimental and predicted FS in the

FS-RFR model and (b) scattering of errors and predicted FS.

3.2.3 FS-RFR model
For the purpose of approximating the FS of SCA-GPC, the

RFR model was utilized, as shown in Figure 14. It is possible to
notice a graphical representation of the degree of agreement

Table 2: Assessment of errors through statistical methods

Modeling the strength parameters of agro waste-derived geopolymer concrete

-_ 1"

that exists between the anticipated and observed FS in
Figure 14(a). The FS values predicted by the RFR model
and those obtained experimentally were very similar. An
R*value of 0.9753, coupled with all predictions falling within
the 20% threshold, highlights significantly improved accu-
racy in determining the FS of SCA-GPC through the RFR
approach. In Figure 14(b), the distribution of errors or dis-
crepancies between the experimental and predicted values
using the RFR approach is illustrated. On average, the incor-
rect readings were around 0.090 MPa, with a standard
deviation ranging from 0.002 to 0.936 MPa. Additionally, it
was observed that 77 of the values were below 0.3 MPa,
there were no values falling between 0.3 and 0.5 MPa, and
only 1 value exceeded 0.5 MPa. By looking at the distribution
of the errors, it is evident that the prediction of FS of SCA-
GPC utilizing the RFR model was expressively more accurate
than both the SVM and BR models, with significantly lesser
spread measurements (errors).

3.3 Validation of models

Table 2 displays the results of Egs. (1)-(3) applied to the CS
and CS-approximation models in terms of the computed
errors (MAE), root-mean-square error (RMSE), and mean
absolute percentage error (MAPE). The MAEs for CS pre-
dictions using SVM, BR, and RFR were 3.420, 2.190, and
1.320 MPa, respectively. SVM, BR, and RFR all improved
performance by an average of 11.10%, 6.90%, and 3.90%,
respectively, according to the MAPE metric. Moreover, the
RMSE values were calculated as 4.194 MPa for SVM,
2.907 MPa for BR, and 2.211 MPa for RFR. Similar trends
were observed in the prediction models for flexural strength
(FS) regarding MAE, RMSE, and MAPE, as seen in the CS
prediction models. These findings indicate that compared
to SVM and BR models, the RFR method offers superior
accuracy. Table 3 displays the outcomes of computing R?
RMSE, and MAE to validate the K-fold approach, while
Figure 15 illustrates the K-fold assessments of various ML
techniques for predicting CS and FS. The SVM approach

ML technique cs FS
MAPE (%) RMSE (MPa) MAE (MPa) MAPE (%) RMSE (MPa) MAE (MPa)
SVM 11.10 4.194 3.420 5.30 0.321 0.277
BR 6.90 2.907 2.190 4.00 0.256 0.205
RFR 3.90 221 1.320 1.80 0.148 0.091
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Table 3: Accuracy metrics (RMSE, R?, and MAE) obtained from k-fold analysis
Property ML model Parameters K-fold
1 2 3 4 5 6 7 8 9 10
cs SVM MAE 243 3.99 3.93 3.12 3.65 5.92 3.78 2.72 4.69 3.1
RMSE 3.09 534 5.81 4.36 4.66 6.09 4.73 3.26 5.38 4.34
R? 0.88 0.60 0.69 0.53 0.81 0.74 0.86 0.87 0.72 0.84
BR MAE 2.00 3.90 4.76 3.37 4.25 5.05 3.24 2.87 4.61 2.55
RMSE 3.05 5.16 6.16 4.22 5.21 5.83 4.55 3.16 5.35 4.00
R 0.94 0.61 0.62 0.55 0.78 0.74 0.89 0.92 0.69 0.92
RFR MAE 2.87 1.22 1.19 0.97 1.84 4.43 1.58 2.80 1.68 1.25
RMSE 3.33 1.84 1.31 1.55 2.38 4.49 2.04 3.27 2.10 1.64
R? 0.93 0.95 0.98 0.98 0.94 0.85 0.97 0.91 0.96 0.98
FS SVM MAE 0.21 0.25 0.24 0.18 0.28 0.35 0.19 0.22 0.22 0.18
RMSE 0.24 0.32 0.25 0.31 0.32 0.42 0.32 0.27 0.27 0.21
R 0.85 0.84 0.89 0.89 0.87 0.75 0.85 0.83 0.89 0.86
BR MAE 0.18 0.14 0.20 0.21 0.32 0.31 0.21 0.22 0.22 0.23
RMSE 0.14 0.31 0.30 0.24 0.35 0.38 0.26 0.16 0.28 0.27
R? 0.93 0.86 0.85 0.87 0.85 0.79 0.93 0.93 0.88 0.93
RFR MAE 0.19 0.19 0.13 0.17 0.13 0.26 0.15 0.24 0.18 0.09
RMSE 0.24 0.23 0.17 0.21 0.14 0.31 0.20 0.34 0.19 0.09
R 0.96 0.92 0.95 0.86 0.96 0.85 0.97 0.82 0.95 0.97

produced CS estimates with MAE values ranging from 2.43 to
5.92 MPa, with an average of 3.73MPa. The CS-BR model
showed an MAE of 3.66 MPa, with a confidence interval
from 2.00 to 5.05 MPa. Additionally, RFR had a mean MAE
of 1.98 MPa, ranging from 0.97 to 443MPa (minimum to
maximum). The mean RMSE was also 4.71 MPa for the CS-
SVM method, 4.67 MPa for the CS-BR method, and 2.39 MPa
for the CS-RFR method. The highest R* values for CS-based
SVM, BR, and RFR are, nevertheless, 0.88, 0.94, and 0.98. The
FS prediction K-fold analysis showed a significant decrease
in MAE and RMSE values from SVM to BR to RFR, with a
slight increase in R* across the same models. The top-per-
forming RFR model exhibited the highest R* and the lowest
error rate for predicting both CS and FS of SCA-GPC. Based
on K-fold R* measurements and error analysis, the RFR
model proved to be the most accurate. However, both
SVM and BR models also demonstrated strong performance.
Consequently, SVM, BR, and RFR models may provide a
more precise means of assessing the CS and FS of SCA-GPC.

3.4 Interaction of input parameters

This section analyses the relationship between the input
variables and the final product, CS. Figure 16 illustrate the
scatter plots comparing the CS of SCA-GPC with different
inputs. The scatter plots are accompanied by bar graphs
depicting the frequencies of the input and output compo-
nents. The GGBFS effect and interaction are illustrated in

Figure 16(a), which clearly demonstrates that the mechan-
ical properties of concrete were directly impacted by
both inputs. This indicates that the SCA-GPC’s strength
was linearly proportional to the GGBFS content. The
increased silica content in the GGBFS employed in dif-
ferent research may explain the higher quantities of
GGBFS [68]. Figure 16(b) shows that the relationship
between SCA-mechanical GPC’s and CCA’s characteristics
was indirect. As the CCA concentration increased, the
mechanical characteristics of SCA-GPC gradually degraded.
Up to 800kg'm™>, the strength of FA-input rose as the FA
content grew; after that, the strength decreased signifi-
cantly. Subsequently, when the FA concentration surpassed
850 kg'm >, the SCA-GPC once again gained strength. Figure
16(c) shows the relationship between the FA content and the
mechanical characteristics of SCA-GPC.

Figure 16(d)—(j) illustrate that factors such as CA, W,
SHP, SSG, CD, MC, and CG have a minimal impact on con-
crete strength due to the low variability in the content of
these input factors. The outcomes of the interaction ana-
lysis were notably influenced by both the raw material
utilized and the size of the data sample under examination.
Adjusting the input parameters and sampling frequency
yields different results. It is important to note that the
inputs and database size used to run the algorithms deter-
mined the aforementioned results. Using different data-
bases and input factors can result in different outcomes.
Further research is needed to enhance understanding of
the relationship between the material’s components.
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Figure 15: The K-fold analysis findings: (a) CS and (b) FS.

4 Discussions

In this study, the ML models are used to ensure that the
predictions are specifically suited to GPC. This situation
arises due to the limitation of these models to accept values
from a constrained set of eight input variables. Given that
all models utilize the same unit measurements and testing
technique, it is feasible to depend on the CS and FS predic-
tions generated by any of the models. If there are more
than eight parameters in the composite analysis, it is pos-
sible that the projected models will not function properly.

If the data used to train these models differ significantly
dissimilar to what they are intended to achieve, it is pos-
sible that they will not perform as predicted. It is depen-
dent on the degree of consistency or variation in the units
of the input parameters as to how accurately the models
anticipate the results. For the models to correctly function,
it is essential to keep the unit sizes consistent. ML models offer
diverse applications within the construction industry, encom-
passing tasks like material strength forecasting, quality
assurance, risk assessment, predictive maintenance, and
improving energy efficiency. Nonetheless, these models
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encounter challenges such as reliance on human input, utili-
zation of potentially inaccurate data, and occasional errors in
predictions. To overcome these hurdles and optimize ML-
driven outcomes, future research avenues could include inte-
grating Internet of Things (IoT) devices, developing hybrid
models, adopting explainable Al methodologies, incorporating
sustainability considerations, and tailoring data generation
and dissemination processes for specific industrial sectors.
These advancements in technology have the potential to yield
significant advantages for the construction field, facilitating
higher levels of efficiency, comprehension, accountability,
and well-informed decision-making alongside enhanced safety
and project efficacy. The findings of this study could also
promote more environmentally responsible building practices
in the construction industry, potentially increasing the adop-
tion of GPC.
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5 Conclusions

Using three different ML models, including SVM, BR, and RFR,
the purpose of this work was to make a prediction about the
mechanical properties of GPC (SCA-GPC) that was made up of
slag and CCA. For the purpose of training and verifying the
models that were produced, 260 different sets of data per-
taining to mechanical characteristics were utilized. These
sets included CS and FS. The following are some of the most
significant findings that emerged from the research:
¢ The study’s conclusion indicates that RFR models exhib-
ited the highest accuracy in predicting the CS and FS of
SCA-GPC among the models assessed. The R? values for
the three ML models (SVM, BR, and RFR) that were cre-
ated for SCA-GPC’s CS and FS prediction were all greater
than 0.85.
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Models were assessed for efficacy using statistical mea-
sures (MAE, RMSE, and MAPE). A more accurate ML
model was represented by a lower error value. The lower
error rates supported statements that RFR models accu-
rately predicted SCA-GPC’s CS and FS.

K-fold analysis (MAE, RMSE, and R also validated the
RFR model’s exceptional precision as paralleled to the
commendable precision of SVM and BR models.

The input/output interaction analysis revealed that the most
important input parameters that had a stronger correlation
with the CS and FS of SCA-GPC were FA, CCA, and GGBFS.

The methodology detailed in this article allows scien-
tists and engineers to effectively assess, enhance, and vali-
date GPC mixture proportioning. Nevertheless, additional
research is needed to assemble a broader dataset encom-
passing a diverse range of strength grades to facilitate the
development of prediction models.
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