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Abstract: This review article investigates the properties
and applications of polyetheretherketone (PEEK) in the
field of dental implantology. PEEK has emerged as a sig-
nificant material of interest due to its mechanical strength,
biocompatibility, and radiolucency. The article provides a
detailed examination of PEEK’s biocompatibility and the var-
ious reinforcements that enhance its performance, including
PEEK/HA, PEEK/B-TCP-TiO,, and CFR-PEEK. Focusing on dental
applications, we discuss PEEK’s use in implant abutments,
fixed dental prostheses, implants, and its commercial forms
available for dental use. Further, the mechanical behavior of
PEEK and its composites is analyzed, including its elastic
behavior under various stress conditions and wear resis-
tance. Moreover, the article conducts an integrative sys-
tematic review on the stress distribution in dental implants
or abutments made from reinforced PEEK composites, assessed
through finite element analysis. The aim of this review is to
provide insights into the current state of research, the benefits,
challenges, and future prospects of PEEK in implantology, and
the biomechanical evaluation methods that underpin the devel-
opment of this promising material.

Keywords: polyetheretherketone, biomaterials, dental implants,
abutments, finite element, stress

1 Introduction

Advancements in dentistry involve the evolution of mate-
rials. Biocompatibility, aesthetics, low plaque affinity, and
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characteristics similar to dental structure are among the
essential criteria of modern materials used in dentistry
[1,2]. Polymers are materials that have allowed significant
technological progress in the second half of the twentieth
century, although they are now controversial from an envir-
onmental standpoint [3-7]. Polyetheretherketone (PEEK) is
among the most innovative polymers, described as “high
performance.” It was first used in the 1980s in the aerospace
and automotive industries [8,9]. Then, due to its remarkable
mechanical properties, biocompatibility, and modulus of
elasticity similar to human bone, PEEK began to be studied
in the field of orthopedic prostheses in the 1990s [6,10-12].
Today, it is expanding in most clinical disciplines of den-
tistry. Often shaped conventionally, meaning through extru-
sion, compression, injection, or machining, manufacturers
are now turning to 3D printing of PEEK, or additive manu-
facturing [13-16].

The advancement of dental implant, abutment, and
associated materials necessitates adherence to established
in vitro and in vivo tests before they are fit for commercial
use. Conducting in vivo tests on a substantial number of
samples can be lengthy and may pose challenges to animals or
patients involved. Moreover, potential inaccuracies in these
assessments could lead to misleading outcomes, impacting
both the materials and the results of the experiment.
Therefore, the finite element method (FEM) emerges as
a valuable tool for predicting potential mechanical com-
plications using theoretical models coupled with in vitro
tests [17-20]. The finite element analysis (FEA) is fre-
quently used to assess the biomechanical behavior of
implantable biomaterials in vitro, whether in orthopedics, trau-
matology, or oral implantology, a trend is reflected by the
increasing number of publications on the subject (Figure 1).
This method allows for the evaluation of stress distribution
during the load transfer of an implant to the underlying
bone structures and typically follows a consistent procedure.

This article delves into the latest advancements in PEEK-
based biomaterials for dental applications, highlighting recent
improvements in properties and mechanical testing. We will
conduct an integrative systematic review focused on analyzing
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Figure 1: The number of PubMed indexed publications on finite elements
implants) AND (FEA) OR (FEM).

stress distribution across dental implants and abutments made
from carbon fiber-reinforced PEEK composites, utilizing FEM
studies as a core analytical tool (Figure 1). The investigation is
structured around key research questions, aiming to uncover
through a systematic approach:

1) How are PEEK and its composites applied in the dental
field, especially as materials for implant abutments and
the core of dental implants?

What do mechanical tests, including those for tensile,
compression, bending stress, wear resistance, and parti-
cularly fatigue tests, reveal about the suitability of PEEK
and its composites for dental implant applications?
How does FEA enhance our understanding of stress
distribution in dental implants and abutments made
from carbon fiber-reinforced PEEK composites?

2)

3)

2 Information sources and search
strategy

A literature search on PubMed (via National Library of

Medicine) and ScienceDirect (Elsevier BV) was conducted

using the following search terms (Table 1):

* Term 1: (peek) AND (stress analysis, mechanical) AND
(dental)

* Term 2: (peek) AND (dental) AND (mechanical phenomena)
AND (stress, mechanical) AND (material testing)

* Term 3: (peek) AND (dental) AND (finite element)
AND (FEA)

used in dental specialties since 2007. Search query: (peek) AND (dental

The electronic searches described previously contrib-
uted to initial grouping:
* On PubMed: 181 articles
* On ScienceDirect: 275 articles

After eliminating duplicates, the titles, and abstracts of
the articles resulting from the searches, only 45 publica-
tions were retained.

A complete reading of the text and an analysis of the
relevance of the articles finally led to a final result grouping
25 articles (Table 2). The publication dates of the articles
range between 2010 and 2023, except for 1 article.

A selection tree of articles (as depicted in Figure 2) was
therefore made from the 25 articles, including 6 literature
reviews (21-24-27-28-41-43), 12 studies for FEA (22-23-29-30—
32-33-34-35-37-39-44-45), and 9 in vitro experimental studies
(25-26-31-36-38-40-42).

Table 1: Electronic search results from PubMed and ScienceDirect
databases

Database Results For Total
results
Term1 Term2 Term3

PubMed 79 24 78 181
PubMed without 40 13 55 108
duplication

ScienceDirect 137 69 69 275
ScienceDirect without 74 45 54 173

duplication
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3 PEEK

The PEEK is a thermally stable semi-crystalline thermoplastic
material. Introduced in 1977 by ICI (Imperial Chemical
Industries), this material entered the market between 1978
and 1979. It gained traction in the 1980s across orthopedics,
traumatology, and spinal surgery, particularly in the creation
of interbody cages [46-49]. By the late 1990s, it was recog-
nized as a premier non-metallic counterpart to titanium in
these specialties [10]. The literature on implantology began
highlighting this material around 1995 [50]. In April 1998, the
debut PEEK implant product, branded as PEEK-OPTIMA™
and compliant with both European Community and Food
and Drug Administration standards, was launched [10,51].
PEEK boasts superior mechanical, physical, and chemical
attributes. Notably, it has a hardness rating between 99 and
126 on the Rockwell scale [42,52] and an elasticity modulus
(4 GPa) that is more akin to cortical bone (20 GPa) than tita-
nium (110 GPa).
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3.1 Biocompatibility

From a biomedical perspective, recent studies assert that
the results of various experiments conducted on systemic
toxicity, inflammatory response, and genotoxicity tests of
PEEK and PEEK composite biomaterials support its biocompat-
ibility [53-55]. This blend of biocompatibility and mechanical
robustness has solidified PEEK’s standing as a preferred mate-
rial in medical device manufacturing, including but not lim-
ited to, spinal fusion cages and dental implants [10]. However,
Najeeb et al [41], noted that despite the bio-inertia of unmo-
dified PEEK, this does not present any conclusive evidence of
osteo-conductive or osteo-inductive effects in vivo and in vitro
unlike conventional implant materials (zirconium oxide and
titanium). Thus, in its unmodified form, the long-term survival
rate of PEEK implants is questionable.

To overcome this gap in osteo-integration and to enhance
the biological and physical properties of PEEK, numerous
nano-modifications have been explored (Table 3).

Publications potentially relevant from electronic searches using keywords and
supplementary bibliographic sources

n =459

PubMed = 181

ScienceDirect = 275

Other sources = 3

Publications excluded due to
duplicates = 175

Potentially relevant abstracts retrieved for evaluation

n=284

PubMed = 108

ScienceDirect = 173

Other sources = 3

Publications excluded based on
title and abstract =239

Full texts potentially relevant retrieved for detailed evaluation

ScienceDirect = 20

Publications excluded based on
full-text evaluation = 20

Final Selected Articles

n=45 PubMed =22
Other sources = 3
n=25 PubMed = 13

ScienceDirect = 9

Other sources = 3

Figure 2: Flow diagram of the search strategy.
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3.2 PEEK reinforcement
3.2.1 PEEK/HA

Early investigations to improve PEEK bioactivity focused
on the incorporation of hydroxyapatite (HA) particles, a
calcium phosphate mineral celebrated for its capacity to
facilitate bone attachment and regeneration [56]. By mer-
ging HA with PEEK, the aim is to combine PEEK’s structural
advantages with the bioactive capabilities of HA, thus
amplifying the implant’s potential for successful and dur-
able integration into bone structures [57]. Research around
this hybrid material has yielded positive indications, with
PEEK-HA dental prosthetics showing improved bone
response and superior bonding than their PEEK-only
counterparts [58—60]. While HA incorporation promotes
bioactivity, it might compromise the overall mechanical
strength of PEEK, a trade-off that requires careful balance
[10,41,61]. Further research is pivotal in establishing the
optimal ratio of HA in PEEK to maximize both bioactivity
and mechanical integrity.

3.2.2 PEEK/beta-tricalcium phosphate (B-TCP)-TiO,

Studies on the incorporation of beta-tricalcium phosphate
into a PEEK matrix has shown that cell proliferation was
gradually inhibited when these particles were present.
Moreover, the osteo-conduction on the surface of these
implants, resulting from the inherent properties of B-TCP,
promoted osteo-integration [10].

Cougoulic et al [43] introduced an implant made from
this material, marketed under the name SMARTPIK®, which
has received EC marking after meeting the ISO 10993 stan-
dard: “Biological Evaluation of Medical Devices.”

In addition to the PEEK matrix, which provides the
primary mechanical properties of the implant, and the
B-TCP (17%) enhancing its osteoconductive potential, the
addition of titanium dioxide (8% TiO,) provides radiopa-
city. A specific surface treatment optimizes its biological
properties[10].

Table 3: Nano-modification of PEEK to increase its bioactivity
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3.2.3 CFR-PEEK

From a biological perspective, CFR-PEEK composites are
considered biologically stable, and it has been demon-
strated that carbon fibers possess osteo-inductive activity
promoting tissue integration and show no toxicity [10,62]. To
achieve a strong bond to the matrix, carbon fibers undergo
oxidation, allowing them to form a covalent bond robust
enough to resist dislocation when a force is applied to the
material [63].

The mechanical properties of CFR-PEEK composites
can be controlled by the content, dimensions, and orienta-
tion of the fibers [64]. The volume percentage of carbon
fiber can vary between 30 and 60%. These fibers can be
either continuous or short, and they can be unidirectional
(oriented parallelly) or multidirectional [38,41,42,64,65]. All
authors observe that adding these fibers to PEEK results
increased creep, hardness, resistance to compression and
fatigue, and also considerably reduced the stress-shielding
experienced by the bone since the material’s modulus of
elasticity can adjust to that of the bone based on the percen-
tage of fiber incorporated [38,41,42,64,65]. Then, the develop-
ment of new implants requires adherence to established in
vitro and in vivo tests before proceeding to manufacturing.

Due to their adjustable mechanical properties, researchers
have suggested through their studies that CFR-PEEK compo-
sites are more suitable for use in both orthopedics and oral
implantology. Indeed, they are more likely to counteract forces
causing stress peaks, ensuring a more uniform distribution of
load to the peri-implant bone than the gold-standard implants
[38,41,61].

4 PEEK dental applications

As we delve deeper into the applications of PEEK in den-
tistry, we will explore the use of PEEK in various capacities:
as implant abutments, a material for removable partial
dentures, a foundation for fixed dental prostheses, and
even as the core material for dental implants.

Nano structured surfaces

Bioactive nano-composites

Spin-coating with nano-Hap [66,67]

Plasma-gas treatment (O,/Ar, NH,) [71,72]

Plasma electron beam deposition (Ti, TiO,) [54,73]
Plasma ion immersion implantation (TiO,) [74,75]

TiO,/PEEK [68-70]

HAF/PEEK [57,70]

Note: TiO,: Titanium dioxide nanoparticles and HAF: Hydroxy-fluorapatite nanoparticles.
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4.1 PEEK implant abutments

In the field of implant dentistry, an abutment serves as the
bridge between the prosthetic restoration and the implant
itself (Figure 3). Abutments are crafted from a variety of
materials, including titanium, gold, zirconium, and cera-
mics [76]. Recently, there has been an increased utilization
of PEEK abutments. Notably, in instances of implant screw
damage, PEEK screws offer ease of removal. Studies have
shown that PEEK abutments can endure intraoral chewing
forces akin to those experienced by titanium abutments.
The soft tissue response to PEEK is commendable, often
leading to optimal gingival tissue healing [77].

The semi-crystalline nature of PEEK contributes to its
reduced brittleness, leading to deformation rather than
breakage. Research has shown that when using PEEK for
abutments, while the prosthesis remains unharmed, the
abutment might deform. Nevertheless, the prosthesis’ func-
tionality can be restored by replacing the deformed abut-
ment [78]. In a study by Koutouzis et al, a randomized
controlled clinical trial found negligible differences in
bone loss and tissue inflammation between PEEK and tita-
nium abutments (Figure 4). Furthermore, the composition
of oral bacteria observed was consistent with that seen
with titanium, zirconia, or PMMA abutments [79].

The distribution of occlusal forces and the manner in
which stress is distributed during the implant healing period
significantly impact the enduring outcomes of implant proce-
dures. In a study by Taha et al. [25], they examined the inter-
play between various crown-abutment combinations and
their impact on the force absorption properties of implant-
supported restorations. Their findings indicated that pairing
resin-based ceramic crowns with PEEK abutments did not
amplify force absorption capabilities. This could be attributed
to the notably reduced elastic modulus of PEEK custom

Crown —

Abutment —

Screw —

Figure 3: Schematic representation of the structure of a dental implant.
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Figure 4: Occlusal view of implants with PEEK abutments (a) following
installation and (b) at 3 months. And, occlusal view of implants with
titanium abutments (c) following installation and (d) at 3 months [79].

abutments, leading to diminished stress within the abutment,
but increased stress on the associated crown [35].

Ceramic-reinforced PEEK (RPEEK) is another variant
used in implant abutments noted for its good biomecha-
nical properties and biocompatibility, with Al-Rabab’ah
et al. [80] reporting stable bone and soft tissue around
implants over 2 years.

Otherwise, Al-Zordk et al. discussed the critical aspect
of fixation techniques in implant-supported restorations,
highlighting the advantages of cement-screws for their
superior passive fit, aesthetic appeal, and force distribu-
tion [81]. Zarone et al. further asserted that cement-screw
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systems have a greater load-bearing capability compared
to screw-retained systems [82]. Freitas et al. [83] observed that
restorations retained by cement and featuring internal con-
nections display enhanced fracture resistance, leading to
their preference in Atsu et al.‘s work [84]. Yet, they caution
against the potential for peri-implant diseases due to residual
cement in the submucosal area, with prevalence rates ran-
ging from 1.9 to 75% in such restorations [81]. The discussion
also touches upon physiological bite forces, noting the range
of occlusal forces across different teeth types. Atsu et al
reported that titanium abutments exhibit superior fracture
toughness (943.67N) compared to Zr and RPEEK (770.1N),
though the latter two materials show no significant difference
in this aspect (p = 0.001). Ortega et al presented findings on
fracture toughness, with titanium abutments at 468.5N and
PEEK at 200.4 N. They noted that PEEK abutments withstand
1.2 million cycles at 140 N without failure, simulating 5 years
of function, but fail under increased loads of 160 N after
approximately 89,338 cycles, equating to 4-5 months of use
[26]. This behavior indicates PEEK’s role as a “sacrificial mate-
rial,” absorbing deformation to prevent damage to the implant
or screw, in contrast to titanium where deformation affects the
internal connection, potentially endangering the implant’s long-
evity [26]. In another study by Mourya et al [29], the stress
distribution around abutments, subjected to both vertical and
oblique forces, was assessed for both titanium and carbon-fiber-
reinforced PEEK (CF/PEEK) implants. The findings propose that
in patients with molar teeth, using straight abutments in con-
junction with PEEK crowns could mitigate intraosseous stress
levels and potentially avert implant complications.

The available evidence suggests that PEEK abutments
may not meet the biomechanical criteria necessary to sup-
plant traditional titanium abutments. Among available

(@)
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options, zirconium is recognized for its superior biocom-
patibility as an abutment material [85]. Nevertheless, PEEK
exhibits particular merits in applications like customized
healing abutment [27], provisional restorations [24,28] for
patients lacking functional deficiencies, and for shaping emer-
gency contours during surgical interventions, especially rele-
vant for implants in individuals subject to reduced stress loads.

Figure 5 shows the various PEEK abutments. PEEK
healing abutment (Figure 5a) is used as an alternative for
classic titanium healing abutment [86], and PEEK with tita-
nium base temporary abutment (Figure 5b) is used for
long-term interim restoration, especially in areas with aes-
thetic consideration [87].

4.2 PEEK as fixed dental prosthesis

For fixed dental prosthetics, PEEK offers a unique solution
with its metal-free crowns and bridges, known for their
outstanding biocompatibility and robust mechanical attri-
butes (Figure 6). When assessing PEEK against traditional
ceramic and metal materials, it becomes evident that PEEK’s
dental bridge infrastructure remains resilient, even when
subjected to in vitro aging processes. For implant-linked
prosthetic applications, PEEK crowns have showcased effec-
tive outcomes [88]. In terms of biocompatibility evaluations,
PEEK consistently outperforms many metal-based cera-
mics. Nevertheless, some experts propose the integra-
tion of veneers over PEEK to achieve optimal precision
[89]. Given its lightweight nature, PEEK emerges as a
promising contender to replace traditional chrome-cobalt
prostheses [90-92].

%

(b)

Figure 5: PEEK abutments: (a) PEEK healing abutment (GM customizable healing abutment, Neodent, Curitiba, Brazil), (b) PEEK with titanium base

temporary abutment (GM PRO PEEK abutment, Neodent, Curitiba, Brazil).
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PEEK restorations demonstrate satisfactory resilience
against fractures, enduring anterior masticatory forces of
around 300N and forces of 600N in posterior areas.
Extended chewing simulations, replicating up to 5 years
of intraoral utilization, revealed no structural damage or
debonding incidents in these restorations [77].

4.3 PEEK implants

As mentioned previously, PEEK is emerging as a potential
material in implant dentistry, offering a solution to both
full and partial tooth loss.

Traditionally, titanium has been the go-to material for dental
implants due to its osteoconductive properties. However, PEEK,
having elasticity similar to human bone, is now being considered
as an alternative to titanium [94]. The stability of an implant can
be influenced by several elements, including the occlusal load,
bone structure, and potential for bone loss [95]. Khaohoen et al
[21] highlight that PEEK is emerging as a viable option in the
realm of dental implantology, countering some of the drawbacks
associated with titanium such as aesthetic limitations, allergic
reactions, and stress-shielding effects. Despite PEEK’s outstanding
biocompatibility and absence of cytotoxic effects, its osseointegra-
tion capabilities lag behind those of titanium, marked by a
reduced bone-implant contact (BIC) area, diminished osteoblast
activity, and lower osteoconductivity. However, enhancing
PEEK’s surface hydrophilicity and roughness through nanos-
cale modifications have been identified as a promising
strategy to mitigate these limitations.

Ouldyerou et al indicated that while standard tita-
nium implants tend to concentrate stress in specific bone
areas, those made of a titanium-PEEK combination distri-
bute stress more evenly, potentially reducing bone degra-
dation [30]. Interestingly, studies involving animals have
shown that titanium-coated PEEK may support bone forma-
tion better than its uncoated counterpart [58]. Pure PEEK,

PEEK in dental implants: Biomechanics and finite element analysis
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Figure 6: PEEK resin-bonded fixed dental prosthesis: (a) occlusal view and (b) after fixing the teeth [94].

given its hydrophobic nature, might deter initial cell attach-
ment. Yet, some investigations have noted enhanced mechan-
ical bonding between bone and implants when using porous
or titanium-coated PEEK, leading to better cellular interaction
and integration [96]. Additionally, many studies have reported
on methods to increase the bioactivity of PEEK, and various
authors have highlighted the need to incorporate bioactive inor-
ganic ceramic particles, such as HA, HAF, B-TCP, and TiO, to
enhance the osteointegration of PEEK implants [10,67,73,97].
Therefore, while PEEK holds promise, comprehensive stu-
dies are crucial before its widespread adoption in dental
implantology.

4.4 Commercial forms for dental use

Two leading commercial PEEK brands are widely recog-
nized in the dental sector. PEEK-OPTIMA® is the preferred
choice within the US, supplied by Invibio Biomaterial
Solutions since 1999, and is primarily used for dental applica-
tions such as provisional prosthetic abutments and healing
screws [98]. In contrast, Europe mainly utilizes BioHPP™
(Figure 7), produced by Bredent GmbH, which is specifically

BioHPP®and the visio.lign®
crown distribute the chewing
forces and protect the implant

Figure 7: PEEK abutment made by BioHPP [99].
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designed for dental applications. It is a modified PEEK mate-
rial that incorporates ceramic fillers to enhance polishability
and is suitable for various dental prostheses and frameworks
through injection molding and CAD-CAM processing [99].

5 Mechanical behavior of PEEK and
its composites

In this part, we will delve into an in-depth examination of
the mechanical behavior properties of PEEK and its asso-
ciated composites. This analysis will provide a comprehen-
sive understanding of the material’s strengths as well as
their ability to withstand force stresses without fracturing
or undergoing deformation.

5.1 Elastic behavior under tensile,
compression, bending stress, and wear
resistance

The tensile, compression, and flexural (bending) tests con-
ducted on PEEK have led to determining its ability to
deform after being subjected to a constantly increasing
loading process.

The application of tensile forces results in a progres-
sive elongation up to the material’s breaking point and
allows for defining many of its mechanical properties.
These elastic properties are derived from the interpreta-
tion of a stress—strain curve defining both an elastic and a
plastic domain. They are directly dependent on the crystal-
linity of PEEK, reflecting its thermal treatment history
[100,101].

5.1.1 Elastic modulus, flexural and tensile strengths
of PEEK

In medical and dental fields, the modulus of elasticity
stands as a pivotal factor influencing the long-term dur-
ability and biocompatibility of a material [102]. Studies have
highlighted PEEK’s modulus of elasticity, noting that it does
not match that of the human cortical bone but is closer to it
than the traditional metals, which positions it as a potential
candidate for medical and dental implant applications [103].
Previous studies have shown that rigid implants in Tita-
nium or in zirconia had an elasticity modulus (110 and
210 GPa, respectively) that is 5-14 times greater than cor-
tical bone (17 GPa). This significant difference can lead to
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bone resorption and loss of osseointegration due to a phe-
nomenon known as “Stress Shielding.” The difference in
mechanical behavior between these biomaterials and bone
results in poor distribution and uneven diffusion of forces
arising from mastication stresses [42,39]. On the other
hand, authors have reported values of the modulus of elas-
ticity of the unmodified PEEK (Table 4) ranging between 3
and 4 GPa [104] and, as mentioned previously, this mod-
ulus can be increased significantly by reinforcing PEEK
with various composite and ceramic materials (hydroxya-
patite, glass fiber, carbon fiber, titanium oxide, tricalcium
phosphate) to achieve results even more akin to cortical
bone [42,104-106]. This promotes better stress distribution,
preventing high stress peaks at the osseous/implant inter-
face that lead to implant failure [40,42,44,107]. The elastic
modulus of CFR-PEEK can reach up to 18 GPa [104,106]
while GFR-PEEK can achieve around 12 GPa [42,105]. A com-
prehensive list of the mechanical properties related to
these materials, especially the blended PEEK types, can
be found in Table 4.

Schwitalla et al [38,39] conducted studies on 11 dif-
ferent PEEK materials, assessing them through static com-
pression and three-point flexural tests. Materials included
grades of PEEK with various reinforcements, such as tita-
nium dioxide, barium sulfate, carbon fibers, and glass
fiber. During testing, specimens were subjected to a load
from a wedge-shaped penetrator. The studies highlighted
the suitability of these PEEK materials for dental implants,
given their capacity to withstand high mastication pres-
sures and compliance with the standard (EN ISO 10477).

Furthermore, Ferguson et al. [45] compared the mod-
ulus of elasticity of PEEK OPTIMA® samples through com-
pression tests conducted both in a dry environment at room
temperature (22°C) and under saline conditions (NaCl) at
37°C to simulate a natural physiological environment. The
results suggested that the modulus of elasticity was 1.8%
lower in the aqueous environment, indicating that

Table 4: Elastic modulus and the tensile strength of various materials

Material Elastic Tensile Ref.
modulus (GPa) strength (MPa)
Titanium 110 954-976 [108]
PMMA 3-5 48-76 [109]
PEEK 3-4 80 [104]
CFR-PEEK 18 120 [104]
GFR-PEEK 12 [110,111]
Cortical bone 14 104-121 [112]
Enamel 40-83 47.5 [113]
Dentin 15-30 104 [114,115]
Ti6Al4V 110-130 976 [111,116]
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temperature and humidity had a statistically significant
influence on it, even though the difference was relatively
small.

Also, Schwitalla et al’s study [40] employing a three-
point flexural approach revealed that PEEK’s strength sur-
passes the standard benchmark set for plastic materials at
65 MPa. When considering its applications in orthodontics,
PEEK sets itself apart by displaying superior flexural strength
and minimized creep when compared to other plastics like
polyethersulfone and polyvinylidene fluoride [117]. Further-
more, with a tensile strength rating of 80 MPa [104], PEEK’s
mechanical properties are close to enamel and dentin
[113,114,118], making it an ideal candidate for constructing
prosthodontic framework.

5.1.2 Wear resistance

Recent advancements have explored novel PEEK-based com-
posites as potential replacements for traditional metallic
materials in biomedical implants and prosthesis. However,
the performance of these materials under aggressive oral
conditions, particularly in the presence of abrasive particles
from toothpaste, remains a critical area of research. A signif-
icant study by Sampaio et al. [38] focused on evaluating the
abrasive wear resistance of PEEK and Ti6Al4V, which are
prevalently utilized in the fabrication of dental prosthetics
and implants. The aim of this research was to closely mimic
the oral environment, characterized by frequent exposure to
abrasive compounds found in both food and dental care pro-
ducts. Such exposure is known to induce wear on the contact
surfaces between the prosthetic structures and implants,
posing challenges to the longevity and reliability of these
materials. The researchers prepared surfaces of both mate-
rials and subjected them to micro-scale abrasion tests under
varying loads and with different concentrations of hydrated
silica, mimicking the abrasive action of chewing and tooth
brushing. Their findings revealed that PEEK exhibits a
higher volume loss compared to Ti6Al4V under these abra-
sive conditions, indicating that Ti6Al4V possesses superior
wear resistance. The increase in wear for both materials
was proportional to the abrasive content and load applied.
This suggests that while both materials are susceptible to
wear from common abrasive particles in the oral cavity,
Ti6Al4V may offer better durability against such challenges.
In a parallel inquiry, Ragupathi et al [31] conducted a
detailed study on the wear characteristics of PEEK in compar-
ison to titanium, specifically focusing on dental abutments
subjected to cyclic loading. This method was intended to
simulate the wear that occurs over a year of mastication.
Despite the hypothesis suggesting greater wear in PEEK
abutments due to their lower elastic modulus, findings
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revealed minimal difference in wear rates between the two
materials. Advanced analytical techniques, including scan-
ning electron microscopy (SEM), were utilized to meticulously
evaluate wear patterns, demonstrating that both PEEK and
titanium exhibited similar resilience to cyclic stress. This
was quantitatively supported by surface roughness measure-
ments before and after loading, indicating no statistically
significant wear discrepancy between PEEK and titanium
abutments. The study concluded that PEEK’s wear resistance
closely matches that of titanium, making it a viable alterna-
tive for implant abutments in dental applications. These
results highlight PEEK’s potential in dental implantology,
although further research is encouraged to validate these
findings over longer periods and in varied clinical conditions.

5.2 Mechanical testing

Mechanical testing in dental implants plays a vital role in
assessing their robustness and functionality under the
conditions of oral cavity. Such tests offer insights into the
longevity and stability of these implants when subjected to
continuous stress and environmental factors. In the following
discussion, we will delve deeper into specific mechanical
tests, namely, fatigue tests and wear resistance, to better
understand their significance in evaluating dental implant
performance.

5.2.1 Fatigue test for PEEK used in implant applications

Implant-supported prosthesis undergo stress from chewing in
a wet environment and face sudden temperature changes
between 0 and 65°C. Consequently, the materials chosen
should meet specific standards concerning their robustness
and rigidity. They should also resist against deformation and
fatigue fracture [119].

During the chewing process, loads exerted can vary,
sometimes remaining below the fracture load. However,
even these variations can introduce weaknesses in the
structure, resulting in the appearance of fissures and
cracks. This is often termed as mechanical fatigue. Over
time, these minor imperfections can evolve and spread,
leading to a fatigue fracture [120,121]. The fatigue limit or
endurance limit is the stress level below which an infinite
number of loading cycles can be applied to a material
without causing fatigue failure [122].

Lee et al. [42] assessed and compared the fatigue limits
of PEEK polymers reinforced with carbon fibers (CFR-
PEEK) and others with glass fibers (GFR-PEEK) against
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titanium for potential dental implant applications. These
tests were conducted in accordance with ISO 14801, which
outlines the application of cyclic loads under dry condi-
tions and at room temperature on cylindrical specimens
with diameters of 4 and 5mm. This was done to closely
replicate the forces transmitted to the implant during
chewing: cyclic impacts on the bone/implant over a limited
time period. The fatigue limit of GFR-PEEK specimens with
a diameter of 4 mm was found to be 310N, and this was
higher than its maximum static compression force of 256 N.
According to the authors, this vital phenomenon is due to
the fact that the deformation rate can increase the elastic
limit of PEEK materials by 30%. This elasticity of PEEK
might also explain the high fatigue limits. The authors
concluded that implants made of this material could be
suitable for replacing anterior teeth where the maximum
chewing forces in the incisive zone reach 140-170 N. Other-
wise, the fatigue limit of CFR-PEEK specimens with a diameter
of 5mm was found to be 450 N, which was also higher than
their maximum static compression force. This material was
therefore favored as it appears suitable for the replacement
of both anterior and posterior teeth, where the maximum
chewing forces in the molar zone range from 200 to 250 N.
Dental implants with PEEK polymer coatings or those based
on PEEK would thus be advantageous in reducing the effects
of “stress shielding.” However, the authors note that the
fatigue tests were conducted at room temperature, and
even though PEEK is not affected by hydrolysis, concerns
are raised regarding its ability to maintain good bonding at
the interface between the resin and its reinforcements.
There are still too few fatigue tests in saline solution, but
the initial results on CFR-PEEK samples seem to indicate
good in vivo stability and long-term physical and mechanical
properties of PEEK.

6 Finite elements methods

The advancement of dental implant, abutment, and asso-
ciated materials necessitates adherence to established in
vitro and in vivo tests before they are fit for commercial
use. Conducting in vivo tests on a substantial number of
samples can be lengthy and may pose challenges to animals or
patients involved. Moreover, potential inaccuracies in these
assessments could lead to misleading outcomes, impacting both
the materials and the results of the experiment. Therefore, the
FEM emerges as a valuable tool for predicting potential mechan-
ical complications using theoretical models coupled with in vitro
tests [22,23,35,39,44,123]. The FEA is frequently used to assess the
biomechanical behavior of implantable biomaterials in vitro,
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whether in orthopedics, traumatology, or oral implantology.
This method allows for the evaluation of stress distribution
during the load transfer of an implant to the underlying bone
structures and typically follows a consistent procedure.

The process involves obtaining a radiographic image
of the bone section that will be studied. This image is then
converted into a 3D model using computer-aided design
(CAD) software. This model becomes the foundation for tests
conducted on various models created with each implantable
biomaterial.

The articles chosen for this section explore the utiliza-
tion of FEA in examining the mechanical characteristics of
abutments and implants. The process typically involves the
creation of a 3D bone model through a CT scan, followed by
importing into CAD software such as ANSYS, ABAQUS,
SolidWorks, Creo Parametric, or Rhinoceros. A FEA
package is then used to generate a 3D mesh which is linked
to a suitable mathematical model that captures the proper-
ties of the corresponding material. While most of the
studies employed ANSYS for simulation [22,23,32,33,39,44],
some researchers favored ABAQUS, and CATIA [124-127].
Most of the selected studies assume a linear elastic, iso-
tropic, and homogenous material model. In addition to
using fewer parameters, in a linear elastic model, the corre-
lation between these parameters and clinical medical ima-
ging has been well established, which greatly enhances its
potential for clinical application [127]. Whereas, an aniso-
tropic material model is found to be more suitable for CFR-
PEEK laminates [34]. CFR-PEEK laminates consist of carbon
fiber-reinforced PEEK, which exhibits varying stiffness and
strength properties in different directions relative to the
orientation of the carbon fibers within the laminate. An ani-
sotropic material model can accurately capture these direc-
tional dependencies, allowing for more precise simulations
and prediction of mechanical behavior. This is particularly
crucial in the context of dental implants and abutments,
where a comprehensive understanding of material response
under diverse loading conditions is essential (Figure 8).

The mechanical performance of implants, including
factors such as von Mises stress, shear stress, contact
stress, and stress shielding, is analyzed under varying
loading conditions corresponding to clinical scenarios. An
integral consideration in FEA methodologies is the assump-
tion of forces to replicate masticatory loads encountered
within the oral cavity of patients. However, defining this
parameter precisely remains elusive due to its variability
among individuals [39]. The magnitude of axial loading in
the selected journals ranges widely from 100 to 1,000 N,
while oblique loading typically spans from 50 to 500 N
[29,33]. Notably, a predominant trend in these studies is
the utilization of axial loading within the range of 100 to
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Figure 8: Schematic of an implant-supported prosthesis involving
implant, abutment, and a single crown.

150 N. Furthermore, the angle of oblique loading has slight
variation, typically falling between 30° and 45°.

The selected journals aimed to investigate the stresses
developed in dental implants and bones using various pros-
thesis materials, including titanium, zirconium, unfilled, and
CFR-PEEK, utilized in abutments and implants, and their com-
binations. Oblique loading typically results in higher stresses
in cortical and cancellous bone, implant components,
and restorative crowns compared to axial loading across
all mentioned studies. The findings of all authors are
consistent with each other. A higher stress concentration is
generally observed in the cortical bone near the peri-implant
region, gradually decreasing towards the cancellous bone
under both axial and oblique loading conditions.

Most studies indicate no significant variation in stress
distribution at the implant-bone interface for different
material models. Mourya et al’s study of stress distribution
in straight and angled abutments supports this conclusion,
suggesting similar stress results with CFR-PEEK and tita-
nium implants in both straight and inclined cases [29].

Another study on the performance of titanium/PEEK
dental implants simulating different levels of bone loss also
indicates that stresses were independent of the implant
material [30]. Similarly, Sarot et al’s work on the stress
distribution of CFR-PEEK dental implants concludes that
CFR-PEEK implants offer no advantages over titanium
implants concerning stress distribution to the peri-implant
bone [44]. Shash et al.’s study on fixed prosthesis following
the “all on four” framework indicates that 60% CFR-PEEK
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distributes cortical bone stresses similar to the titanium
framework [23] (Figure 9).

Studies by Wazeh et al. [33] and Kaleli et al. [35] agree
that crown material does not affect biomechanical beha-
vior concerning stresses in implants and peripheral bone.

However, Mourya et al‘s findings on stress distribu-
tion under parafunctional loading show that the stresses
generated in bone with a PEEK crown layered with com-
posite are lower compared to porcelain fused to metal
(PFM) crown configurations [29] (Figure 10).

Implants with micro threads showed a reduction of
maximum von Mises stress by 50-70% in peri-implant
bone compared to conventional threading [33], as demon-
strated by Wazeh et al. Specifically, micro-threaded titanium
implants, when used with a zirconia crown, exhibited the
lowest cortical bone stress values under vertical loading,
approximately 10 MPa. In contrast, implants made of CFR-
PEEK with 30% carbon fibers generated notably higher
stresses, around 100 MPa, on the cortical bone.

Titanium implants may induce a stress-shielding effect,
leading to implant and bone loss due to their high elastic
modulus (110 GPa) compared to bone (14 GPa). The stiffness
mismatch between bone and implant can result in stress-
shielding phenomena, potentially leading to bone resorption
during the bone remodeling stage. In vivo, PEEK material
possesses biomechanical properties close to human bone,
reducing the risk of bone resorption and osteolysis caused
by the stress-shielding effect of implants. A study by
Ouldyerou et al. found that Ti-PEEK implants outperform
conventional Titanium implants in reducing stress shielding
and bone resorption [30]. The application of PEEK veneering
on dental implants or abutments was also found to diminish
the effects of stress shielding, as indicated by studies con-
ducted by Lee et al. and Sampaio et al. [37,42]. Nevertheless,
the thickness of PEEK veneering emerged as a critical factor
influencing both stress distribution and the strength of hybrid
abutments or implants, as highlighted in the research by
Sampaio et al. [37].

Implants or abutments made of PEEK containing 30%
carbon fiber exhibited increased stiffness compared to
unfilled PEEK. The incorporation of such PEEK composites
was found to enhance stress distribution and reduce the
load concentration throughout the abutment and implant
region, as suggested by Sarot et al. [44].

In weaving together, the detailed insights provided by
the various studies, it becomes evident that FEA offers a
robust framework for simulating and understanding the
biomechanical behavior of dental implants and abutments
under various conditions. Through meticulous modeling
and simulation, FEA enables researchers and practitioners
to predict and mitigate potential complications associated
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Figure 10: Stress in: (a) CFR-PEEK 15° abutment under vertical loading with PFM crown, (b) CFR-PEEK straight abutment under oblique loading with
(PFM) crown, (c) titanium straight abutment under vertical loading with (PFM) crown, and (d) titanium straight abutment under oblique loading with
(PFM) crown [29].
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with implant materials and designs, thereby facilitating the
development of more effective and safer dental restoration
solutions. The consensus across studies on the efficacy of
materials like CFR-PEEK and the nuances of stress distribu-
tion underlines the complexity of dental biomechanics and
the indispensable role of FEA in advancing dental implan-
tology. As the field evolves, the ongoing refinement of FEA
methodologies and the exploration of new materials will
undoubtedly contribute to enhancing the quality and long-
evity of dental implants, ultimately benefiting patients
with more reliable and durable dental restorations.

7 Conclusion

The manuscript thoroughly examines the application and
mechanical performance of PEEK and its composites in
dental implantology, particularly regarding implant abut-
ments and cores. Through FEA, it highlights PEEK’s pivotal
role in advancing dental implant technology.

7.1 Application of PEEK and its composites in
dental field

The manuscript discusses PEEK and its composites’ appli-
cations in dental implantology, citing their biomechanical
compatibility and bioactivity. PEEK emerges as an alterna-
tive to titanium for abutments and dental implant cores
due to its similar elasticity to bone and ease of removal. It
outlines PEEK’s advantages in creating abutments, frame-
works, and core materials, including its commendable soft
tissue response and customization potential for provisional
restorations and shaping emergency contours during sur-
gical interventions.

7.2 Mechanical tests on PEEK

The manuscript extensively explores PEEK’s mechanical
properties via tensile, compression, bending stress, wear
resistance, and fatigue tests, revealing its robustness and
suitability for dental implants. CFR-PEEK and GFR-PEEK
composites show increased hardness, compression resis-
tance, and fatigue endurance, reducing stress-shielding in
bone. Tests, compliant with ISO 14801, demonstrate their
ability to withstand chewing forces, suggesting PEEK-based
materials could offer longer lasting implant solutions with
more even load distribution.

PEEK in dental implants: Biomechanics and finite element analysis

-_ 21

7.3 Enhancement of understanding
through FEA

The manuscript highlights FEA’s crucial role in advancing
dental implant technology, allowing simulation of biome-
chanical behavior and stress distribution analysis in CFR-
PEEK implants and abutments. By generating 3D models
from radiographic images and using software like ANSYS
and ABAQUS, FEA predicts stress distribution during load
transfer, crucial for implant-bone interface evaluation.
This method effectively assesses CFR-PEEK composites’
mechanical performance, reducing stress concentrations
and improving load distribution, essential for implant
longevity and success.

In conclusion, the widespread adoption of a new bioma-
terial is always a slow and cautious process. FEA emerges as a
powerful tool in the development and evaluation of dental
implants, providing valuable insights into material behavior
and design efficacy. The ongoing evolution of this metho-
dology, coupled with advancements in biomaterials, holds
the promise of more effective, tailored, and biocompatible
implant solutions, ultimately enhancing patient outcomes in
dental and orthopedic implantology.
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