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Abstract: Poly-ether-ether-ketone (PEEK), a biomaterial
renowned for its mechanical prowess and biocompat-
ibility, is increasingly preferred for medical implants. Its
natural bone-like mechanical property, ease of manipula-
tion, and ability to mitigate stress shielding render it a
standout replacement for titanium in dental implantology.
Adding carbon fiber and graphene to PEEK can further
enhance the mechanical properties of PEEK. However,
the biological passivity of PEEK hampers its efficacy in
bone repair, driving spurring research into surface mod-
ifications to enhance its bioactivity. Incorporating metal,
inorganic, and organic antimicrobial agents is anticipated
to bolster PEEK’s resistance to bacteria, thereby reducing
the risk of acute postoperative infections and peri-implan-
titis. Apart from its antimicrobial activity, researchers have
also investigated methods to enhance the osteogenic proper-
ties of PEEK. These approaches include surface modification
and blending modification. Surface modification includes
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physical modification, chemical modification, and biologi-
cally active substance modification. These methods can
further enhance the implant integration and durability,
potentially improving patient outcomes. This overview
examines PEEK’s processing techniques and highlights
recent research achievements in improving its biomecha-
nical, antibacterial, and osteogenic properties. Considering
these strides, we argue that modified PEEK holds significant
promise as a material for dental implants, charting an
encouraging course for its clinical future.

Keywords: PEEK, 3D printing, antibacterial, osseointegra-
tion, modification

1 Introduction

Periodontitis, dental caries, tumors, and accidents have
contributed to an increasing clinical demand for dental
restoration and bone defect materials in modern stoma-
tology [1]. Currently, metallic, ceramic, and polymer mate-
rials are the primary materials used in tooth restoration
and maxillofacial restoration in clinical practice. Ceramic
materials are preferred for their pleasing aesthetics, dur-
abhility, and comfort [2]. However, ceramic materials exhibit
lower strength and greater brittleness [3]. Metallic bioma-
terials, including titanium (Ti) and Ti alloys, are widely used
as permanent implants due to their high mechanical
strength [4]. But metal implants have a higher elastic
modulus and can release metal ions, which may lead to
bone resorption, gingival discoloration, and allergic reac-
tions in some patients [5]. These factors have spurred the
need for the development and improvement of new mate-
rials in the fields of dentistry and orthopedics [6]. In
recent years, poly-ether-ether-ketone (PEEK) has attracted
extensive attention from researchers.

PEEK, part of the polyaryletherketone family, is a two-
phase semi-crystalline polymer composed of repeating
units featuring a single ketone bond and double ether

8 Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.


https://doi.org/10.1515/rams-2024-0025
mailto:bjgong@cmu.edu.cn
mailto:zmli@cmu.edu.cn

2 =— Menghao Chen et al.

bonds in its main chain [7]. PEEK is a notable high-perfor-
mance engineering plastic that is widely known for its
multitude of exceptional properties [8]. These attributes
include high heat resistance [9], excellent machinability,
favorable biocompatibility, and excellent X-ray penetra-
tion capability [10]. PEEK’s molecular structure features a
benzene ring, which provides rigidity, and ether bonds
that contribute to its ample toughness, making PEEK excep-
tionally resistant to cyclic stress [11]. PEEK is capable of
overcoming some limitations associated with metal implants,
such as metal allergies [12]. Notably, PEEK’s elastic modulus
(3GPa) closely resembles that of human bone (3-17 GPa),
enabling it to effectively mitigate the “stress shielding” issue
at surgical sites and reduce the risk of osteoporosis (Table 1)
[13]. Due to these exceptional properties, PEEK has emerged
as a substitute for metal implants and a replacement mate-
rial for orthopedic and trauma surgery since the late 1990s
[14]. In present clinical practice, PEEK is extensively utilized
as a dental and orthopedic material (Figure 1), and it has
demonstrated favorable outcomes [15]. PEEK materials
have been increasingly used clinically in various dental
applications, including fixed clasps, fixed bridges, dental
crowns, implant abutments, and implant restoration mate-
rials [16].

However, the molecular structure of PEEK makes it
highly hydrophobic, leading to reduced cell adhesion func-
tionality, thus classifying PEEK as a biologically inert mate-
rial [29]. While PEEK has been widely used in hard tissue
implants, its biological inertness can lead to slower bone
healing and even implant loosening [30]. On the other
hand, bacterial infection at the implant site is another
common clinical complication [31]. If not properly man-
aged, infection can cause pain, delayed wound healing,
and even implant failure, posing a significant risk to
patients [32]. With increasing numbers of bone grafting

Table 1: Elastic modulus of bone and bone substitute materials
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surgeries, strategies to address these issues have become
crucial. As a result, many recent studies in this field have
shifted the focus from improving the biomechanical prop-
erties of PEEK to promoting osseointegration and implant
infection control, which are vital for the long-term success
of implants. Therefore, this review aims to summarize
PEEK’s processing methods and the recent progress of
PEEK modification technology, especially in terms of anti-
bacterial properties and osseointegration functions.

2 PEEK manufacturing technology

Having a glass transition temperature (Tg) of 143°C and a
melting point (Ty,,) of 343°C, PEEK exhibits a markedly
superior melting temperature when compared to standard
thermoplastics [33]. This melting point emphasizes the
necessity for processing techniques capable of withstanding
elevated temperatures [34]. Currently, the processing of
PEEK involves both conventional and additive manufac-
turing techniques [35]. The traditional methods include
injection molding, hot pressing molding, extrusion molding,
and centrifugal molding. Injection molding entails heating
the material to a high temperature until it becomes molten,
which is then injected into a designed mold and cooled to
form a product of a specific shape [37]. This stands as a
frequently utilized approach for processing PEEK. This tech-
nique typically necessitates minimal post-processing, often
involving the removal of rough edges and trimming of
excess plastic [38]. Injection molding is well-suited for the
fabrication of thin-walled components and for producing
intricate parts with precise and delicate details. Further-
more, components manufactured through this process fea-
ture a commendable surface finish and exhibit exceptional

Materials Types Tensile strength (MPa) Flexural strength (MPa) Young’s modulus (GPa) Ref.
Cancellous bone Human bone 13-17 12-18 2-4 17
Cortical bone Human bone 105-115 118-122 27-33 [18]
PEEK Nondegradable polymer 86-94 110-120 3-4 [19]
20 wt% CFR-PEEK Nondegradable polymer 125-131 160-168 18-20 [20]
30 wt% CFR-PEEK Nondegradable polymer 151-157 163-173 22-28 [21]
GFR-PEEK Nondegradable polymer 115-158 198-228 10-12 [22]
Magnesium Degradable metal 190-210 69-105 40-45 [23]
Solid tantalum Nondegradable metal 290-320 230-350 100-186 [24]
Ti Nondegradable metal 460-470 317-323 110-120 [25]
316L SS Nondegradable metal 272-356 220-250 190-230 [26]
Co-Cr alloys Nondegradable metal 751-815 565-597 170-210 [27]
ZrO, Nondegradable metal 320-340 240-260 200-210 [28]
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Figure 1: Basic and applied research of PEEK in medical material.

dimensional accuracy [39]. From a production perspective,
notable advantages include heightened productivity and
reduced labor expenditures. However, the flip side entails
the drawback of elevated overall costs. Hot pressing refers
to the direct processing of the material in the mold through
pressure and temperature. Once the component has cooled,
it is extracted from the mold and subjected to a flashing
procedure. This process is the standard manufacturing
method for making parts from PEEK [40]. Components
fabricated using this method exhibit a favorable surface
finish. This method features a very fast setup time and
relatively low setup cost. Nevertheless, it is not capable of
handling geometries featuring undercuts, and both pro-
cessing time and part consistency need to align with the
standards achieved through injection molding. Extrusion
is applied in the production of polymer components char-
acterized by a consistent cross-section, such as PEEK
tubes. This represents another prevalent manufacturing
method for crafting PEEK components. The heated plastic

Modification of PEEK for implants = 3

material is shaped under elevated pressure within an
open mold. This method is cost-effective to produce,
with quick setup times and relatively low initial costs.
However, the precision is lower than that of injection
molding, and it is only suitable for parts with a uniform
cross-section. Centrifugal molding is another technique
employed in the processing of PEEK [41]. This technique
involves placing PEEK material into the mold and subse-
quently sealing it. The mold is heated, causing the PEEK to
melt. Subsequently, the mold is rotated along multiple
axes. Centrifugal force ensures uniform polymer distribu-
tion along the mold’s inner surface. This method is used to
manufacture complex hollow parts with thin walls and
extremely low residual stresses. Centrifugal molding pro-
vides a superb surface finish while incurring minimal
tooling expenses. It is well-suited for both short and
long production runs (Figure 2). Its primary drawbacks
include reduced precision and slower production speeds
in comparison to injection molding (Table 2).
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Figure 2: PEEK’s traditional processing methods. (a) Schematic diagram of compression molding: hot pressing molding and cold pressing sintering.
(b) Schematic diagram of injection molding. (c) Schematic diagram of cutting and molding.

Table 2: Manufacture methods of PEEK

Process methods Advantages Disadvantages Ref.

Injection molding Fast production speed Limited shape and size [42]
Suitable for mass production High operating requirements

Hot pressing Low cost of equipment Poor accuracy [43]

Difficult to control thickness

Extrusion molding Low cost Poor accuracy [44]
Fast productivity Narrow scope of application

Centrifugal molding High surface polish Poor accuracy [45]
Low cost Low productivity

SLS High precision High cost [46]
Complex structure of the product can be constructed High requirements for printing environment

FDM Low cost The interlayer binding force of the product is weak [47]

SLA High accuracy Only available for photopolymers [48]
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Furthermore, additive manufacturing techniques have
also been employed for processing PEEK in recent years
[49]. Additive manufacturing, commonly referred to as 3D
printing technology, emerged as an innovative manufacturing
method in the late 1980s [50]. It operates by sequentially
depositing materials layer by layer to fabricate three-
dimensional structures. Initially, the user utilizes com-
puter-aided design software for modeling [51]. Subsequently,
the user imports the data (in STL format) generated by the
design software into the 3D printer, which then fabricates
the object layer by layer. The additive manufacturing
methods suitable for processing PEEK primarily include
selective laser sintering (SLS) and fused deposition modeling
(FDM), each with its own set of advantages and disadvan-
tages. SLS is a 3D printing method that utilizes laser energy
for powder sintering [51]. Its principle involves spreading
powder on a platform and utilizing laser energy to fuse the
material, thereby constructing a shape according to a pre-
programmed design. The advantages of using this technology

Selective Laser Sintering (SLS)

(a)

Laser | Scanner

\

Axis of rotation

Na

Sintered part
—

Feedwell

q‘

Un-sintered power

I 'l

Power conveyer Fabrication piston

Stereo Lithography Appearance(SLA)

Support struct

Build platfo

- 5

Modification of PEEK for implants

for producing PEEK medical products include rapid printing
speed, exceptional printing accuracy, and a resolution
reaching 50-100 pm. The drawback includes intricate equip-
ment manufacturing process, elevated printing expenses, and
the demanding printing environment. FDM can also print oral
medical devices made of PEEK. It functions by extruding PEEK
filaments from the nozzles of the 3D printing device, building
the model layer by layer. The advantages of FDM are low
printing cost, simple equipment manufacturing, the ability
to print at room temperature, and strong model controllability
[52]. However, there are currently reports that this technique
produces PEEK products with weaker internal bond strength
due to higher nozzle temperatures. This occurs because exces-
sively high temperatures can affect the crystallization process
of the product, and subsequently affect the mechanical prop-
erties of the product [53]. Thankfully, a controlled cold deposi-
tion technique has recently been developed to address
this problem, thereby enhancing the possibilities of FDM
for medical PEEK material applications (Figure 3).
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Figure 3: PEEK’s additive manufacturing methods: (a) SLS, (b) FDM, (c) stereo lithography appearance (SLA), and (d) SLS + hot treatment.
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3 Enhancing the mechanical
properties of PEEK

PEEK, a high performance engineering plastic, was pio-
neered by British Imperial Chemical Industries in 1978 [54].
It is a semi-crystalline aromatic polymer that is renowned for
its distinctive attributes, which include physical and che-
mical properties, as well as mechanical characteristics [55].
These inherent traits form the foundation for the utilization
of PEEK materials in dental and orthopedic implants
(Figure 4).

PEEK is a remarkable material with outstanding phy-
sical and chemical properties, making it particularly well-
suited for implantable medical devices and applications
[56]. Its unique combination of characteristics enhances
the safety and effectiveness of such devices. PEEK’s excep-
tional temperature resistance is a standout feature. With a
high glass transition temperature (Ty) of approximately
143°C and a melting point (T},) of around 343°C, PEEK can

DE GRUYTER

withstand the physiological temperature in the human
body without losing its structural integrity [57]. This
quality ensures the longevity and reliability of implants
even in challenging physiological environments. PEEK’s
low density, approximately 1.32g-cm™, is advantageous
for implantable devices, as it reduces the overall weight
of the device, thus minimizing the burden on the patient
[58]. Additionally, PEEK’s minimal solubility and water
absorption further contribute to its biocompatibility, pre-
venting adverse reactions within the body [59]. From a
chemical perspective, PEEK’s resistance to corrosion and
hydrolysis is essential for implantable medical devices that
must maintain their structural integrity over extended per-
iods. Its stability in the presence of bodily fluids and che-
micals ensures the longevity of implants, reducing the need
for frequent replacements and associated surgical proce-
dures. In environments with pH levels of 3, 7, and 10, the
fatigue mechanical properties of PEEK remain consistent
[60]. Furthermore, PEEK’s ability to resist radiation,
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Figure 4: Application of PEEK in orthopedics and stomatology.
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including electron beam and gamma radiation, makes it
suitable for applications requiring sterilization and long-
term functionality [61].

In terms of mechanical properties, PEEK offers an
impressive balance of stiffness and flexibility, closely resem-
bling the mechanical properties of natural bone [62]. This
makes it an excellent choice for orthopedic implants, as it
minimizes the risk of stress shielding and provides long-
term stability. Ensuring that the mechanical properties of
an implant closely match those of human bone is crucial for
its long-term success in orthopedic and dental applications.
PEEK, with a modulus of 3-4 GPa like that of the more flex-
ible cancellous bone, falls slightly short of matching the
modulus of cortical bone, which ranges from 25 to 30 GPa.
To address this challenge, an effective strategy involves
enhancing the mechanical characteristics of PEEK through
various modifications, including the incorporation of addi-
tional phases such as carbon fibers (CFs), carbon nanotubes
(CNTs), and graphene oxide (GO) [63]. The primary objective
is to achieve a uniform dispersion of these fillers within the
polymer matrix and enhance the interface bonding between
the inorganic and organic components.

The addition of CFs to PEEK brings about a significant
improvement in mechanical performance. CFs, well-
known for their high strength and modulus, act as
excellent reinforcement materials for PEEK. When the
CF content is relatively low, typically below 10 vol%, CFs
disperse uniformly within the PEEK matrix, resulting in a
linear increase in tensile stiffness and strength while pre-
serving PEEK’s ductility [64]. When the CF content exceeds
a certain threshold, the composite material is often more
vulnerable to acid corrosion, exhibits stronger brittle
behavior, and displays pronounced piezoresistive beha-
vior. In addition, the material experiences higher levels
of inelastic deformation and reduced resistance to impact
damage when compared to pure PEEK [65,66]. However,
this brittleness can be mitigated by precisely controlling
the ratio, size, orientation, and interface of CFs, such as
continuous long CFs introducing anisotropic mechanical
properties into the composite, which means that its
mechanical properties vary with the loading direction. Con-
versely, randomly oriented short CFs create isotropic beha-
vior in the composite. Short CFs offer the advantage of better
dispersion within the PEEK matrix, ensuring uniform proper-
ties throughout the material [67]. Such adaptability allows CF/
PEEK composites to closely match the biomechanical proper-
ties of host bone tissue, making them ideal for orthopedic
applications. Nevertheless, due to the chemical inertness
and hydrophobicity of CF and PEEK and their insufficient
active groups, the composite delaminates, reducing signifi-
cantly the interlaminar shear strength and fatigue resistance
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of the composite and limiting its application [68]. Therefore,
enhancing the interfacial bonding strength is crucial to opti-
mize the mechanical properties of CF/PEEK composites. Stra-
tegies aimed at improving interfacial interactions include
enhancing intermolecular forces, establishing chemical
bonds, and promoting mechanical interlocking. Techniques
like introducing PEEK as interface layers on activated CFs
and employing polyetherimide (PEI) and GO complex sizing
on CF surfaces [69], and the direct spraying of treated CNTss
to CF/PEEK prepreg by prepreg spraying method have all
shown promising results in enhancing interfacial bonding
and, consequently, mechanical properties [66,70,71]. Shifting
focus to CNTs, these materials possess exceptional mechan-
ical and physical properties, making them ideal for use as
fillers in composites. Upon adding CNTs to PEEK, parameters
such as Young’s modulus, tensile strength, flexural modulus,
and flexural strength are improved, effectively enhancing
the mechanical properties of PEEK [72,73]. With the addition
of CNTs, the material’s stiffness is significantly enhanced,
while its ductility is reduced. Additionally, the wear resis-
tance is significantly improved, with the optimal wear resis-
tance of the composite observed at the low content of CNTs
(5vol%) [74]. In various types of CNT fillers, especially
single-walled CNTs (SWCNT) is a very effective additive, in
PEEK to add a small amount of SWCNTs, in addition to
improving mechanical properties, due to the Van der Waals
force between carbon atoms, the antioxidant effect of CNTs
can also improve their heat resistance, and the use of large-
diameter, small-diameter SWCNTs, as well as high-mass
fraction SWCNTs, can also improve the effective thermal
conductivity of composite materials [75]. However, the ten-
dency of CNTs to aggregate into bundles due to Van der
Waals forces can hinder their dispersion within a polymer
matrix. Multi-walled CNTs (MWCNTs), with weaker Van der
Waals forces, exhibit reduced aggregation tendencies.
Research indicates that the introduction of MWCNTs signifi-
cantly enhances the Young’s modulus of PEEK composites,
but the binding force between MWNTs and PEEK matrix is
weak [73]. Therefore, various methods have been employed
to improve CNT dispersion, including in situ polymerization,
covalent grafting, deposition of nanocomposite coatings on
PEEK surfaces [76], and establishing hydrogen bond inter-
actions between functionalized PEEK and CNTs. It is worth
noting that CNTs have needle-like properties that can
damage human organs [70]. GO, a graphene derivative
rich in oxygen functional groups, has emerged as another
valuable addition to PEEK. Mechanical testing has indi-
cated that the reinforced composite’s toughness changes
with the GO content. At 0.5% GO, it achieves maximum
elongation at break while still sustaining its compression
modulus. The improved mechanical properties of the
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material are due to the uniform dispersion of GO in the
matrix and the strong nm-m interaction between the large
n-conjugate structure of GO and the benzene ring in PEEK
[77]. However, excessive GO content may cause uneven
dispersion and ultimately reduce toughness, negatively
impacting the mechanical properties [78]. At present,
the understanding of the nature of GO is still not compre-
hensive, and its lack of stability greatly hinders its appli-
cation in orthopedics [79]. For this reason, the mechanical
characteristics, bactericidal properties, and osteogenesis-
promoting ability of GO are now optimized by using poly-
meric and non-polymeric precursors for multiplex plasma
treatment [79], multifunctional nano-coatings consisting of
GO nanosheets, polydopamine (PDA) nanolayers and basic
fetoprotein (BFP) oligopeptides on orthopedic PEEK implants
[80], and GO-modified microporous/nano-porous PEEK bio-
materials [81]. In summary, the introduction of CFs, CNTs,
and GO into PEEK composites induces significant alterations
in their mechanical properties, making them highly suitable
for orthopedic applications. These modifications enable PEEK-
based composites to strike a delicate balance between
robust mechanical strength and biocompatibility, posi-
tioning them as promising candidates for a wide range
of orthopedic implant applications. Further research and
refinement of these composite materials hold great poten-
tial for revolutionizing dentistry and orthopedics.

4 Strategies for increasing the
antibacterial activity of PEEK

Currently, thousands of implants are employed in stoma-
tology annually, and a portion of these implants could
undergo bacterial colonization [82]. Postoperative acute
infections and peri-implantitis are prevalent complications
associated with oral medical implants. These issues also
constitute significant factors contributing to long-term dis-
comfort, loosening, or even implant failure subsequent to
implant surgery [83]. Indeed, a crucial element in oral
implant infections is the adherence of bacteria to the
implant surface and the subsequent creation of a biofilm
within the oral environment. This distinctive biofilm struc-
ture can result in varying degrees of damage to the sur-
rounding tissues of the implant (Figure 4) [84]. The oral
cavity constitutes a significant ecological niche for the colo-
nization and persistence of human microorganisms [85].
Among these, the oral microbiota ranks as the second-lar-
gest microbial community following the intestinal micro-
biota, encompassing over 700 distinct microorganisms [86].
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While adhering to rigorous aseptic procedures, the intro-
duction of pathogenic bacteria during implantation is una-
voidable [87]. Bacterial colonization, proliferation, and
maturation progressively give rise to the development of
bacterial biofilms [88]. Various varieties of bacteria, pro-
teins, and sugars are found within plaque biofilms [89].
These components, such as cell wall teichoic acid of gram-
positive bacteria and lipopolysaccharide released by gram-
negative bacteria, as well as various proteolytic enzymes,
can cause implant infection (Figure 5) [90]. To tackle these
potential concerns, the development of implant materials
endowed with antimicrobial attributes holds significant
importance. To date, antibacterial-modified PEEK is a pro-
mising dental implant material.

4.1 Antibacterial metal particles

Many metal elements with antibacterial properties, such as
Ag, Cu, Zn, Mn, and Fe, have been enriched on the surface
of PEEK, which allows the implant to have antibacterial
capabilities. They can inhibit or even kill the bacteria by
destroying bacterial cell membranes, destroying proteins
and DNA within the bacteria, and producing reactive
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oxygen species (ROS) (Figure 6) [91]. Antibacterial metal
ions, such as silver ions, have been applied to PEEK to
deal with potential infection problems in oral implants.
Silver, a common disinfectant for thousands of years of
human history, has toxic effects on a variety of microor-
ganisms while its toxicity to humans is minimal and insig-
nificant [92]. It has been demonstrated to disrupt bacterial
metabolism through various mechanisms [93]. Silver ions
can penetrate bacterial cell walls and cell membranes, and
then enter the combination of cells and ribosomes to
inhibit protein synthesis [94]. In addition, silver can also
destroy the oxidative respiratory electron transmission
chain by losing respiratory enzymes on the cell membrane
[95]. More importantly, silver ions produce ROS to lead
bacterial cracking death eventually. The silver ions of
appropriate concentration have good antibacterial capabil-
ities due to these mechanisms. Liu et al employed the
magnetic sputtering method to create a nano-silver coating
on the PEEK. The experimental findings indicated that
PEEK with a silver-coated surface exhibited no cytotoxicity,
and the water contact angle experienced a notable increase.
Moreover, the antimicrobial efficacy of PEEK with a silver
coating exhibited significant enhancement compared to
pure PEEK [96]. Deng et al. utilized dopamine chemistry to
create silver-modified 3D printed PEEK. Cell experiments
demonstrated that the modified material had the capacity
to enhance the proliferation and differentiation of MG-63
cells. Additionally, the modified material exhibited a sub-
stantial antibacterial impact on both Escherichia coli and
Staphylococcus aureus [97]. Jerome Girard et al. synthesized

a PEEK with pyridine side groups to integrate silver ions into
the polymer. This modified material also has a good inhibi-
tory effect on S. aureus, E. coli, and other gram-negative and
gram-positive bacteria. It is an ideal new PEEK material with
antibacterial function [98]. Furthermore, Yu et al. employed
PDA to uniformly incorporate silver ions onto the PEEK sur-
face. Subsequently, they applied a spin-coated carboxy-
methyl chitosan film (CMC) that regulated the release of
silver ions and synergistically exhibited antibacterial prop-
erties. In vitro antibacterial experiments demonstrated that
the modified PEEK exhibited effective antibacterial effects
against both gram-negative and gram-positive bacteria [99].
In addition, silver ions can also be used in combination with
nano-Si0,. SiO, has a porous structure, which allows the
slow release of silver ions. A two-layer coating was prepared
on stainless steel (SS) by Nawaz et al. The first layer adopts
electrophoretic deposition to prepare bioactive glass nano-
particles (MBGN)/bioactive glass BG/PEEK composite coating.
The second layer was deposited on Ag/nSiO, using radio
frequency co-sputter deposition (RF). RF deposition for
20 min and 40 min gave SS-PEEK/BG/MBGN-Ag/nSiO, (RF20)
and SS-PEEK/BG/MBGN-Ag/nSiO, (RF40). Both materials have
certain antimicrohial properties [100]. Nawaz et al synthe-
sized 5-6 pm thick porous bioactive glass coatings with sil-
ver-manganese elements (Ag-Mn-MBGNs) on PEEK/bioactive
glass coatings (PEEK/BG). This material, PEEK/BG-Ag/Mn/
MBGNs, has antibacterial effects against gram-positive
and gram-negative bacilli. This is also related to silver
ions [101]. Although silver ions have outstanding antibac-
terial functions, some studies have shown that excessive
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silver ions have toxic side effects on mammalian cells
[102]. It can disrupt the respiratory electron transport
chain of mitochondria in normal cells, leading to the
production of ROS, leading to DNA fragmentation [103].
Therefore, implants containing silver ions need to add an
appropriate amount of silver, while obtaining good antibac-
terial activity, it will not have adverse effects on the meta-
bolism of normal cells.

Other metal ions, such as Cu ions, are also significant
antibacterial agents. Copper serves as a vital co-factor for
numerous essential enzymes engaged in the electron trans-
port chain of cellular oxidative respiration, including cyto-
chrome c oxidase and ceruloplasmin [104]. Yan et al
employed dopamine chemistry to coat silver nanoparticles
onto the surface of copper oxide microspheres (Cu0), sub-
sequently applying the composite microparticles (CuO/Ag)
onto porous PEEK surfaces with the aid of silk fibroin. In
vitro antibacterial tests revealed that the modified PEEK
displayed a beneficial antibacterial impact and effectively
restrained biofilm formation [105]. Under the local acidic
environment (pH = 5.0) simulating bacterial survival, the
killing rate of modified PEEK to E. coli reached 99.99%. This
modified PEEK possesses robust antibacterial capabilities
attributed to distinct antibacterial mechanisms involving
silver ions and copper ions. Regarding the cell membrane,
silver ions can disrupt it by attaching to specific sites on the
membrane, disrupting the bacterial membrane’s oxidative
electron transport chain [106]. On the other hand, copper
directly engages in a lipid peroxidation reaction with the
cell membrane. Concerning intracellular active oxygen,
silver ions indirectly contribute to heightened active oxygen
levels by consuming antioxidant substances [107]. Mean-
while, copper catalyzes Fenton reactions and hydroxyl
free radical reactions, directly resulting in active oxygen
generation. Concerning bacterial proteins, silver has the
capability to displace regular metal ions in bacterial pro-
teins, resulting in protein loss [108]. Conversely, copper
induces protein denaturation by oxidizing amino acid
side chains within the protein. Currently, researchers
posit that copper ions can engage in disrupting cell mem-
branes, altering intracellular biochemical processes, and
inducing DNA damage [109]. These cumulative effects ulti-
mately result in bacterial cell death [110]. For instance,
Liu et al. used magnetron sputtering to sputter Cu nano-
particles on PEEK. In vitro experiments reveal that the
copper-coated modified PEEK demonstrates a potent bac-
tericidal effect via the mechanisms of “contact inhibition”
and “induced killing.” This effect is attributed to the
copper ion-induced polarization of macrophages. The
presence of copper ions induced the conversion of macro-
phages from the MO phenotype to the M1 phenotype,
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resulting in enhanced macrophage phagocytosis of methi-
cillin-resistant S. aureus [111]. Yan et al. deposited copper
citrate nanoclusters on porous PEEK using PDA tech-
nology. In vitro experiments showed that 93% of plank-
tonic bacteria were destroyed. This shows that the material
has the potential to kill bacteria and control infection. This
is because the presence of citrate promotes the transport of
copper ions into the cells, increases the copper content in
bacterial cells, and then generates active oxygen to destroy
bacteria. PDA coatings can release high doses of copper at
low pH in the presence of bacteria [112]. Wang et al. coated
Mn*" and Cu** on the PEEK surface with PDA. This modified
PEEK can inhibit S. aureus and E. coli. This antibacterial
effect is related to copper ions [113].

Iron also has some antibacterial properties. Iron is a
vital trace element essential for bacterial survival, playing
key roles in processes such as bacterial DNA synthesis and
energy metabolism. However, an excess of iron can prove
detrimental, potentially leading to the demise of bacteria
[114]. In physiological settings, iron predominantly exists in
two states: the oxidized form Fe** (ferric iron) and the
reduced form Fe®* (ferrous iron) [115]. Bacteria will reduce
external Fe** to more soluble Fe**. Fe?* produces a large
amount of OH™ through the Fenton and Haber-Weiss reac-
tion [116]. These free radicals cause bacterial damage by
peroxidizing lipids in cell membranes and introducing
harmful proteins and damaging DNA. Zhang et al. constructed
a composite coating (CuFe,0,/GO) of two-dimensional GO and
photo-activated copper ferrite (PEEK-CuFe,0,/GO), and this
antibacterial coating with photosensitive properties was
applied on PEEK [117]. Under the action of near-infrared
light at 808 nm, the material produced strong antibac-
terial properties. This is related to the copper ions and
iron ions released by CuFe,04. Iron and copper ions
undergo glutathione depletion and Fenton reaction in
infected environments. This produces OH™ and causes
damage to the internal structure of the bacteria [118].

Besides these elements, nano-zinc also plays an impor-
tant role as antibacteria. A possible antibacterial mechanism
of zinc ions is to induce cells to produce ROS, which leads to
bacterial cell wall damage and enhanced membrane perme-
ability, thereby inhibiting bacterial growth [119]. Zinc serves
as a comprehensive antibacterial agent without inducing
bacterial mutations [120]. Functioning as a vital regulator
of bacterial growth and differentiation, zinc ions actively
contribute as cofactors in the synthesis of glycogen, lipids,
and proteins [121]. While high concentrations of zinc inhibit
bacterial growth [122]. An excess of zinc ions can specifically
bind to bacterial proteins, resulting in their inactivation and
denaturation. This process leads to the inhibition of bac-
terial growth. Among its various roles, zinc plays a crucial
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part in the composition of proteins that facilitate osteoblast
gene expression, proliferation, and differentiation. So
adding an appropriate amount of zinc can stimulate new
bone formation while also inhibiting bacterial growth
[123]. Due to the active chemical nature of zinc, it can react
with oxygen to form zinc oxide. Studies show that ZnO
nanomaterials exhibit an excellent antibacterial effect
against gram-positive bacteria [124]. ZnO has also received
approval from the FDA for use in the human body [125].
Magnesium, as a new degradable antibacterial material, is
one of the most promising medical metal materials. Yu
et al. coated the surface of PEEK with a high-purity mag-
nesium coating and found that the material’s killing rate
against S. aureus reached 99% due to the degradation of
the magnesium coating [126]. However, when researchers
use zinc ion-modified implants, they need to detect the
concentration of zinc ions in the blood and the toxic side
effects on different organs, because excessive zinc ions will
have negative effects on living organisms. For example,
animal experiments have shown that mice will develop
pathological changes after oral administration of zinc oxide
(2.5 g-kg‘l) [127]. Intratracheal perfusion of ZnO increased
the number of neutrophils [128]. In addition, zinc oxide
can increase ROS that damage the alveolar epithelium

[130-133]
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7.0, silk fibroin slowly released copper and silver ions in the material
Common antibacterial mechanisms of silver and copper ions: bacterial membrane disruption, ROS production,

PEEK-CuFe,0,/GO exhibited a circulating antibacterial rate of over 98% against both gram-positive and gram-

In vitro: The material has inhibitory ability against E. coli and S. aureus due to the controlled release of Ag*
Antibacteria: PEEK-nZnO (7.5 wt%) > PEEK-nZnO (5.0 wt%) > PEEK-nZnO (2.5 wt%) > PEEK-nZnO (1.0 wt%)

The antibacterial rate of PEEK-PDA-Mn/Cu against E. coli was 92.8%, and that against S. aureus was 91.5%

SS-PEEK/BG/MBGN-AQ/nSiO,(RF40) > SS-PEEK/BG/MBGN Ag/nSiO,(RF20) > SS-PEEK/BG/MBGN

Zone of inhibition: PEEK/BG-Ag/Mn/MBGNs > PEEK/BG

But quantitative evaluation of silver ion release is lacking
The CuFe,04/GO coating can kill more than 99.94% of S. aureus and 99.57% of E. coli

(Table 3).
5 ¢ .
4.2 Inorganic non-metallic antibacterial s £ E
substances gE £
) (S| c 5 >
HEEES LR g
Inorganic compounds, such as SizN, and titanium dioxide & 2% 5 S 2
(TiOy), also have unique antibacterial effects in PEEK implant. "
Tao et al prepared nanometer TiO, thin films by hydro- §
thermal method. Experiments show that the material has > w w 2 8 . -
strong photocatalytic bactericidal performance [139]. Xian % g 3 g 3 § § 3 § 3 g 5 3 g 3 §
et al. grafted PDA onto PEEK to obtain PEEK-PDA-TiO, by £ Sl vuy VWU Wwu W We Wy
liquid deposition of nano-TiO, coating [140]. This material ¢ =
possesses antibacterial properties due to the high aspect ratio ES §
of anatase-type TiO, and nanostructured surfaces that inhibit g g
bacterial respiration and metabolism. In addition, Si;N, is £ 5 o
also an important antibacterial substance. Some researchers *g '§ g 9 S §r
found that under the same bacterial group conditions, SizN, u%’ g j"‘ ‘Z % - f:E' & Cé
has the least number of bacteria on the surface of SisN, & << < < < v © <
compared with Ti and PEEK. This materials has bacteriostatic 5 *)
ability [141]. These bacteria include but are not limited to g E 2
Staphylococcus epidermidis [142], S. aureus, E. coli, Pseudo- E . O ‘Z? @
monas aeruginosa, Enterococcus. In view of the excellent anti- 5 & S 3 % 8. S
bacterial properties of SisNy4, Pezzotti et al. mixed SisN, with £ % g'g* % %, g, §T °
PEEK, and the volume content of SizN, was 15vol%. It was E = &',, ; § ; % é‘ E
found that PEEK-Si3N, has inhibitory effect on gram-positive =~ 2 g ¥ ¥ & 2 N ¥ ¥
S. epidermidis [143]. = sl &z a & & g &
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4.3 Organic antibacterial substances

Organic antimicrobials can also be synthesized on PEEK to
provide antimicrobial properties. Organic bacterial anti-
bacterial agents include antibiotics, antimicrobial peptides,
and active ingredients of traditional Chinese medicine
(Table 4).

4.3.1 Antibiotic

Many dental surgeries nowadays incorporate oral or intra-
venous antibiotics, which aid in mitigating issues related to
bacterial infections [163]. However, it is important to note
that oral or intravenous antibiotics have a delayed onset of
action, and they carry the possibility of adverse reactions,
including antibiotic resistance and circulatory collapse
[164]. Therefore, the synergistic use of antibiotics and
PEEK can directly manage bacterial infections. For example,
Lauren et al designed a cage with an antibiotic reservoir
using PEEK material. The antibiotic reservoir is sealed by a
polylactic acid (PLA) microbubble membrane [165]. PLA is a
new type of biodegradable material. It has the function of
carrying drugs and adsorbing ions. The PLA microbubble
structure can be disrupted by ultrasound radiation, which
allows the slow release of antibiotics from the orthopedic
device. When the ultrasonic parameters were set as pulse
repetition frequency of 6.4 kHz and acoustic output power
0f100% (3.41 MPa), the antibacterial effect was the best [166].
Similarly, scientists can add different drugs to the device to
control different types of infections, depending on the clin-
ician’s medical needs. The design of this orthopedic device
can provide ideas for the development of antibacterial
properties of oral implants. Some researchers synthesized
Van-GNPs/PEEK with an antibacterial effect using low tem-
perature argon plasma, chemical deposition, and PDA drug
loading techniques. Van-GNP is a vancomycin gel nanopar-
ticle prepared in the laboratory, characterized by the slow
release of vancomycin. Vancomycin is a narrow-spectrum
antibiotic effective against gram-positive bacteria. It can
reduce the permeability of cell membrane and affect the
replication of bacterial genetic material [167]. Gao et al
synthesized moxifloxacin hydrochloride (MOX) and osteo-
genic growth peptide (OGP) on a porous sulfonated PEEK
(SPEEK) surface coated with PDA. The new material SPEEK-
PDA-MOX/OGP has osteogenic effect while resisting infec-
tion [168]. The antibacterial properties of the material are
mainly determined by MOX. MOX is a quinolone antibiotic
with good broad-spectrum antibacterial activity and could
prevent osteomyelitis. MOX inhibits bacterial DNA gyrase
and topoisomerase IV, which in turn prevents bacterial
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DNA replication, which results in bacterial growth inhibi-
tion and death. This property can lead to rapid bacterial
death while fighting antibiotic resistance. Xu et al utilizes
a layer-by-layer (LBL) deposition technique to introduce
gentamicin (GS) and phosphate (CAP) into the PEEK mate-
rial. Experiments have shown that the materials (PEEK/
CAP-GS*6) prepared by six LBL cycles have favorable anti-
bacterial ability [169]. Wang et al. synthesized PEEK modi-
fied with dexamethasone and minocycline loaded liposome,
and the results showed that PEEK-Dex/Mino had well stabi-
lity and cytocompatibility, as well as antibacterial properties
[170]. Minocycline can bind to specific ribosomal subunits,
which interferes with the association of bacterial ribosomes
and tRNAs. This mechanism inhibits bacterial protein synth-
esis, making PEEK-Dex/Mino antibacterial [171]. A layer of
hydroxyapatite coating (HA) about 200-760 nm was formed
on PEEK material surface by ultrasonic coating technology,
and the nano-hydroxyapatite (Go-HAP) coating was loaded
with the antibiotic cephalosporin (CEF) at the concentration
of 1mg-cm™ The results showed that PEEK-HAP1-CEF had
a suitable antibacterial effect on S. aureus [172]. The anti-
bacterial activity of the material is determined by the pore
size of Go-HAP. The larger the pore size is, the larger the
drug load is and the better the antibacterial activity is. Sang
et al. embedded nano-carbonate-dopamine (SrCO3/PDA) into
a SPEEK with a microporous structure, combining GS-silk
protein coating (GS/Silk) into the material surface [173]. This
synthetic material has strong antibacterial properties both
in vitro and in vivo because silk fibroin controls the slow
release of GS [174]. And GS can inhibit gram-positive and
gram-negative bacteria [175].

4.3.2 Antimicrobial peptide

Antibacterial peptides (AMPs) are natural antibacterial
substances that currently have broad-spectrum resistance
to bacteria [176]. AMPs can destroy multiple targets of
pathogens, so it is less likely to develop bacterial resistance
than antibiotics [177]. It can disrupt bacterial cell mem-
branes at multiple sites or interfere with their protein
synthesis. Li et al. synthesized OGP and AMP onto PEEK
surface. This material (PEEK-OGP-AMP) has the function
of inhibiting bacterial growth [178]. AMPs can attack
pathogen cell membranes, making membrane proteins
structurally abnormal, hindering cellular respiration and
cell wall synthesis, which leads to bacterial death [179].
Yuan et al. synthesized the mouse beta-defensin-14 (MBD-14)
onto a SPEEK surface. MBD-14 has broad-spectrum activity
against multidrug-resistant bacteria and gram-positive and
gram-negative bacteria, So SPEEK-MBD-14 has a durable
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antibacterial effect [180]. This durable antibacterial prop-
erty may be related to the covalent immobilization of
MBD-14 with SPEEK and the contact absorption of MBD-14
on the material.

4.3.3 Coating herbal extract antibacterial agent

In recent years, the active ingredients in herbal medicine
extracts have also become a research hotspot of antibac-
terial organic compounds. Since this type of organic matter
is extracted from natural herbs, it has fewer side effects on
the human body when it is antibacterial [181]. In addition,
these antibacterial ingredients have significant antibac-
terial effects, like as butyrate and chlorogenic acid (CGA)
[182]. The PEEK modified by these antibacterial materials
has obtained excellent antibacterial properties. CGA, also
known as caffeic acid, is an ester compound extracted from
natural plants such as Phyllostachys edulis and honey-
suckle. It is formed by condensation of caffeic acid, .-quinic
acid, and the third hydroxyl group. It has antibacterial and
antiviral properties [183]. He et al. constructed a CGA/
grafted peptide (BFP) hydrogel system on a SPEEK. Due
to the excellent antibacterial effect of CGA, the modified
PEEK has inhibitory effects on both gram-positive and
gram-negative bacteria [184]. Curcumin (Cur) is a low
molecular weight polyphenolic compound extracted from
turmeric with low toxicity to human cells. It also has anti-
bacterial and anti-inflammatory effects. Zo et al. intro-
duced a nano-porous magnesium calcium silicate (n-MCS)
coating on the surface of PEEK, and then loaded CR and
genistein (GS) on it to synthesize PEEK-nMCS-CR-GS [185].
Ekambaram et al. used electrospinning technology and
amination reaction technology to composite Cur and zir-
conia (ZrO,) into SPEEK. Due to the addition of Cur, the
laboratory found that SPEEK-NH,-ZrO,—Cur has an anti-
bacterial effect on Streptococcus oralis-2696 [186]. Ber-
berine, an extract from the Chinese herb Coptis chinensis,
can interfere with bacterial DNA replication and protein
synthesis, which can inhibit staphylococci. Sang et al
embedded nanoparticles (Ost) on SPEEK, and then bound
a silk fibroin-berberine coating (Ber) on the surface of the
material. But the drug is highly soluble in water. However,
silk fibroin, which has abundant carboxyl groups, cova-
lently adsorbs with berberine, and increases the loading
of berberine on the material, which can control the slow
release of berberine. This material prevents bacteria from
sticking and has a Kkilling effect on the surrounding sus-
pended bacteria [187].
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5 Modification of PEEK for
increased osseointegration
activity

The modification methods to improve the bone integration
ability of PEEK mainly include surface modification and
blending modification. Surface modification entails altering
a material’s surface or applying a protective or functional
coating without affecting the material’s chemical composi-
tion. PEEK surface modification methods primarily involve
physical treatment, bioactive material coating, and chemical
treatment. Blending modification refers to the mixing of
different materials together to form a PEEK composites.
These techniques enhance the biological compatibility of
PEEK while preserving its original mechanical properties,
facilitating seamless integration with natural bone tissue
(Figure 7).

5.1 Physical treatment

Physical treatment modification refers to the use of heat,
force, light, electricity, and other means to change the
shape, structure, and properties of the material surface.
The physical methods currently used in the modification
of PEEK include accelerated neutral atomic beam (ANAB)
technology, ion beam-assisted deposition (IBAD), plasma,
and nano-structured PEEK surfaces (Figure 8).

5.1.1 ANAB modification

ANAB technology is a widely accepted accelerated particle
beam technology, which has been used as a nano-scale
surface modification tool in the fields of implantable med-
ical devices with rapid and economical characteristics
[188]. ANAB not only induces amorphous atomic layer for-
mation on the material’s surface but also alters its surface
morphology. Recent research suggests that ANAB can boost
the biological activity of biomaterial surfaces and reduce
surface roughness without affecting the overall mechanical
properties. Khoury et al. found that ANAB processing
improves UHMWPE wear resistance by aligning its surface
energy with key body proteins, reducing bacterial adhesion
by mucins, casein, and lubricating proteins. Ajami et al
demonstrated that ANAB-treated PEEK surfaces enhance
cell attachment and improve biocompatibility. Cells show
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enhanced metabolic activity and growth on ANAB-treated
PEEK, indicating its promise for improving bone integration
in PEEK implants [189].

5.1.2 IBAD modification

IBAD is a thin film deposition technique that creates denser
specialized thin films, providing superior mechanical strength,
environmental stability, moisture resistance, and weather
resistance compared to conventional methods. In a study
by John et al. IBAD was used to coat a cylindrical PEEK
substrate with HA/YSZ at room temperature [190]. The
study’s tensile test results suggest that increasing substrate
roughness can enhance coating strength. When combined
with IBAD, this has the potential to optimize bioactive HA/
YSZ coatings for promoting bone growth and integration in
implantable PEEK biomaterials. In vitro research by John
and colleagues has shown that crystalline HA/YSZ coatings
promote osteoblast differentiation, expediting osteoblastic
maturation and bone growth [191]. Specifically, the coating
after microwave and autoclave heat treatment exhibited
superior biological activity.

5.1.3 Plasma modification

Plasma modification is a simple and effective surface mod-
ification strategy. Ionizing gas bombardment in a confined
space can enhance PEEK surface functional groups, create
surface roughness, and enhance cell adhesion and PEEK’s
biological activity. Stefanikova et al. found that plasma-
treated PEEK, when compared to untreated PEEK, dis-
played increased water contact hysteresis and greater
spatial heterogeneity [192]. The biological activity of plasma-
modified materials is related to the type of plasma. Liu
et al. found that compared with the unprocessed PEEK,
the PEEK-N (N, cold plasma treatment group) had the
highest roughness and the strongest hydrophilicity. In
addition, compared with the unprocessed PEEK, the osteo-
genic activity of the experimental group was significantly
improved. In the experimental groups, PEEK-N had the
best osteogenic activity and PEEK-A (Ar cold plasma treat-
ment group) had the weakest osteogenic activity. N, cold
plasma treatment is the most suitable modification method
for PEEK in implantable medical devices [193]. Fu et al
treated standard PEEK with hydrogen and oxygen plasma,
and tested the surface roughness, surface contact angle,
surface microhardness, surface crystallinity, and human
osteoblast coverage area of each group. The results showed
that the low-pressure plasma treatment evaluated in the
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experiment had significant effects on the hydrophilicity,
crystallinity, and microhardness of PEEK surface. In addi-
tion, the adhesion and proliferation rate of human osteo-
blasts on plasma treated PEEK surface was significantly
increased, and further research results showed that plasma
treatment with a hydrogen to oxygen ratio of 2/1 was effec-
tive in all experimental groups [194]. Wang et al. used a
combination process of sulfonation and argon plasma treat-
ment to combine polar functional groups and layered micro/
nano-morphology on PEEK surface, which improved the
viability and alkaline phosphatase (ALP) activity of MG-63
cells, promoted the formation of calcium nodules and the
expression of osteogenic genes in MG-63 cells [195]. Yu et al
prepared CF-reinforced PEEK (CFR-PEEK) composite mate-
rial by plasma modification technology, and modified it with
amino group. The evaluation results of CFR-PEEK surface
characterization are as follows: the surface of CFR-PEEK
successfully combined with amino groups has significantly
improved hydrophilicity, and the results of in vitro experi-
ments show that the amino-modified CPEEK has enhanced
biological activity and osteogenic properties [196]. Lu et al
prepared the calcium-containing PEEK surface by calcium
plasma immersion ion implantation method. The results
confirmed that modified layers with different calcium con-
tents were formed on the PEEK surface. Compared with the
untreated PEEK surface, the hydrophobicity of the Ca-
treated surface increased. The adhesion, proliferation,
and bone differentiation of bone mesenchymal stem cells
(BMSCs) treated with Ca-PIII were improved [197]. Zhang
et al. successfully constructed an acrylic (AA) polymer
coating supported by zinc ions (Zn**) on the surface of
PEEK (PEEK-AA-Zn) using a combination of plasma-
induced graft polymerization and chemical immersion.
The AA coating effectively loaded and released Zn*'. In
vitro cell experiments showed that Zn** released by PEE-
K-AA-Zn promoted cell proliferation and increased the
expression levels of osteocalcin, ALP, and bone sialopro-
tein genes. It is obvious that the combination of grafting
polymerization and ion incorporation makes PEEK have
good osteogenic properties [198].

5.1.4 Nano-structured PEEK modification

As a PEEK modification technique, nano-modification has
the advantage of preventing debonding. The nanoparticles
can form a larger interface, enhancing particle-matrix
interaction. There are various nano-morphologies, including
grooves, columns, and pores. The nano-porous surface can
promote cell adhesion, diffusion, and differentiation, and
improve the osteogenic ability. Johansson et al evaluated
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a unique nano-modified PEEK’s relationship between
surface and bone integration by conducting a rabbit experi-
ment. The results demonstrated that incorporating a nanos-
cale hydroxyapatite coating on the PEEK surface significantly
enhanced removal torque and improved biocompatibility,
which is advantageous for bone integration [199]. Lu et al
introduced a unique micro/nano-structure mixed with zinc
into CFR-PEEK surfaces. In vitro cell experiments showed
that the adhesion, proliferation, and bone differentiation of
mouse osteoblasts (MC3T3E1) and rat BMSCs were enhanced
on the structural surface. It was proved that the addition of
zinc and the introduction of multilayer structure enhanced
the specific biological properties of CFR-PEEK surface, and
further expanded the application of CFR-PEEK in dental
implants [200].

5.2 Bioactive material coating

PEEK has the advantages of high melting point, good
fatigue resistance, good wear resistance, non-toxic, and
suitable elastic modulus, so it can be used as a potential
substitute for metal implant materials in dental applica-
tions [201]. Nevertheless, this material suffers from lim-
ited bioactivity. One solution involves surface-coating the
implant with bioactive substances, including hyaluronic
acid, Ti, TiO,, silicate, magnesium phosphate, calcium
phosphate, gelatin, and proteins. The incorporation of
these bioactive coatings significantly boosts the surface
osteogenic activity of PEEK.

Deng et al. made use of the unique biological activity of
n-TiO, and combined the PEEK polymer with n-TiO, to
prepare n-TiO,/PEEK nanocomposites. Both cellular experi-
ment results and in vivo study results showed that n-TiO,
significantly improved the biological activity of PEEK, espe-
cially when it had a rough composite surface [202]. In an
experimental study to explore the effect of aging on the
fracture characteristics of polyether ketone crowns, Lu
et al. found that adding 20% TiO, particles to PEEK crowns
increased the fracture load under compression test com-
pared to PEEK crowns without TiO,, the underlying
mechanism of which will be further investigated [203].
Shimizu et al. established a canine cervical anterior fusion
model for in vivo experimental study. In the experiment,
PEEK was coated with sol-gel-derived TiO, coating. The
results showed that bioactive PEEK implants coated with
TiO, showed better fusion rate and osseointegration [204].
Gelatin is an irreversibly hydrolyzed form of collagen
extracted from animal skin, bone, or cartilage, mainly
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found in bone and skin. Gelatin has the advantages of
good biocompatibility, adhesion, chemical stability, biode-
gradability, and belongs to non-specific biodegradable bio-
materials. In recent years, gelatin has been widely used in
biomedicine. Wu et al. used phosphorylated gelatin to sup-
port covalent coating of bone morphogenetic protein 2
(BMP-2) to enhance bioactive cells. The experimental results
showed that surface modification of microporous PEEK with
phosphorylated gelatin could significantly promote cell
adhesion and proliferation [205]. Zhang et al. added glu-
taraldehyde and gelatin solution to the surface of PDA-
modified PEEK, and chemically combined gelatin hydrogel
with PEEK. Cell experiments showed that the continuous
release of BMP-2 by modified PEEK could promote the osteo-
genic differentiation of BMSCs [206]. HA is the main compo-
nent of vertebrate bones and teeth. HAP has excellent
biocompatibility and bioactivity [207]. Researchers not only
enhance the bioactivity of PEEK by preparing PEEK/HAP
composites, but also enhance the bioactivity of PEEK by
preparing degradable hybrid coatings on its surface [208].
Studies have shown that PEEK/HA composites significantly
improve cell adhesion, proliferation, osteogenic differentia-
tion, and mineralization [209]. Almasi et al. applied a friction
stir processing technique to synthesize HA/PEEK surface
nanocomposites by depositing HA onto PEEK surface. Com-
pared with the original PEEK, the synthesized HA/PEEK
material formed bone-like hydroxyapatite on its surface in
SBF solution, which showed better surface hydrophilicity
and enhanced the biological activity of PEEK. Yak et al stu-
died a porous PEEK scaffold with a stable HA coating. The
highly porous structure of PEEK/HA scaffold and the hya-
luronic acid coating promoted bone integration and biomi-
neralization [210]. Biomaterials based on silicates have
received increasing attention in the treatment of bone
defects and have been used in a variety of biomedical appli-
cations. Wen et al introduced bioactive silicate coating on
PEEK surface to improve the bone integration of PEEK. This
study has shown that silicon-coated PEEK has good osteo-
genic effect and can effectively release silicon in vitro and in
vivo [211].

5.3 Chemical treatment

Chemical modification refers to change in the physical and
chemical properties of polymers through chemical reac-
tions. The chemical methods currently used in the modifi-
cation of PEEK include sulfonation modification, phosphate
modification, and acid treatment.
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5.3.1 Sulfonation modification

Many techniques in addition to gaseous sulfur trioxide
(SO3) can be used to introduce sulfonic groups onto the
surface of PEEK [212]. For example, sulfuric acid treatment
[213], ultraviolet-initiated graft polymerization, and so on
[214]. Sulfonation modification refers to introduce —-SOsH
and sulfonyl group into PEEK. Due to the inherent chemical
inertness of PEEK,; it is both critical and difficult to prepare
the required porous structures on its surface to enhance
biological function. By sulfonation modification, -SOsH
was introduced to bind to the PEEK surface and form a
porous structure to maintain excellent mechanical proper-
ties. The results of several studies suggest that controlled
sulfonation by gaseous SO; would be an effective strategy
to improve the bone integration of PEEK implants by
adjusting the microstructure and chemical composition
while maintaining excellent mechanical properties [215].
Finally, the samples were washed with deionized water
at room temperature for 5 min, and the samples were left
overnight to dry at room temperature [216]. A porous net-
work structure formed on all the sulfonated samples. With
the increase in sulfonation time and concentration, the
porous structures became more obvious. A surface porous
structure was produced on the surface of PEEK materials
due to sulfonation with SO;. Then the morphology of
porous structure, chemical characteristics, wettability,
protein adsorption capacity, mineralization behavior, and
mechanical property of the different SPEEK samples were
systematically evaluated [217]. Furthermore, in order to
evaluate osseointegration properties of the modified PEEK,
a series of in vitro experiments were performed including
cell adhesion, spreading, proliferation as well as extracel-
lular matrix secretion [218].

5.3.2 Phosphate modification

Phosphorylation refers to the addition of phosphoric acid
groups to PEEK materials by various chemical means,
which can increase the hiological activity and mechanical
properties of the surface of the material [219]. The PEEK
implants surface modified with phosphoric acid groups are
outstanding for the pro-osteogenic capability. Many methods
can be used to achieve the phosphate modification of PEEK
[220]. Ultraviolet-initiated graft polymerization [221], tailored
silanization layers technique, and PDA-mediated method all
can be used to introduce phosphoric acid groups on PEEK
Petrovic et al. combined PEEK and b-TCP as alternative mate-
rials for composite applications. Normal human osteoblasts
were inoculated on polymer disks, and cell viability and
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proliferation were evaluated after 24, 72, and 120 h culture
by WST-1 assay. The results show that the mechanical prop-
erties of the composite partly match the mechanical proper-
ties of human bone. The proliferation rate of osteoblasts on
b-TCP-PEEK was lower than that of pure PEEK. Based on
these findings, b-TCP-PEEK is considered to have inhibitory
effects on osteoblast growth in vitro [222]. Sunarso et al. pro-
posed a strategy of combined phosphate and calcium sur-
face-functionalization, in which ozone-gas treatment and wet
chemistry were used for introduction of hydroxyl groups
and modification of phosphate and/or calcium, respectively.
Surface functionalization significantly elevated the surface
hydrophilicity without changing the surface roughness or
topography. Cell experiments showed that the activity of
rat mesenchymal stem cells growing on modified PEEK
was significantly increased. Furthermore, they successfully
prepared phosphate and/or calcium surface functionalized
PEEK through ozone and chemical treatment. This surface
chemical functionalization is a promising technique for
increasing the osseointegration capability of PEEK implants
[223].

5.3.3 Other acid treatment

Acid treatment refers to form pores on the surface of PEEK
implant using a mixed acid of sulfuric acid and nitric acid.
This PEEK has high potential for use as a bone substitute
that promotes bone formation [224]. Huo et al. simulta-
neously treated the surface modification of PEEK with
hydrofluoric acid and nitric acid (AFN). The microstructure
of the modified PEEK surface was observed under scanning
electron microscope. The expression of cell adhesion, sur-
vival, and specific marker genes used for cultured rat bone
marrow mesenchymal stem cells was measured. It was
found that AFN treatment of PEEK could achieve better
adhesion, diffusion, and proliferation of osteoblasts. In
addition, the results show that PEEK-AFN bio-composite
is cytocompatible after surface treatment of PEEK with
hydrofluoric acid and nitric acid, and enhances bone for-
mation and regulates macrophage polarization better than
naked PEEK [225].

5.4 PEEK composites

Mixed modification of PEEK is another method to enhance
the osteogenic activity of PEEK. The current mainstream
addition methods are CF and hydroxyapatite. CF has
already been widely used in some files because of its
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high specific strength, high specific modulus, and excel-
lent corrosion resistance. CFR-PEEK is often used as an
orthopedic implant material due to its high shock resis-
tance and thermostability [226]. Yet recently, some studies
have shown that there is a challenge in CF-reinforced CF/
PEEK composites due to non-polarity and poor wettability
of CF between CF and PEEK. To exert the excellent
mechanical properties and thermal stability of CFR-PEEK,
the addition of bioactive nanofillers or surface modification
may increase its biological activity. Below are examples of
CFR-PEEK modification [227]. Yan et al coated graphene
onto the surface of CFR-PEEK. In vitro and in vivo experi-
ments showed that the graphene-modified version of
CFR-PEEK exhibited satisfactory cytocompatibility and
promoted osteogenesis. Furthermore, Through Van Gieson
staining, they also found that there are more new bones
around graphene-modified CFR-PEEK implants than CFR-
PEEK implants [228]. Deng et al. prepared a unique PEEK
bioactive ternary composite, PEEK/n-HA/CF by a process of
compounding, injection and then evaluated its mechanical
properties and biological performances. The results showed
that n-HA and CF was uniformly distributed in the PEEK
matrix and PEEK/n-HA/CF increased hydrophilicity. Cell
experiments demonstrated that modified PEEK promoted
attachment and proliferation of cells. In addition, through
analyzing the 3D micro-CT data, they also found that there
was a greater formation of new bone around the PEEK/n-
HA/CF [229].

HA has excellent biocompatibility and bioactivity, par-
ticipating in body metabolic processes and accelerate bone
healing. Recent studies have shown that the HA coating
had a dense microstructure with no cracks or pores and
showed better tensile and fatigue properties compared to
conventional HA powders [230]. Feng et al. built a nano-
sandwich construct which is composed of two-dimensional
graphene nanosheets (GNSs) and one-dimensional CNTs to
improve the biocompatibility of HAP-PEEK scaffolds for
bone tissue engineering. They found that HAP-PEEK
increased the effective contact area between the construct
and matrix. Cell experiments showed that the cells attached
and spread well on the surface of the scaffolds and the
adhesion and proliferation ability were better than pure
PEEK [231]. Huang et al. synthesized PEEK-HA composites
consisting of GO, HAP via scalable extrusion and injection
molding followed by laser machining. Incorporation of GO
and HAP significantly increased bone growth and fusion.
More importantly, they found that compared to the pure
PEEK, the composites with macro-porous surface exhibit
better cell viability and provided a better environment for
bone growth [232].
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6 Conclusions

Solving challenges of the weak mechanical properties, poor
bone integration, and susceptibility to bacterial infection of
PEEK implants are key problems in its application.
Orthopedic implants not only need to resist long-term che-
mical erosion but also need to be able to resist friction,
fatigue, shear force, and violence. Moreover, how to
improve the antibacterial and osteogenic properties of
PEEK while improving the mechanical properties is the
future development direction of PEEK-based composites.
There is still a lot of research on how to ensure the sta-
bility of antibacterial functionalized PEEK under different
stresses and the uniform and effective release of antibac-
terial substances. Regarding osteogenic properties, the
composites obtained by blending modification may be
prone to crack propagation under external force due to
the poor interfacial bonding strength between micron
filler and PEEK matrix. Developing interface materials
with strong affinity to both filler and PEEK matrix and
selecting appropriate methods to process the required
composite materials are the key tasks for the successful
clinical transformation of PEEK.

3D bioprinting is likely to become the main technology
for designing and manufacturing orthopedic implants in
the future. Biological 3D printing technology provides a
great possibility for accurately and conveniently constructing
bionic human skeleton structure from macro to micro. The
application of 3D printing technology makes it possible for
PEEK’s personalized medical treatment. Unfortunately, the
accuracy of the current 3D printing technology makes it diffi-
cult to copy some nano-scale fine structures. At the same time,
the innovation of high-temperature printing system and the
exploration of suitable printing parameters will also have a
revolutionary impact on the performance of PEEK and other
implant materials. Further research and clinical trials are still
needed for future innovation to release the untapped poten-
tial of PEEK implants and expand their application scope.

This article summarizes the research results of many
scholars in recent years, introduces the methods of mechan-
ical modification, antibacterial modification, and osteogenic
modification of PEEK, and looks forward to the future
research direction and problems to be further solved, which
makes contributions to the modification and application
of PEEK.
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