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Abstract: Geopolymer concrete (GPC) serves as an envir-
onmentally conscious alternative to traditional concrete,
offering a sustainable solution for construction needs.
The ability to make on-site changes is dependent on the
concrete’s strength after casting, which must be higher
than the target value. To anticipate the concrete’s strength
before it is poured is, thus, quite helpful. Three ensemble
machine learning (ML) approaches, including gradient
boosting, AdaBoost regressor, and extreme gradient
boosting, are presented in this work as potential methods
for forecasting GPC’s mechanical strength that incorporates
corncob ash. To determine which modeling parameters are
crucial, sensitivity analysis was employed. When the com-
pressive strength and split-tensile strength of GPC were
tested with ensemble ML models, R2 values of more than
90% were discovered between the predicted and actual
results. Statistics and a k-fold analysis based on the error
and coefficient of determination were used to verify the
developed models. Slag amount, curing age, and fine aggre-
gate quantity were the three mix proportions that had the
most impact on GPC’s mechanical strength, as shown in the
sensitivity analysis. The results of this study demonstrated
that ensemble boosting approaches could reliably estimate
GPC mechanical strength. Incorporating such procedures
into GPC quality control can yield significant improvements.

Keywords: geopolymer concrete, mechanical strength,
boosting ensembles

1 Introduction

The long-term effects of concrete’s over-reliance as a con-
struction material on the environment are becoming
increasingly obvious [1]. Carbon emissions will rise, and
biodiversity will be lost faster if the world’s demand for
cement and concrete triples by 2050, according to predic-
tions [2]. Portland cement (PC) uses a lot of energy and
produces a lot of carbon dioxide; thus, scientists have
been looking for alternatives [2]. PC, the main ingredient
in conventional concrete manufacture, requires around
1.80 metric tons of inputs and produces about 0.8 metric
tons of greenhouse gases during its creation [3]. Conse-
quently, the cement industry’s impact on global warming
must be mitigated without delay [2]. Recycling materials
from farms and factories into new construction supplies
is one technical and systematic way to reduce material
impact [4–7]. Recycled agricultural and industrial waste
can be transformed into supplementary cementitious mate-
rials, which have positive impacts on the environment,
economy, and society at large [8,9]. One effective, inexpen-
sive, and long-term way to reduce one’s carbon footprint is
to use recycled materials instead of PC [10].

By utilizing recycled agro-industrial resources in place
of traditional PC, eco-friendly geopolymer concrete (GPC)
renders cementitious binder unnecessary [11,12]. It sug-
gests that the activation of aluminosilicate-based raw
materials involves the use of alkali hydroxide/alkali sili-
cate [13–15]. Geopolymer (alumino-silicate) materials can
be made from a variety of reused farming and industrial
products, including ground granulated blast furnace slag
(GGBFS), fly ash (FAS), metakaolin (MK), red mud (RM),
silica fume (SF), and rice husk ash (RHA) [16]. GGBFS
offers a cost-effective and environmentally friendly alter-
native for GPC, demonstrating promising attributes for
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eco-friendly and economical concrete solutions [17,18].
Nevertheless, corncob ash (CCA) stands out as an innova-
tive component in this particular setting. Due to the fact
that it contains a larger percentage of silica, CCA can be
utilized as a substitute of or as a supplement to more
typical pozzolanic materials such as RHA and FAS pro-
ducts. To avoid problems with on-site baking of GPC,
researchers are looking into creating eco-friendly con-
crete using CCA at ambient temperatures. Considering a
structure’s resistance to environmental and other stresses
is crucial when predicting its service life; achieving strength
specifications alone is not enough. Because of its increased
mechanical strength and longevity, GPC is being considered
as a possible substitute for regular concrete in eco-conscious
regions. According to multiple sources, GPC’s exceptional
mechanical qualities and durability are caused by its one-
of-a-kind chemical makeup [16,19,20]. Incorporating nano-
silica and recycled plastic particles has recently improved
GPC’s performance [21–23].

GPC is a greener option to regular concrete since it
substitutes recycled agricultural and industrial resources
for cement [11,12,24]. According to the findings, alkali
hydroxide/alkali silicate is the key ingredient for activating
aluminosilicate-based raw materials [13]. Reprocessed agro-
nomic and industrial materials such as FAS, RM, GGBFS, MK,
RHA, and SF are promising as precursors to geopolymers
(alumino-silicates) [16,25–29]. For environmentally con-
scious and budget-conscious concrete [17,18], increased
stiffness [30], and exceptional resistance to chemical
assaults [31,32], GGBFS is an attractive option to GPC due
to its reasonable cost-benefit and minimal environmental
impact. On the other hand, CCA is an entirely novel compo-
nent. The increased silica content of CCA makes it a suitable
supplement or replacement for traditional pozzolanic mate-
rials like RHA and FAS. Scientists are trying to figure out a
way to make this green concrete without utilizing an oven,
so that it would not have any of the issues that come with
green precast concrete. Equally important is realizing that
strength requirements are not the be-all and end-all of per-
formance evaluations. When determining how long a building
will last, it is important to take its resistance to environmental
and other stresses into account. In ecologically delicate
regions, GPC is a good substitute for regular concrete due to
its higher mechanical strengths and durability. The unique
chemical makeup of GPC is the reason for its exceptional
mechanical capabilities and endurance, according to all of
the aforementioned sources [16,19,20]. Used in conjunction
with recycled plastic particles, nano-silica has recently
improved GPC performance [21–23].

Engineers, scientists, researchers, and computer pro-
grammers’ efforts to develop new products and improve

existing ones are being profoundly influenced by mathema-
tical and artificial intelligence (AI) developments [33–36].
The demand for engineers who possess the skill to seam-
lessly incorporate numerical and AI-driven models into
their routine tasks is on the rise due to the necessity to
address a diverse range of challenges encountered in the
field [37–41]. There are still a number of downsides and
performance concerns with AI-based systems despite their
potential. Recognizing objects and keeping up with discus-
sions are two examples of the things that humans take for
granted [42]. This makes it difficult for modern AI to devise
suitable substitutes for teaching computers intuition. AI sys-
tems have successfully tackled these challenges by lever-
aging machine learning (ML) techniques [42–46]. Computers
can learn to function autonomously by analyzing massive
datasets using ML techniques [47]. In order to use the
method with the most accurate data, you must first recover
the features that characterize it. An acronym for “feature
extraction” describes this method. The subsequent step
involves training a ML algorithm utilizing the provided
sample data transmitting features and instructions for pat-
tern separation [42,48]. To address ever-increasingly compli-
cated problems, current civil engineering research must use
statistical approaches and AI. Statistical approaches and AI
are frequently used by civil engineers to forecast the CS of
materials [27,49–52]. These methods have been applied to a
number of challenging situations, including the prediction
of slump and strength of self-compacting concrete, the cal-
culation of the axial bearing of different columns, the pre-
diction of shear behavior of beams, and the prediction of
chloride penetration [53–56]. The number of possible test
configurations is reduced, making future researchmore effi-
cient and cost-effective, thanks to these predictions. From
Artificial neural networks to Gaussian process regression,
gradient boosting, adaptive boosting, regression trees, deci-
sion trees (DTs), expression trees, support vector machines,
and extreme gradient boosting (XGB), a number of ML
techniques have been employed for forecasting concrete
strength [57,58]. Out of all the models tested, the ensemble
boosting models performed the best in predicting GPC’s
mechanical properties.

Using experimental data and AI algorithms, this study
evaluated the mechanical strength of GPC made from slag
and CCA. Using the three ensemble-boosting ML approaches,
the study was able to accomplish its goals. It is possible to
select the most effective model from among ten distinct sub-
models produced by the ensemble approach. One way to
examine the models’ approximative correctness is to com-
pare the predicted and actual results using k-fold analysis
and statistical testing. Experiments are labor-intensive
because of the many steps needed, such as collecting
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materials, casting samples, curing samples to strengthen
them, and finally analyzing the results. Modern modeling
approaches, like ML, applied to the construction sector
could greatly help alleviate these problems. Traditional
testing methods have a hard time picking up on the cumu-
lative effect of all the variables on GPC strength. To deter-
mine which variables were most important, this study
used sensitivity analysis. It is possible to collect the data
needed by ML approaches from existing research. This
dataset can be utilized for a variety of purposes, including
running ML algorithms, estimating material quality, and
doing impact studies. Using an experimental dataset, the
article verifies that the ensemble ML approaches are
useful for forecasting GPC strength. To find out how the
raw ingredients and curing time affected the results, a
sensitivity analysis was done. In order to promote sus-
tainable building approaches, this study’s findings may
increase the construction industry’s use of GPC.

2 Research strategy

2.1 Data collection and valuation

The aim of this study is to use ML ensemble models such as
gradient boosting regressor (GBR), AdaBoost regressor
(ABR), and extreme gradient boosting regressor (XGBR)
to predict the compressive strength (CS) and split-tensile
strength (STS) of GPCsmanufactured from CCA and slag [59].
The total number of data points obtained from the experi-
mental inquiry was 260. With the help of ten input variables,
including fine aggregate (FA), CCA, blast furnace slag (BFS),
concrete grade (CG), water (W), curing day (CD), sodium sili-
cate gel (SSG), molar concentration (MC), and STS, the CS and
STS of GPC were predicted. Information gathering and orga-
nization were accomplished through data preparation. A
common task while attempting the well-known approach of
knowledge discovery from data is preparing the data for
mining. One major obstacle can be circumvented in this
way. Preparing data entails removing extraneous informa-
tion and background noise. As can be seen from Table 1,
the number of descriptive statistics for the inputs and outputs
is shown. A validation process was also utilized in order to
assess the validity of the models that were utilized. Figure 1(a)
illustrates the frequency distributions of the different values.
One method for determining the frequency distribution of an
entire dataset is to add up the distributions of its individual
components and then determine the overall frequency dis-
tribution. In order to find out how often certain values
appear, a relative frequency distribution can be built. Ta
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Figure 1: Database input/output frequency distribution: (a) BFS, (b) CCA, (c) FA, (d) coarse aggregate (CA), (e) W, (f) sodium silicate pellets (SHP),
(g) SSG, (h) CD, (i) MC, (j) CG, (k) CS, and (l) STS [60].
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Figure 1: Continued
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2.2 Simulations of ML

Research into GPC’s mechanical properties took place in a
controlled laboratory setting. Ten separate components
were needed to make CS and STS. State-of-the-art ML tech-
niques like GBR, ABR, and XGBR are utilized to forecast the
GPC’s CS and STS. The most common scenario for using ML
algorithms is comparing the results to the inputs. Half of
the data were used for testing ML models, while the other
half were used for training. The data were partitioned at
random using Python programming. The capacity to train
ML models on subsets of data and then assess their gener-
alizability on other subsets is known as data splitting, and
it is a crucial part of ML model evaluation. By dividing the
data in this way, we may prevent the model from being too
specialized to our training set and evaluate its predictive
power on new, unknown data. Other researchers con-
ducting similar nature studies have also used data splitting
[61–63]. The model’s dependability was shown by the
result’s R2 score. The R2 score, which shows the amount
of variation explained by the model, is one reliable statistic
for measuring the prediction accuracy of a ML model. A
low value for R2 implies a significant discrepancy between
the actual findings and the forecasts [64]. The model was
proven accurate by multiple investigations, which included
statistical tests and evaluations of errors. The research strat-
egy’s flowchart is displayed in Figure 2.

A model’s learning process can be fine-tuned using
hyperparameters. For supervised ML training (regression
and classification), hyperparameter values are required
[65]. To determine the optimal hyperparameter values,
the M–L package’s default setup or the user-adjusted
trial-and-error method is utilized. User trial and error to
obtain appropriate hyperparameter settings is arduous
and time-consuming [66]. Hyperparameter optimization
and tuning can save users time and effort when choosing
the optimal ones for their model [67]. A key aspect of ML
models is selecting the hyperparameter value that ensures
both minimal loss and maximum accuracy [68]. A basic
notion of the model’s performance was obtained by testing
and ranking all potential combinations of hyperpara-
meters according to their effectiveness on each fold. The
hyperparameters that were set throughout the modeling
phase, along with their ideal and range values, are dis-
played in Table 2.

2.2.1 GBR

Friedman proposed employing ensemble methods for clas-
sifying and predicting data [69]. GBR, like other boosting
methods, is limited in application to regression but other-
wise the same. Some of the limitations of GBR are its com-
putational complexity, its susceptibility to noisy data, and

Figure 2: Flow diagram of the research strategy.
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the necessity of meticulous hyperparameter adjustment.
Using ensemble learning, sequential training, weighted
instances, and aggregation of weak learners, GBR is similar
to other boosting approaches such as ABR and XGBR. As
shown in Figure 3, the technique randomly selects training
set repetitions to compare to the reference model. By
resampling with replacement from the original dataset,
the GBR approach uses bootstrap sampling to randomly
choose training set repeats. The model’s performance can
be evaluated across various training data configurations
by comparing these repetitions to a reference model. By
studying how different training sets affect the GBR’s pre-
diction abilities, this bootstrap-based method improves sta-
bility. To prevent over-fitting and improve GBR’s accuracy
and performance, randomly subsampling the training data
is one option. Randomly subsampling GBR training data,
commonly via bootstrap sampling, improves model training
accuracy by diversifying training. This diversity helps the
model fit varied data patterns. This reduces over-fitting by
making the model less susceptible to noise and outliers in
any subset, enabling robust learning and better perfor-
mance on new data. Adjusting the shrinkage rate and n-

tree size allows for fine-tuning of the GBR approach. An
adequately large n-trees dataset is required due to the fact
that the learning rate or shrinkage factor influences each
expansion tree independently. Adjusting the GBR shrinking
rate affects learning step size andmodel complexity-training
speed balance. Adding trees fine-tunes the model’s com-
plexity, affecting its data pattern recognition. GBR model
performance and stability improve with a big dataset for
n-trees. A huge dataset provides various training instances
for each ensemble tree, helping the algorithm generalize.
This diversity helps capture data patterns and makes the
GBR model more resilient and accurate.

2.2.2 ABR

ML specialists often employ the ensemble method for
training several models with a single learning algorithm
[71]. The two methods for developing models, GBR and
ABR, are different. By shifting weights to concentrate on
hard-to-predict samples, ABR sequentially highlights mis-
classified occurrences. GBR, on the other hand, optimizes

Table 2: Setting hyperparameters for ML models

Parameters ABR GBR XGBR

Range Optimal value Range Optimal value Range Optimal value

No. of estimators 10–200 70 10–200 150 50–1000 250
Learning rate 0.01–0.50 0.30 0.01–0.50 0.30 0–1 0.4
Max. depth — — 1–5 3 1, ∞ 10
Max. features — — 0.8–1.0 1 0.8–1.0 1
Min. sample leaf — — 1–4 3 1–4 2
Min. sample split — — 2–10 6 2–10 6
colsample_bytree 0–1 0.5
Gamma 0, ∞ 1
Reg_alpha 0, ∞ 1
Reg_lambda 0, ∞ 1

Figure 3: GBR for regressor training: A temporal study [70].
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overall predictive performance by minimizing residuals by
fitting each new model to the ensemble’s errors. The
ensemble is a collection of independent classification algo-
rithms that are combined into a single decision. Students
from all around the world are working towards the same
goal and band together to find the solution. The ABR imple-
ments a managed ML approach called ensemble knowl-
edge. Because the weights adjusted after each incidence
is processed, adaptive boosting is another name for it; it
gives greater weight to cases that were incorrectly labeled.
After processing each instance, it modifies weights by
giving misclassified examples a larger weight, increasing
their influence in subsequent model iterations. By adjusting
the weights, ABR is able to improve the model’s overall
performance by concentrating on cases that are hard to
forecast. To lessen bias and variability, supervised ML fre-
quently uses boosting techniques. To help a struggling stu-
dent, these strategies are employed. During the training
phase, you can use as many DTs as you want with the input
data. Data that were wrongly classified throughout the
entire original model is given priority throughout the con-
struction of the model. Another model utilizes nothing but
these numbers as input. When enough new primary school
students have been generated, the process outlined above
will begin again. The ABR is particularly effective in
improving the enactment of DTs on two-fold arrangement
issues. Its implementation of other machine-learning tech-
niques is further enhanced by its usage. A doubter can get
knowledge from it as well. Predicting the mechanical prop-
erties of concrete is one area where ensemble methods find
extensive application in civil engineering. The comprehen-
sive procedure for guessing the best ABR algorithmic out-
come is shown in Figure 4.

2.2.3 XGBR

The XGBR method, created by Yeh, is a powerful tool for
data science researchers because of its tree-based ensemble
information strategy [73]. A variety of functions are used by
the GBR architecture, which XGBR is built upon, to estimate
outcomes in accordance with Eq. (1) [69].

( )∑= +
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y y f U
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k i
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n
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where null hypothesis y
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0 represents the amount of exper-
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model through “linking” new trees; y̅

i
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result that can be anticipated using ith data and Ui as the
restriction vector; ɳ indicates the estimator sum in relation
to tree topologies that are discrete as opposed to all f

k

where k ranges from 1 to n. A major obstacle in ML is
developing models with minimal overfitting of data.
Subsequent trees are designed to rectify the residuals
from this null hypothesis, which acts as a starting point.
The model’s predictions are made more accurate through
this iterative corrective procedure. Regularization strate-
gies, like tree trimming and managing the depth of the
trees, are used by XGBR to prevent over-fitting. In order
to promote a more generalized model, it also includes a
shrinkage parameter that reduces the impact of each
unique tree. The kth forecaster is connected to the method
at the kth level and the estimated kth ( )−− −

y
i

k 1 with the
conforming produced f

k
adjacent to the kth identical fore-

caster is found using Eq. (2). Whereas, where −
y

i

k repre-
sents the predicted value at the kth level, the kth forecaster
is connected to the method at the kth level through the
addition of the product of the learning rate η and the kth
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Figure 4: Schematic representation of the AdaBoost method for predicting forecasts [72].
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weak learner’s prediction f
k
. This equation illustrates the

iterative nature of the boosting algorithm, where each new
weak learner is trained to correct the residuals of the
combined ensemble up to the k−1th level.

( )= +− − −
y y fɳ .

i

k

i

k

k

1 (2)

As shown in Eq. (3), the reduction of the kth truthful job of
a tree results in a leaf with a weight of fk.
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where Z is the segment of leaf lumps, γ is the difficulty
factor, λ is a persistent coefficient, and ω

a

2 is the weight of a
leaf; these regulating limitations are utilized to avoid over-
fitting and enhance the model. Across the whole dataset, h

a

and g
a

provide a concise summary of the original gradient
leaf loss function and its predecessor. Cutting a single leaf
into many smaller leaves is required to construct the kth
tree. Advanced factors are employed to produce such a
framework, as shown in Eq. (4).
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where P
R

and O
R

stand for the right leaf, whereas P
L

and
O

L

stand for the left leaf, and G stands for gain variables.
Typically, we ignore the gain parameter and only use the
division criterion. An indirect regulatory variable denoted
by λ is under the control of the gain. One way to stop the
leaf convolution process is to increase the regularization
value, which can significantly lower the gain parameter.

However, including training data would cause the model’s
performance to decline. Figure 5 shows the top-level hier-
archy of the XGB tree algorithm.

2.3 Validation of models

The accuracy of the ML models was verified using mathe-
matical methods and k-fold procedures. One popular way
to test how well a method works is with the k-fold strategy,
which involves randomly splitting the dataset into ten cate-
gories [75]. As can be observed in Figure 6, ML simulations
are taught utilizing nine different groups, but only one is
used for verification. In cases with low error and high R2,
ML methods perform well. It takes ten iterations of the
process to achieve the target outcome. The model’s already
impressive accuracy is further enhanced by this technique.
Reducing the impact of variability in a single train-test split
helps to generate a more robust evaluation of a MLmodel’s
performance, offering a more trustworthy estimate of its
generalization performance. To compare the implementa-
tion of several ML algorithms, statistical error measures
were utilized. These included root mean squared error
(RMSE), mean absolute percentage error (MAPE), and
mean absolute error (MAE). The ML algorithms’ estimates
were statistically tested using Eqs (5)–(7), which were
obtained from previous works [76,77].

| |∑= −
=n

P TMAE

1

,

i

n

i i

1

(5)

Figure 5: A straightforward flowchart outlining the XGBR process [74].
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where n is the number of observations, Pi are the expected
results, and Ti are the measured values.

According to Eq. (8), retrieved from previous studies
[78–80], these factors in an anticipated or experimental
value range from 0.80 to 1.20, where M is the dataset size
and m20 is the entry count. Based on the prediction model,
a20-index values of 1% would be ideal. The 20-index that
has been suggested provides the benefit of a physical engi-
neering method by showing what proportion of samples
match expected values within a ±20% uncertainty range of
experimental data.

A model’s predictive power can be best assessed with
statistical validation and by consulting Taylor’s diagram.
This chart shows the trajectory of the models’ departure
from the truth, which can be used as a benchmark to
assess their credibility and accuracy [81,82]. Three indicators
of a model's proper placement are the RMSE, the correlation
coefficient (radial line), and the standard deviation (circle
centered at the real value point). Whichever model has the
best track record of accurately predicting outcomes is the
most reliable one [81].

3 Outcomes and evaluations

3.1 CS-ML models

3.1.1 CS-GBR model

An approximation of the GPC CS using the GBR model is
illustrated in Figure 7. Figure 7(a) provides a visual repre-
sentation of the relationship between the actual and
expected CS. The GBR model’s CS predictions were remark-
ably close to the observed values. A GBR technique R2 of
0.9842 indicated substantially greater accuracy in deter-
mining the GPC CS. In Figure 7(b), we can see the spread
of discrepancies (errors) between the experimental and
GBR-predicted values. On average, the incorrect readings
were close to 0.80 MPa, with a standard variation of
0.00–8.58 MPa. And it was found that 56 of those numbers
were less than 1 MPa, 18 were in the 1–3 MPa range, and 4
were beyond 3 MPa. A GBR model can be used to forecast
the CS of GPC by examining the distribution of mistakes.
This is the case even if the only reason this is possible is
due to the improper partitioning of the data.

3.1.2 CS-ABR model

Figure 8 shows that the ABR model can be used to approxi-
mate GPC’s CS. The graphic representation of the link between
the actual and expected CS may be found in Figure 8. The ABR
model closely matched the predicted and actual CS levels. With
an R2 value of 0.9937, the ABR method was significantly more
effective than previous approaches in calculating the CS of
GPC. The error range between the experimental values and
the anticipated values using the ABR technique is displayed in
Figure 8(b). The average error value was about 0.55MPa on a
scale that ran from 0.00 to 3.35MPa. According to the error
distribution, 63 of the readings were found to be less than
1MPa, 13 to be between 1 and 3MPa, and 1 to be above
3MPa. The ABR model is preferable to the GBR model because
of its smaller error margin.

3.1.3 CS-XGBR model

Figure 9 shows that the XGBR ensemble technique, which
consists of ten sub-models, yielded obvious and positive
results due to the low error distribution of the test data
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Figure 6: K-method operational procedure [83].
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and the good regression correlation (R2 = 0.9937). The test
and the anticipated CS are shown to be related in Figure
9(a). The XGBR procedure outperformed its predictions
when compared to the actual outcomes. The XGBR method’s
higher R2 score of 0.9937 shows that it is more accurate. The
distribution of the actual, estimated, and incorrect values pro-
duced by the XGBR approach is depicted in Figure 9(b). The

XGBRmethod produced somewhatmore precisefindings than
the GBR and ABR models; 64 errors were less than 1MPa, 13
were between 1 and 3MPa, and 1 was greater than 3MPa. An
inaccuracy ranging from 0.55 to 3.345MPawas recorded as the
standard deviation. Predictions of the CS of GPC concrete using
the XGBR method are likely to be more accurate than those
using the GBR or ABR methods. Nonetheless, the GBR and
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Figure 7: The CS-GBR model: (a) the link between the expected and experimental CS and (b) the dispersion of the errors and the predicted CS.
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ABR models’ precision was impressive. That being said,
any model can be used to assess the CS of GPC.

3.2 STS-ML models

3.2.1 STS-GBR model

As shown in Figure 10, the GBR model can be used to
estimate the STS of GPC. The agreement between observed

and predicted STS is graphically represented in Figure
10(a). The GBR model’s estimations and the measured
values of STS were found to be in good agreement. The
STS of GPC was successfully estimated using the GBR
method, with an R2 value of 0.9387, suggesting significantly
higher accuracy. Figure 10(b) shows the range of discre-
pancies (errors) between the experimental and GBR-pre-
dicted values. The standard deviation of the erroneous
values was 0.131 MPa, with the range being from 0.005 to
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Figure 8: The CS-ABR model: (a) the link between the expected and experimental CS and (b) the dispersion of the errors and the predicted CS.
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0.442 MPa. As can be seen from the error distribution, 37
values were found to be lower than 0.1 MPa, 35 to be in the
range of 0.1–0.3 MPa, and 6 to be higher than 0.3 MPa. It is
evident that the STS of GPC may be predicted using a GBR
model, even though this is likely attributable to improper
data partitioning.

3.2.2 STS-ABR model

As shown in Figure 11, the ABR model can be used to esti-
mate the STS of GPC. Figure 11(a) shows a pictorial depic-
tion of the agreement between observed and predicted
STS. The predicted and observed values of STS agreed
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Figure 9: The CS-XGBR model: (a) the link between the expected and experimental CS and (b) the dispersion of the errors and the predicted CS.
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closely with each other, as predicted by the ABR model.
Compared to the STS-GBR model, the STS of GPC was effec-
tively predicted using the ABR method, with an R2 value of
0.9568. This figure shows the experimental and projected
values using the ABR approach, together with the range of
errors (Figure 11(b)). With a standard deviation of 0.121MPa,
the inaccurate readings varied between 0.001 and 0.299MPa.
In addition, 37 figures were found to be below 0.1 MPa, 41
to be between 0.1 and 0.3 MPa, and 0 to be above 0.3 MPa

when the spread of the inaccuracies was examined. In
terms of STS prediction models, the ABR model is prefer-
able to the GBR model due to its smaller error margin.

3.2.3 STS-XGBR model

Figure 12 shows that the XGBR ensemble method with ten
sub-models produces clear and favorable results due to the
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Figure 10: The STS-GBR model: (a) the link between the expected and experimental STS and (b) the dispersion of the errors and the predicted STS.
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low test data error distribution and the high regression
correlation of R2 = 0.9622. Predicted STS is shown to be
related to the test in Figure 12(a). When comparing observed
and predicted results, the XGBR method proved to be more
accurate. The XGBR method’s higher R2 score (0.9622) indi-
cates that it is more accurate. Figure 12(b) shows the distri-
bution of accurate, approximated, and incorrect figures

using the XGBR approach. There were 44 errors below
0.1MPa, 32 errors between 0.1 and 0.3 MPa, and 2 errors
beyond 0.3 MPa in the results obtained using the somewhat
more accurate XGBR approach. A maximum of 0.316MPa
was recorded, with an average inaccuracy of 0.105MPa.
When it comes to estimating the STS of GPC concrete, the
XGBR method is expected to perform better than both the
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Figure 11: The STS-ABR model: (a) the link between the expected and experimental STS and (b) the dispersion of the errors and the predicted STS.
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GBR and ABR approaches. Having said that, the ABR and
GBR models were incredibly accurate. Hence, any model
may be used to test the GPC’s STS.

3.3 Substantiation of models

Table 3 shows the computed errors (MAE, RMSE, and
MAPE) as a result of applying the aforementioned Eqs

(5)–(7) to the STS-approximation and CS models. Predic-
tions of CS using GBR, ABR, and XGBR had MAEs of 0.802,
0.557, and 0.557 MPa, respectively. GBR, ABR, and XGBR all
improved performance by an average of 2.60, 1.80, and
1.80%, respectively, according to the MAPE metric. Addi-
tional investigation showed that XGBR had an RMSE of
0.915 MPa, GBR had an RMSE of 1.494 MPa, and ABR had
an RMSE of 0.915 MPa. However, similar tendencies were
found in STS prediction models for MAE, RMSE, and MAPE

(a) 

(b) 

2

3

4

5

6

7

2 3 4 5 6 7

Pr
ed

ic
te

d 
ST

S 
(M

Pa
)

Experimental STS (MPa)

Predicted STS Linear (Predicted STS)

y = 0.9352x + 0.2828
R² = 0.9622

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

1

2

3

4

5

6

7

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

A
bs

ol
ut

e 
er

ro
r 

(M
Pa

)

St
pl

it 
te

ns
ile

 st
re

ng
th

 (M
Pa

)

Data point no.

Experimental STS Predicted STS Absolute error

Figure 12: The STS-XGBR model: (a) the link between the expected and experimental STS and (b) the dispersion of the errors and the predicted STS.
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as seen in CS prediction models. The XGBR technique out-
performs the GBR and ABRmodels, as shown by these data.
To validate the k-fold approach, the results of determining
R2, RMSE, and MAE are provided in Table 4. Results from
k-fold tests of several ML methods for STS and CS predic-
tion are shown in Figure 13. An estimated CS with MAE
values ranging from 0.83 to 3.59 (mean value: 2.17 MPa)
was generated by the GBR method. An MAE of 2.13 MPa
was observed in the ABR model, ranging from 0.76 MPa
to 4.04 MPa. However, XGBR had an MAE of 2.13 MPa, ran-
ging from 1.02 to 3.74 MPa. The RMSE values for the GBR,
ABR, and XGBR methods were 2.90, 2.70, and 2.70 MPa,
respectively. Nonetheless, the maximum R2 values for
GBR, ABR, and XGBR are 0.98, 0.99, and 0.99, respectively.
STS prediction k-fold analysis results were also seen, with
MAE and RMSE values decreasing dramatically from GBR
to ABR to XGBR and R2 increasing marginally across the
same series of models. The maximum R2 and lowest error
rate may be found in the best XGBR model for predicting

GPC’s CS and STS. According to the results of the error ana-
lysis and k-fold R2 measurements, the XGBR model is more
accurate. However, both the GBR and ABRmodels performed
admirably well. Because of this, GBR, ABR, and XGBR models
may offer a more accurate way to evaluate the CS and STS of
GPC. Moreover, Figure 14 demonstrates how Taylor’s dia-
gram can be used to depict the accuracy of prediction of
ensemble models. The R2 values for XGBR models are quite
close to 1.0, which confirms their superior accuracy in pre-
dicting GPC’s CS and STS compared to the other models.

3.4 Sensitivity analysis

This research primarily aims to examine the effect of dif-
ferent input features on the GPC predictions of STS and CS.
The inputs have a strong correlation with the projected
outcomes [72]. Offering a glimpse into the future of con-
crete, Figure 15 elucidates the influence of each constituent

Table 3: Evaluation of errors by statistical procedures

ML technique CS STS

MAPE (%) MAE (MPa) RMSE (MPa) a20 index MAPE (%) MAE (MPa) RMSE (MPa) a20 index

GBR 2.60 0.802 1.494 0.90 3.70 0.131 0.164 0.88
ABR 1.80 0.557 0.915 0.94 3.50 0.121 0.143 0.92
XGBR 1.80 0.557 0.915 1.00 3.00 0.105 0.137 1.00

Table 4: Measures of accuracy (RMSE, R2, and MAE) as per k-fold analysis

Property ML model Parameters k-fold

1 2 3 4 5 6 7 8 9 10

CS GBR MAE 2.55 1.45 2.57 0.83 1.77 2.66 2.79 3.59 2.31 1.22
RMSE 3.36 2.04 3.44 1.50 2.41 3.23 4.08 4.39 2.61 1.98
R2 0.96 0.94 0.92 0.94 0.95 0.93 0.90 0.86 0.93 0.98

ABR MAE 1.87 1.33 2.59 4.04 1.32 2.38 2.13 3.09 1.83 0.76
RMSE 2.23 2.04 3.86 3.36 1.58 2.75 2.86 4.67 2.02 1.62
R2 0.98 0.94 0.86 0.00 0.98 0.95 0.95 0.83 0.96 0.99

XGBR MAE 1.87 1.33 2.59 3.74 1.02 2.38 2.13 3.29 1.83 1.09
RMSE 2.23 2.04 3.86 3.36 1.58 2.75 2.86 4.67 2.02 1.62
R2 0.98 0.94 0.86 0.00 0.98 0.95 0.95 0.83 0.96 0.99

STS GBR MAE 0.34 0.33 0.26 0.31 0.58 0.35 0.25 0.13 0.29 0.43
RMSE 0.58 0.58 0.58 0.36 0.73 0.31 0.26 0.28 0.18 0.33
R2 0.55 0.52 0.65 0.43 0.50 0.38 0.66 0.86 0.93 0.54

ABR MAE 0.65 0.31 0.23 0.11 0.37 0.37 0.18 0.12 0.16 0.19
RMSE 0.66 0.35 0.34 0.11 0.65 0.43 0.19 0.12 0.20 0.19
R2 0.02 0.48 0.51 0.95 0.62 0.45 0.89 0.93 0.81 0.87

XGBR MAE 0.23 0.24 0.29 0.19 0.40 0.20 0.24 0.21 0.17 0.35
RMSE 0.27 0.21 0.32 0.24 0.36 0.53 0.25 0.28 0.28 0.25
R2 0.76 0.44 0.14 0.76 0.65 0.38 0.68 0.96 0.49 0.45
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on the mechanical properties of GPC. Concerning CS and
STS, BFS emerged as the most pivotal factor, accounting for
65% of the influence, followed by curing duration at 25%.
Factors such as FA, CG, CCA, water content, SHP, and MC
contributed to a lesser extent, with percentages ranging
from 0.50 to 3.30%. On the other hand, the sensitivity study
showed that CA and SSG had no impact on GPC’s mechanical

characteristics, suggesting that the parameter dataset was
quite inconsistent. This observation underscores the rela-
tionship between the number of model parameters and
the quantity of data points utilized in the sensitivity analysis.
The study’s findings were sensitive to concealed input char-
acteristics, such as the amounts of the concrete mix, which
became obvious after applying the ML technique in the
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analysis. The significance of the input variables was deter-
mined using Eqs (9) and (10):

( ) ( )= −N f x f x ,i i i
max min

(9)

= ∑ −
S

N

N
,i

i

j i

n

j

(10)

where ( )f xi
max

and ( )f xi
min

are the highest and lowest pos-
sible predicted values for the ith output, respectively.

4 Discussion

In order to guarantee that the predictions are particular to
GPC, the ensemble ML models used in this study can pro-
duce ten independent sub-models with fixed input para-
meters. The models reliably forecast strengths due to their
shared testing process and consistent unit metrics. Models
must produce independent sub-models to understand mix
design and input parameter effects. Extra parameters in
the assessment beyond the ten inputs may render the pre-
dicted models useless. If the data are not according to the
model’s specifications, it might not work as intended.
Unreliable results may be produced by models due to erro-
neous or altered units of the input parameters. The accu-
racy of the models relies on consistent unit sizes.

Enhancing energy efficiency, predicting material
strength, ensuring quality, assessing risks, and imple-
menting predictive maintenance represent just a subset
of the numerous applications of ML models within the
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construction industry. However, these models encounter
certain limitations, such as reliance on human interven-
tion, utilization of imperfect data, and the potential for
inaccuracies in model outputs. To overcome these chal-
lenges, avenues for further research could include refining
ML-based solutions through advancements in the Internet of
Things, development of hybrid model approaches, utiliza-
tion of explainable AI techniques, integration of sustain-
ability considerations, and tailoring data collection and dis-
semination strategies to suit industry-specific needs. Project
completion times could be reduced, and worker and envir-
onmental health and safety could be enhanced through
data-driven decision-making, greater interpretability, and
openness in the construction industry. This study’s findings
have the potential to promote GPC use among builders,
leading to greener building practices. In addition, new areas
of GPC, such as those involving nanotechnology-infused geo-
polymer and 3D geopolymer printing, could be investigated
using ML approaches [84–89].

5 Conclusion

This work predicted the mechanical properties of GPC
manufactured from slag and CCA using three ensemble
ML models: GBR, ABR, and XGBR. The final models were
trained and validated using CS and STS. Noteworthy study
findings are as follows:
• The study discovered that XGBR models had exception-
ally high data prediction accuracy when it came to fore-
casting the CS and STS of GPC.

• All three ensemble ML models (XGBR, ABR, and GBR)
that were created to predict CS and STS for GPC reached
R2 values greater than 0.90.

• The constructed models were evaluated statistically using
MAE, RMSE, and MAPE. When ML models have lower
error values, it verifies their accuracy. It was established
that XGBR models were exceptionally accurate in pre-
dicting GPC’s CS and STS, which were further supported
by the lower error rates.

• k-fold analysis (MAE, RMSE, and R2) revealed that the
XGBR model outperformed the GBR and ABR models
when it came to accuracy.

• According to sensitivity analysis, BFS and CD had the
strongest positive correlation with GPC CS and STS.

It is possible to understand the development of GPC by
referring to the findings of the study, which are founded on
robust forecasting frameworks. Researchers can speedily

evaluate, improve, and rationalize GPC mixture propor-
tioning using the study approach outlined in this article.
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