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Abstract: Marble cement (MC) is a new binding material
for concrete, and the strength assessment of the resulting
materials is the subject of this investigation. MC was tested
in combination with rice husk ash (RHA) and fly ash (FA) to
uncover its full potential. Machine learning (ML) algo-
rithms can help with the formulation of better MC-based
concrete. ML models that could predict the compressive
strength (CS) of MC-based concrete that contained FA and
RHA were built. Gene expression programming (GEP) and
multi-expression programming (MEP) were used to build
these models. Additionally, models were evaluated by calcu-
lating R* values, carrying out statistical tests, creating Taylor’s
diagram, and comparing theoretical and experimental read-
ings. When comparing the MEP and GEP models, MEP yielded
a slightly better-fitted model and better prediction perfor-
mance (R? = 0.96, mean absolute error = 0.646, root mean
square error = 0.900, and Nash-Sutcliffe efficiency = 0.960).
According to the sensitivity analysis, the prediction of CS was
most affected by curing age and MC content, then by FA and
RHA contents. Incorporating waste materials such as marble
powder, RHA, and FA into building materials can help
reduce environmental impacts and encourage sustainable
development.
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1 Introduction

The production of ordinary Portland cement (OPC) accounts
for around 5-8% of the world’s CO, emissions, and current
predictions indicate that this percentage will increase by 8%
by the year 2050 [1,2], which raises doubts about the feasi-
bility of reaching the zero-emission target set out by the
Paris Agreement. It is critical to identify less damaging alter-
natives to OPC to decrease CO, emissions from the OPC
industry. Conversely, marble has become an increasingly
popular material around the world. About half of the
marble that is mined is wasted due to blasting processes
employed in quarrying [3,4]. Because no proper method of
disposal is in place, waste is still dispersed throughout the
quarries. Tiles and other valuable stones are created from
marble, which is transported in massive blocks from quar-
ries to processing facilities. It is wasteful to trim and refine
raw blocks. Around 20% of these blocks are reduced to fine
powder, while the exact percentage varies by processing
method [5]. Typically, open spaces surrounding factories
are used for depositing the slurry. As the mixture dries
into a fine powder, it poses health risks, including skin irri-
tation, lung cancer, and eye pain. Adding sludge to water
also makes it more polluted [6,7]. One negative aspect of
plant diversity is the drying out of older trees and hedges
caused by small marble atoms on shrub and vegetative
leaves [8-10].

OPC contains 60-65% CaO, 20-25% SiO,, and 4-8%
Al,0s, as stated by Neville and Brooks [11]. The majority
of the calcium oxide used to make cement comes from
limestone, as the researcher has already mentioned repeat-
edly. Limestone and waste marble powder (WMP) have
several molecular components, including a high CaO con-
tent [12,13]. Therefore, Khan et al. [14] created a binding
material such as marble cement (MC) using WMP and a
silica-rich substance such as clay, as depicted in Figure 1.
The phases that make up MC were determined to be 3.7%
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Figure 1: Production of MC [19].

CsS, 23.11% free lime, and 52.51% C,S, as reported by Khan
et al. in an X-ray diffraction study [14]. Sluggish cooling led
to low C3S concentrations and high C,S and CaO concentra-
tions. The cold air was softly blown over the MC pallets.
Then, at about 1,100°C, C3S changed back into C,S and CaO.
By rapidly cooling the cement clinkers during OPC manu-
facture, the CsS that is generated at high temperatures is
preserved [15]. The shorter setting time compared to OPC
was attributed to the increased free lime content in MC,
which allowed the cement to avoid slaking (the formation
of Ca(OH),) and use less water. The OPC increases as the
concentration of free lime rises. The enormous pressure
that develops within the cement matrix causes mortar and
concrete made with this cement to deteriorate with time.
Due to the pulverization of a considerable amount of Ca
(OH),, the compressive strength (CS) of cement falls as the
allowed lime level increases [16-18].

As a partial substitute for MC, researchers suggested
using pozzolanic materials to boost the consumption of
free lime content. Various pozzolanic applications are
now being explored for a variety of waste byproducts
[20,21]. Powdered coal is the fuel used in thermal coal
power units. Bottom ash and fly ash (FA) are the bypro-
ducts of burning it. Emissions from vehicles carry FA in its
microscopic particle form. Precipitators are put in place
before the chimney to extract it from the exhaust gases.
Precipitators remove FA from exhaust gases before entering
the chimney [22,23]. Worldwide, rice is also cultivated. “Rice
husk” describes the hard outside layer that protects indivi-
dual grains of rice [24]. After being burned at a controlled
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temperature, this waste material becomes ash. The pozzo-
lanic properties of rice husk ash (RHA), a byproduct of finely
powdered ash, are unparalleled [25].

The importance of CS has led to substantial study of
cement-based materials (CBMs) [26-29]. Important infor-
mation on the CBM’s characteristics may be found in its
CS [30,31]. Many mechanical and durability characteristics
are related to the concrete’s CS in some way [32-34]. By
creating analytical models for material strength, analysts
are aiming to reduce unnecessary testing and associated
expenses. To replicate the material properties, which are
obtained by regression analysis, a plethora of conventional
models, including best-fit curves, are used. Traditional
regression techniques may mistakenly assume the mate-
rial’s intrinsic behavior when dealing with CBMs because
of their non-linear nature [35-37]. The use of artificial intel-
ligence (AI) methods, particularly supervised machine
learning (ML), is propelling the development of more sophis-
ticated models in this area [38—40]. In order to generate reli-
able predictions, these models rely on input features and
undergo experimental verification of their accuracy. The
application of ML algorithms to predict CBM properties is
on the rise [41-44].

This work aimed to forecast the CS of FA and RHA-
based MC concrete (FR-MCC) using ML algorithms, specifically
multi-expression programming (MEP) and gene expression
programming (GEP). This forecast is based on information
found in previously published works. Several measures
were used to assess the efficacy of ML procedures, such as
the R? coefficient, statistical tests, and the dispersion of
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expected results. Investigating the efficacy of ML techniques
in reliably projecting material attributes was the driving
force behind this study. An exploratory experiment or an
analysis of existing databases can yield the dataset that
is required by ML methods [45,46]. By examining this informa-
tion, ML algorithms may gain a more accurate understanding
of the material’s qualities. By combining experimental data
with four input parameters, ML methods’ ability to predict
the CS of FR-MCC was assessed [47,48]. Through the applica-
tion of sensitivity analysis, additional exploration into the
relevance of raw materials was conducted [49,50]. The
newly gathered features and developed ML models could
be used to improve the current sustainable materials data-
base or to guide the formulation of CBM blends, among
other potential applications.

2 Methods of research

2.1 Collecting and analyzing data

Using MEP and GEP techniques, this research analyzed a
dataset comprising 500 data points from an experimental
inquiry with the purpose of forecasting the CS of FR-MCC
[51]. With an initial set of 84 data points amplified to 500
points, this study predicted the CS of FR-MCC using four
input parameters: MC, FA, RHA, and curing age (CA). The
Python code that was executed followed a certain protocol
for expanding the dataset’s data points. First, it opens a file
dialog box built on Tkinter so the user can choose a data-
base file. The selection of the file is then followed by its
import into a Pandas DataFrame, and the script checks the
current point count. A new file is generated that contains
the dataset that is the end result of merging the synthetic

Table 1: Data variable statistical descriptions
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data with the original DataFrame. As the data are being
supplemented, the script provides illuminating statements.
Among the information included in these declarations are
the total number of data points added, the amount of syn-
thetic data points, and the precise location of the saved file.
Furthermore, the script takes into consideration situations
when either no file is chosen or resampling is necessary.
With the aid of data preparation, the data were collected
and organized. One popular approach to data preparation
is to use it as a cushion to get past a major problem with
the well-known process of getting new insights out of
old data. Eliminating extraneous information and back-
ground noise from data is what data preparation is all
about. The model analysis made use of regression and
error-distribution approaches. Table 1 displays the out-
comes of multiple descriptive statistics that were calcu-
lated using this dataset. In addition, validation was used
to assess the efficacy of the models that were used. Histo-
grams show the distribution of frequencies for different
values in Figure 2(a)-(e). As a whole, the dataset’s fre-
quency distribution can be described by combining its con-
stituent components’ distributions. One technique to gain
insight into the dataset is to construct a relative frequency
distribution. This will show you how common certain
values are and how often they appear.

Overfitting occurs frequently in the field of mathema-
tical dataset simulation [30,52]. This happens when a model
does a good job of reproducing the input data during
training and development but fails miserably when faced
with input parameters that are different from both sets.
While the model does a great job of mimicking the known
dataset, it can produce wildly inaccurate results when
asked to predict values for non-standard input parameters
[53,54]. The authors used regularization (L1 and L2) and
other strategies to punish complexity and discourage

Statistical parameters MC (kg-m3) FA (kg'm~3) RHA (kg:m~3) Age (days) S (MPa)
Mean 241.48 45.62 40.90 170.32 14.38
Standard error 1.83 2.35 2.30 5.68 0.20
Median 230.00 0.00 0.00 136.50 14.70
Mode 230.00 0.00 0.00 91.00 20.05
Standard deviation 40.83 52.63 51.35 126.93 4.50
Sample variance 1667.24 2769.81 2636.97 16110.58 20.24
Kurtosis -0.05 -1.44 -1.25 -1.18 -1.06
Skewness 0.84 0.49 0.65 0.56 -0.31
Range 131.00 131.00 131.00 336.00 16.19
Minimum 197.00 0.00 0.00 28.00 5.81
Maximum 328.00 131.00 131.00 364.00 22.00
Sum 120738.00 22811.00 20451.00 85162.00 7190.66
Count 500.00 500.00 500.00 500.00 500.00
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Figure 2: Frequency distribution of the input and output features of the database: (a) MC, (b) FA, (c) RHA, (d) Age, and (e) CS.
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overemphasis on specific features in order to minimize
overfitting in the constructed model. To evaluate the model
on new data, the dataset was split into two parts: training
and validation. In order to protect the training data from
fitting noise, early stopping was instituted by keeping an
eye on validation performance and ending training if there
was no progress. All of these steps added up to a general-
izable model that can handle new, unknown data with ease
and without overfitting [55,56].

2.2 ML algorithm application

A highly controlled setting was used to test the CS of FR-
MCC. In order to obtain the outcome (CS), four inputs were
required. Using advanced ML methods such as GEP and
MEP, predictions were made for the CS of FR-MCC. It is
usual practice to evaluate outcomes by feeding them into
ML algorithms. A total of 70% of the data were used to train
the ML models, while 30% were set aside for testing. As a
measure of the model’s effectiveness, the R? score of the pre-
dicted outcomes quantified the degree to which the actual
values differed from the expected ones; a smaller R? number
indicates a larger discrepancy [36,57,58]. Statistical testing and
error evaluations are two of the methods used to verify the
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model’s accuracy [59,60]. While the hyperparameters for both
the GEP and MEP models are presented in Table 2, Figure 3
gives a simple representation of a scenario model.

2.2.1 GEP model

Taking cues from Darwin’s idea of evolution, Holland cre-
ated the genetic algorithm (GA) [62]. The genomic process,
which is defined by the order of GAs, is followed by the
observation of chromosomes of persistent length. One
unique GA approach is that Koza coined the term “gene
programming” [63,64]. Generalized problem-solving (GP)
uses GAs to generate an evolutionary model [65]. The
ability to substitute non-linear structures, such as parse
trees, for binary strings of fixed length gives GP its flex-
ibility. By leveraging naturally occurring genetic compo-
nents, including reproduction, crossover, and alteration, Al
software tackles reproductive difficulties, drawing inspira-
tion from Darwin’s theory [66]. By progressively removing
inefficient programs from succeeding iterations, GP aims
to achieve its purpose. Similar to the previous example,
cleaning the area by removing trees that do not match prop-
erly is an important part of implementing the chosen plan.
Nevertheless, early convergence is protected by the evolu-
tionary process [66,67]. It is necessary to specify five critical

Table 2: Predefined model factors for MEP and GEP (parameters similar to [61])

MEP GEP
Parameters Settings Parameters Settings
Number of generations 250 Stumbling mutation 0.00141
Problem type Regression Constant per gene 10
Terminal set Problem input Inversion rate 0.00546
Replication number 15 Head size 8
Operators/variables 0.5 Data type Floating number
Number of treads 2 Two-point recombination rate 0.00277
Number of generations 500 Chromosomes 200
Mutation probability 0.01 Linking function Addition
Error MSE, MAE Lower bound -10
Cross-over probability 0.9 Upper bound 10
Number of subpopulations 50 Mutation rate 0.00138
Subpopulation size 100 Genes 4
Number of runs 15 Leaf mutation 0.00546
Function set +, —, %, +, square root General cs
Code length 40 IS transposition rate 0.00546
RIS transposition rate 0.00546
One-point recombination rate 0.00277
Function set +, —, %, +, square root
Gene recombination rate 0.00277
Gene transposition rate 0.00277
Random chromosomes 0.0026
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factors before using the GP approach. Among these, you may
find the following: a list of mandatory domain tasks, an assess-
ment of fitness, a list of primary functional operators (including
population size and crossover), and the establishment of out-
comes according to the method-specific criteria [66]. Although
GP incorporates recurrent model building, a crossover genetic
processor is mostly responsible for parse tree formation [48].
The need for non-linear GP forms to serve as both genotype and
phenotype has resulted in the development of intricate expres-
sions that stand in for desirable features [67].

GEP is a variation on GP that Ferreira initially pro-
posed [67]. The GEP model incorporates static-length-lined
chromosomes into parse trees in accordance with the
population-generation theory. GP employs simple, fixed-
length chromosomes to encrypt medium-sized software;
GEP is an improved version of that. The ability to predict
complicated and non-linear issues with high reliability is

Dataset generated from
experiments

| !

[ Raw materials as ] [ Test results as output ]

input parameters (CS)

Developing machine learning-based
prediction models

! {

GEP MEP

Validation of prediction models

| ' !

R2 Statistical Taylor’s
checks diagram

Sensitivity analysis

|

Significance of input
parameters on the outcome

Figure 3: Comprehensive overview of the studied method.
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one of GEP’s many benefits [68,69]. The fitness function, the
last set, and the conditions for termination are defined in
the same way as in GP. Chromosomes are generated at
random by the GEP technique; however, they are desig-
nated as such before they are produced using the “Karva”
dialectal. GEP relies on a fixed-length line as its funda-
mental basis. On the other hand, GP’s code processing
of data displays parse trees of varying lengths. Initially, these
unique cords are described as genomes of static length. Sub-
sequently, they stand in for chromosomes by means of
non-linear manifestation/parse trees that have pronged
morphologies varying in size [66]. These genotypes and
the small number of phenol strains each have their own
unique genetic code [67]. The necessity for expensive struc-
tural changes or duplications is eradicated by GEP’s capacity
to maintain the genome from one generation to another.

In a typical chromosome, the “head” and the “tail” are
the two complementary regions. Surprisingly, this phenom-
enon can occur when multiple genes are produced by a single
chromosome [66]. Logic, mathematics, arithmetic, and Boo-
lean operations are encoded in these genes. A programmer
assigns specific functions to cells in the genetic code. Karva, a
novel language, can decipher the contents of these chromo-
somes and use that information to build empirical formulas.
A basic revolution marks the beginning of the trip on the
Expression Tree (ET), which starts at Karva. According to
Eq. (1), ET arranges the nodes in the underlying layer [68].
In terms of both amount and duration, the total number of
ETs can affect GEP gene K-expression:

ET GEP = log[i - %] )

The fact that GEP’s findings are not dependent on any
previous relationships makes it a sophisticated ML method.
A GEP mathematical equation goes through a number of
steps, as seen in Figure 4. There is no change to a person’s
chromosomal count at delivery. Upon confirmation that
these chromosomes are ETs, a thorough assessment of the
health of every individual can be conducted. Reproductive
privileges are bestowed upon the healthiest and strongest
individuals. The best solution is found by taking the most
skilled people through an iterative process. Reproduction,
alteration, and overlap are the three generations of genetic
processes that have resulted in the ultimate numerical
expression once they have been applied.

2.2.2 MEP model

Due to its reliance on linear chromosomes, the MEP repre-
sents a state-of-the-art, model linear-based GP technique.
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In terms of their core software, the GEP and MEP are very
similar to one another. MEP’s capacity to encode numerous
software components (substitutes) into a sole chromosome
sets it apart from its predecessor, the GP method. Using
fitness analysis to choose the optimal chromosome yields
the desired result [70,71]. According to Oltean and Grosan,
this happens when a bipolar system recombines to form two
new offspring, with each offspring choosing one parent [72].
Figure 5 demonstrates that the process will keep running
until the termination condition is met or until the best pro-
gram is found. Mutations in newborns happen here. A
number of components can be combined using the MEP
model, much as with the GEP model. Criteria that are impor-
tant in MEP include the number of functions, the number of
subpopulations, the length of the algorithm or code, and the
possibility of crossover [73]. Assessing and accounting for a
population when its size equals the total number of packages
is a time-consuming and complex process. Mathematical expres-
sion sizes are heavily impacted by the code length. The amount
of MEP parameters needed to build a trustworthy model of
rheological properties is shown in Table 2.

Both approaches rely heavily on literature datasets
during the modeling and evaluation stages [74,75]. Famous
linear GP approaches such as the GEP and the MEP are
superior at predicting the properties of ecological concrete,

p
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Transportation J
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Figure 4: GEP procedure’s method flowchart [61].
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according to certain studies. According to Grosan and
Abraham, the optimal neural network-based strategy was
a hybrid of lined genomic programming and maximum
entropy programming (MEP) [76]. The GEP’s method of
operation is marginally more intricate than that of the
MEP [73]. Notwithstanding MEP’s lower density compared
to GEP [77], there are a few key differences: (i) MEP expli-
citly encodes function argument references, (ii) non-coding
units are not required to be presented at a set point in the
genes, and (iii) MEP allows code reprocess. It is commonly
believed that the GEP chromosome has greater competence
due to the signs found at its “head” and “tail” that facilitate
the writing of syntactically accurate software programs
[72]. Therefore, additional comprehensive assessments of
these genomic strategies for engineering problems are
urgently required.

2.3 Validation of models

A test set was used to statistically test the models that were
created using GEP and MEP. Using equations from previous

)

( A
Creation of chromosomes

population

N
Selection of two parents

L (Binary tournament procedure))

Production of off-springs

Fitness evaluation

Figure 5: Process flow diagram for MEP operation [61].
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Figure 6: ET schematic for CS-GEP model: (a) sub-ET 1, (b) sub-ET 2, (c)
sub-ET 3, (d) sub-ET 4. d0: MC, d1: FA, d2: RHA, and d3: CA.

studies [75,78-81], seven arithmetical measures were com-
puted for each of the models: relative root mean square
error (RRMSE), mean root mean square error (RMSE),
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Figure 6: (Continued)

mean absolute error (MAE), relative squared error (RSE),
Nash-Sutcliffe efficiency (NSE), Pearson’s correlation coef-
ficient (R), and mean absolute percentage error (MAPE).
Egs. (2)-(8) provide the formulas for several statistical
measurements:

Zl 1(al al)(pl pl) (2)
\/ i= 1(al zl 1(p1 pl
1 n
MAE = =) |a; - pyl, 3)
=1
)
RMSE = ZL np ) , @
MAPE < 100% < Z ’ -
i=1 p,
Z?=1(ai - p)?
RSE= 00— &, 6
2i(@ - a;)*
Yin(a; - p)*
NSE=1- =1 Ff (7)
Yia(ai - p)?
n - 2
RRMSE = L | 2@ =P ®)
|al n

“R” is a useful metric for assessing the model’s predic-
tive capability, where “n” stands for the overall count of
data points, “a;” and “p;” denote the ith tangible and pro-
jected values, and “a;” and “p,” denote the mean tangible
and projected values, correspondingly. A strong correla-
tion between expected and actual production volumes is
indicated by a high value of R [10,82,83]. No matter how
you divide or multiply, the component R will stay the same.
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The R? statistic, which provides a more accurate estimation
of the actual value, was computed between the actual
results and the expected outcomes. When R* values are
close to 1, it indicates that the process of developing the
model is quite successful [84,85]. Just as MAE and RMSE
showed great improvement with progressively larger mis-
takes, the proposed model shows even greater perfor-
mance with smaller errors, and both approach zero with
larger errors [86,87]. However, upon closer inspection, it
became apparent that continuous and smooth databases
are where MAE truly excels [88,89]. When the computed
error numbers are reduced, it is generally believed that the
model is performing effectively:

m20
20-index = ——. )
a20-index Iv;

This takes into consideration an expected or experi-
mental value between 0.80 and 1.20, where M is the
number of specimens in the dataset and m20 is the number
of entries, as provided in Eq. (9) [90]. The optimal a20-index
values, according to the prediction model, would be 1%.
The proposed 20-index offers the advantage of a physical
engineering approach, revealing the percentage of samples
that correspond to expected values within a +20% uncer-
tainty range of experimental data.

The Taylor diagram, in conjunction with statistical
validation, is one of the most useful tools for evaluating
the predictive power of a model. In order to determine
which models are more credible and accurate, this figure
plots their divergence from the truth, which serves as the
reference point [91,92]. Three metrics can be used in order
to ascertain the optimal location for a model. These metrics
are the standard deviation, which is depicted by the axis,
the correlation coefficient, which is represented by the
radial lines, and the RMSE, which is represented by the
circular lines that are centered at the actual value point.
The most reliable model is the one that has the best track
record of accurately predicting outcomes [91,93].

3 Results and analysis

3.1 CS-GEP models

Figure 6(a)-(d) shows how the GEP technique predicts FR-
MCC’s CS using ET models based on chromosomal number
and head size data. The +, x, —, +, and square root mathe-
matical operations are used to create most CS sub-ETs in
FR-MCC. The output is a mathematical formula once the
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sub-ETs have been encrypted. The equations that are pro-
duced as a result of these models (Egs. (10)-(14)) can
be used to make predictions regarding the future CS of
FR-MCC by making use of the presented input values.
Under ideal conditions and with sufficient observations,
the resulting model performs better than a perfect model
would. Figure 7(a) illustrates the use of lines of statistical
significance (CS) for the purpose of comparing the pre-
dicted values of the model with the values that were
observed in the testing set. According to the great degree
of agreement between the expected and observed values
(R* = 0.95), the GEP approach is effective in estimating the
CS of FR-MCC. Figure 7(b) shows the absolute error plotted
against experimental data to show that there can be a
difference between the GEP model and actual outcomes.
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Figure 7: GEP model for CS in FR-MCC: (a) the relationship between
tested and predicted CS and (b) the error distribution in tested and
predicted CS.
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The fact that the absolute errors range from 0.001 to
3.040 MPa shows that the experimental data agree well
with the predictions made by the GEP equation. An average
of 0.792MPa is the inaccuracy. Figure 8 shows that the
error values follow a bell-shaped distribution, with 49 mea-
surements over 1.0 MPa, 56 readings between 0.5 and
1.0 MPa, and 61 readings below 0.5 MPa. The occurrence
of maximal error frequencies is extremely rare:

CS(MPa) =A+ B+ C+ D, (10)
4 - (3FA - 2CA) u
(RHA + MC) - o= (D
B=(,/CA + (VRHA - JMC)) - CA, (12)
- RHA
" (11714 + RHA) - 9.883) + (-11.714 - FA) | (13)

— RHA,

D=

[[RHA - [% + 1.299]] + CA] + 4.580], (14

where MC is the marble cement, FA is the fly ash, RHA is
the rice husk ash, CA is the curing age, and CS is the com-
pressive strength.

3.2 CS-MEP model

After analyzing the MEP data and taking into account the
impact of the four independent components, an empirical
method was created to estimate the CS of FR-MCC. The final
mathematical model that comes out of this procedure is
shown in Eq. (15):
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Figure 8: Violin plot for GEP models’ error distribution.
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CA - MC
CS(MPa) = /CA + RHA + e

15
2[FA—%]+MC+CA+RHA =

+

MC ’
where MC is the marble cement, FA is the fly ash, RHA is
the rice husk ash, CA is the curing age, and CS is the com-
pressive strength.

Figure 9(a) shows that the MEP model is well trained,
capable of handling oversimplification, and performs ade-
quately on novel, untested data, with an R* of 0.96. It
appears that the CS-MEP model is marginally more accu-
rate than the CS-GEP model, according to its higher R
value. Figure 9(b) displays the results of an analysis of
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Figure 9: MEP model for CS in FR-MCC: (a) the relationship between
tested and predicted CS and (b) the error distribution in tested and
predicted CS.
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Figure 10: Violin plot for MEP models’ error distribution.

absolute differences between the goal and observed values
performed in MEP simulations. The presented data show
that the error margin for MEP estimations ranged from
0.002 to 3.264 MPa, with an average of 0.647 MPa. With 86
values below 0.5 MPa, 50 values between 0.5 and 1.0 MPa,
and 30 values over 1.0 MPa, the mean error values were
also below 3.500 MPa. Remember that the MEP model pre-
dicts less degree of outcome variability than the GEP model
when considering the most extreme values. Both the MEP
and GEP models might be incredibly accurate predictors.
Implementing the MEP equation leads to a decrease in both
the correlation coefficient and the error standard devia-
tions. There has been much use of the MEP equation
because of its generalizability and its condensed form.
The MEP model appears to be better than the GEP model
because it has a higher correlation coefficient and lower
error levels (as shown in Figure 10), comparable to earlier
research of a similar kind [94,95]. Some researchers have
also developed prediction models using different ML tech-
niques for various properties of concrete [96-98].

Table 3: Findings gained by statistical examination

Property CS (MPa)

GEP MEP
MAE 0.792 0.646
MAPE 6.50 4.60
RMSE 0.992 0.900
R 0.977 0.980
RSE 0.297 0.229
NSE 0.953 0.960
RRMSE 0.642 0.342
a20-index 0.840 0.940

Compressive strength of waste-derived cementitious composites
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3.3 Validation of model

Based on the previously described Eqs. (2)—(8), Table 3 dis-
plays the results of effectiveness and error computations
(RMSE, MAE, R, RSE, NSE, and RRMSE). The created models’
prediction accuracy is higher when their error values are
smaller. The CS-GEP model’s MAE values were 0.792 MPa, while
the counterpart CS-MEP model’s values were 0.646 MPa, a little
reduction. CS-GEP model’s MAPE value of 6.60% was signifi-
cantly reduced to 4.60% in the corresponding CS-MEP model.
Additionally, additional error-based statistical metrics, such as
RMSE, RSE, and RRMSE, showed an analogous trend. Addition-
ally, error-based validation was used in order to evaluate the
effectiveness of the constructed models. The Pearson’s coeffi-
cient (R) and the NSE were the two measures that were used.
An increase in a model’s efficiency indicates an improvement
in its forecast accuracy. The CS-GEP model had an NSE of 0.953,
whereas the matching CS-MEP model had a slightly higher NSE
of 0.960. When measured with Pearson’s coefficient (R), the
models that were constructed produced findings that were
comparable to one another. As can be seen in Figure 11, a
Taylor diagram is used to compare all of the different fore-
casting models. As far as predicting the CS of FR-MCC is con-
cerned, the MEP models are relatively near, whereas the GEP
models are relatively far away. The MEP model outperformed
other ML-based techniques in predicting the CS of FR-MCC,
according to prior study, since it had the lowest standard
deviation, highest efficiency, lowest error, and best R*.

3.4 Sensitivity analysis

The research aims to investigate the effect of different
input parameters on CS prediction for FR-MCC. The input

Correlation Coefficient

Correlation Coefficient

Figure 11: Taylor diagram for CS models.
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factors are strongly correlated with the expected output
[99]. Figure 12 shows how each variable affects the CS of
FR-MCC, giving us a glimpse into the future of concrete and
building materials in general. The highest impact, 65%, on
predicting the CS of FR-MCC came from CA, followed by MC
(23.0%), RHA (9.0%), and FA (3%). The amount of model
parameters and data points used in sensitivity studies
was directly related to the results. The results of the ana-
lysis were shown to be affected differentially by various
input parameters, such as the quantities of concrete mix
when the ML technique was applied. The relative impor-
tance of the model’s input parameters was determined
using Egs. (16) and (17):

N; = froax ) = frin 0, (16)
Si= e 7
l Z;-l_iM’ )

where f, .. (x;) represents the highest predicted value across
all ith outputs and f;, (x;) represents the lowest.

4 Discussions

The GEP and MEP models that were used in this investiga-
tion ensure that the predictions will be specific to FR-MCC.
This is due to the fact that these models are only able to
accept values from a limited range of four input para-
meters. Since all of the models employ the same unit mea-
surements and testing technique, the CS predictions they

—e—CS

Y | FA

Figure 12: Sensitivity analysis radar plot.
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produce are reliable. These models use mathematical equa-
tions to help us better understand mix design and how
each input parameter affects it. The projected models
might not work well if the composite analysis uses more
than the four inputs. Their intended purpose must be well
aligned with the inputs used to train these models; other-
wise, they might not yield the expected results. If the input
parameters’ units are changed or inconsistent, the models
could under- or over-predict the outcomes. The models can
only work if the unit sizes remain constant. There are
numerous applications of ML models in the construction
industry, including strength prediction, quality assurance,
risk assessment, predictive maintenance, and energy effi-
ciency improvements. Still, there are a few problems with
these models. One is that they use human input, which can
lead to inaccurate results and inaccurate data. To address
these limitations and improve ML-based solutions, future
research could look into integrating internet of things
devices, creating hybrid models, using explainable Al tech-
niques, considering sustainability, and customizing data
generation and distribution for specific industries, among
other things. Technological improvements have the poten-
tial to revolutionize the construction industry. By enhancing
efficiency, interpretability, transparency, and informed deci-
sion-making, these advancements could reduce project delays,
increase safety, and promote more sustainable practices. The
findings of this study may lead to a shift toward greener con-
struction methods and an increase in the usage of long-term,
eco-friendly materials.

5 Study limitations and
suggestions for future research

Taking four variables into account, this study used a
dataset of 500 records to forecast CS. One potential strategy
to improve the models’ performance in future research
is to add more records from experiments to the dataset.
With a larger dataset, the model can make more accurate
predictions, which boosts confidence in the results. While
GEP and MEP models were used in this study, hybrid ML
approaches such as genetic algorithm-particle swarm optimi-
zation and random forest-artificial neural network should be
investigated in future analyses. In addition, there is hope for
enhancing model performance with individual and ensemble
techniques, including support vector machine, decision tree,
bagging, and boosting. It makes sense to combine these
hybrid approaches, and doing so might greatly improve pre-
diction abilities. Even though they were not used in this work,
post hoc explanatory techniques such as SHapely Additive
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exPlanations, local interpretable model-agnostic explanations,
and partial dependence plot can provide valuable insights
into the ML model’s predictions. Additional information
about the interpretability of models can be gleaned from
future studies that use similar methods. Much of the cur-
rent research on using ML to forecast concrete qualities
has focused on mechanical considerations. On the other
hand, research into important aspects, including concrete
microstructure, dynamic properties such as fatigue, and
durability, is noticeably inadequate. For a more complex
understanding of concrete performance, additional study
is needed to use ML approaches to thoroughly investigate
these elements affecting durability.

6 Conclusions

The objective of this study was to examine the CS of FR-
MCC using MEP and GEP. The models underwent training,
testing, and validation using 500 sets of CS data collected
from laboratory tests. The following are the key findings
that were discovered by the study:

* To estimate CS for FR-MCC, the GEP method was suffi-
ciently accurate (R? = 0.95), but the MEP method was
more exact (R* = 0.96).

For the GEP method, the average discrepancy between
the predicted and actual CS (errors) was 0.792 MPa, while
for the MEP method, it was 0.647 MPa. With these error
rates, it was clear that the MEP technique was better at
predicting the CS of FR-MCC than the GEP model.

» The models’ efficacy has been validated statistically. In
contrast to the MEP model’s 4.60% MAPE, the GEP model’s
MAPE was 6.50%. The MEP model was more predictable
than the GEP model, which had an MAE of 0.792 MPa, with
a value of 0.646 MPa.

Sensitivity analysis showed that the prediction of CS of
FR-MCC was most affected by CA at 65%, followed by MC
at 23%, RHA at 9%, and FA at 3%.

What makes GEP and MEP so crucial for feature pre-
diction in other databases is the unique mathematical
method they provide. Quickly evaluating, improving, and
rationalizing the proportioning of concrete mixtures is pos-
sible with the mathematical models that scientists and
engineers can apply to this work.
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