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Abstract: Using artificial intelligence-based tools, this
research aims to establish a direct correlation between
the alkali-activated concrete (AAC) mix design factors
and their performances. More specifically, the machine
learning system was fed new property data obtained
from AAC mixes used in laboratory experiments. The
rheological parameters (yield stress [static/dynamic] and
plastic viscosity) of AAC were predicted using the multilayer
perceptron neural network (MLPNN) and bagging ensemble
(BE) models. In addition, the R2 values, k-fold analyses, sta-
tistical checks, and the dissimilarity between the experi-
mental and predicted compressive strength were employed
to assess the performance of the created models. Also, the
SHapley additive exPlanation (SHAP) approach was used for
examining the relevance of influencing parameters. The BE
approach was found to be significantly accurate in all pre-
diction models, with R2 greater than 0.90, and MLPNN
models were found to bemoderately precise, with R2 slightly
below 0.90. However, the error assessment through statis-
tical checks and k-fold analysis also validated the higher
precision of BE models over the MLPNN models. Building
models that can calculate rheological properties of AAC for

different values of input parameters could save a lot of time
and money compared to doing the tests in a laboratory. In
order to ascertain the required amounts of raw materials of
AAC, investigators, as well as businesses, may find the SHAP
study helpful.

Keywords: rheological properties, alkali-activated concrete,
multilayer perceptron neural networks

1 Introduction

Due to its numerous benefits in relation to approachability,
budget, and other factors, concrete has become the most
popular building material [1]. However, rising urbaniza-
tion in recent years has led to a rise in the necessity for
concrete, has a significant impact on the planet, and has
grown into a major problem that worries people all across
the world. Ordinary portland cement (OPC) is the most
widely used binder in concrete, although its manufac-
turing requires significant amounts of energy. OPC clinker
manufacturing has been linked to 5–8% of worldwide CO2

emissions [2], putting significant emphasis on achieving
carbon neutrality by 2050. As a low-carbon binder, alkali-
activated material (AAM) has the potential to substitute
OPC materials in concrete. OPC materials undergo an
alkali-activation process rather than hydration as a result
of the persistent dissolution of alumino-silicate precursors
in alkaline environments [3]. An important first step in
reassembling highly organized structures is to use poly-
merizations to connect the dissolved Al and Si tetrahedrons
to each other as the backbone [4–6], and then the alkali/
alkali-earth cations are added. A high calcium content in
the precursors has a significant impact on the microstruc-
ture of the reaction products, according to the research [7].

However, in practice, precursors, particularly those
derived from different types of waste, lack sufficient reac-
tivity. The use of alkaline activators to speed up dissolution
brings additional complexity to the AAM scheme through
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the introduction of novel interactions [8]. Many different
types of precursors and alkaline elements can be used in
AAMs to recycle industrial by-products, which is their
main purpose. With so many different building blocks to
pick from, it is easy to imagine all sorts of unique permuta-
tions. To reliably and predictably produce appropriate
AAM mix designs, however, additional data regarding the
reaction mechanisms are required, and creating a normal
design code is challenging due to differences in material
characteristics [9]. Although there are many different
alkali-activated concrete (AAC) products on the market,
their use in construction is still restricted to a handful of
demonstration buildings because of immature design rules
[10]. Therefore, these methods may significantly increase
AAC production pre-design time.

An artificial intelligence strategy for encapsulating the
characteristics of heterogeneous and intricate systems has
been established with the advent of ML algorithms [11–15].
Gradient boosting, artificial neural networks (ANNs), sup-
port vector machines (SVMs), random forests, and so on
have all been used to effectively predict the performance of
OPC concretes in the past [16–23]. The emergence of ML
algorithms has given a handy way to forecast performance
from experimental data, which is especially helpful given
the diversity and complexity of AACs [24–27]. It is noted
that the majority of the AAC models used presently prior-
itize mechanical attributes. Ramagiri et al. demonstrated
this by combining the AAC strength prediction outcomes of
five RA-F models with different topologies [28]. In order to
find the compressive strength (CS) of 162 AAC mixes that
contained fly ash, Toufigh and Jafari created an estimating
approach [29]. By utilizing extreme learning machine (ELM),
SVM, and ANN techniques, Peng and Unluer were able to
forecast the CS of F-ash-based AAC with a 20% accuracy rate
[30]. In order to develop models for forecasting the CS and
initial slump flow of AAC, Gomaa et al. performed a large
number of trials [31]. On the other hand, information on
AAC’s processing capacity and rheological characteristics
is severely lacking in both data and models.

This study included findings from 52 AAC mix labora-
tory tests (145 data of rheological properties). The static/
dynamic yield stress (SYS/DYS) and plastic viscosity (PV) of
AAC were predicted using multilayer perceptron neural
network (MLPNN) models and bagging ensemble (BE)
models depending on the seven parameters that were
input: precursor content (PC), aggregate, sodium hydroxide
(NaOH), silica/sodium oxide ratio (SiO2/Na2O), blast furnace
slag (BFS), water, and testing age (TA). The models were
validated with statistical tests and k-fold analysis, and the
influence of the variables on the prediction was examined
using SHapley Additive exPlanations (SHAP) analysis. SHAP

analysis of the rheological features of ACC with the specified
input parameters has been the primary focus of this work.
The important parameters that may play a role in the sub-
sequent ACC mix design computation are revealed by SHAP
analysis. Moreover, new attributes acquired can be used to
augment the existing AAC database, while the built regres-
sion models may offer direction on AAC mix design. ML
models for AAC property prediction are faster, cheaper,
and more accurate than conventional testing methods.
They optimize AAC formulations, decrease experimental
testing, and improve AAC structure design and quality
control compared to existing methods.

2 Study methods

2.1 Acquiring and analyzing data

Utilizing a set of data of 145 points from the literature [21]
with MLPNN and BE models, this study aimed to anticipate
the static yield stress (SYS), dynamic yield stress (DYS), and
PV of AAC. The SYS, DYS, and PV of AAC were predicted in
this work using seven input factors. In order to gather and
arrange the data, data preparation was employed. As part
of the well-known process of knowledge discovery from
data, one method for overcoming a significant impediment
is to prepare data for data mining. The objective of the data
preparation process is to simplify the data by removing
noise and other information that is not crucial to the ana-
lysis. It has also been hypothesized by specialists from a
wide variety of fields that the proportion of data points to
inputs is an essential factor in determining how well the
proposed model will function [32,33]. It is necessary for the
optimal model to have a ratio that is more than five, which
is the number of datasets divided by the number of input
parameters. This ratio enables the testing of data points to
determine the connection between the variables that have
been chosen [33]. In order to estimate the SYS, DYS, and PV
of ACC, the current study makes use of seven inputs. The
ratio that is obtained as a consequence, which is 20.71, is
satisfactory to the requirements that were established by
the researchers. In order to conduct the analysis of the
model, regression and error-distribution methods were uti-
lized. Specifically, descriptive statistics on these data are
presented in Table 1, which displays the findings of those
statistics. The validity approach has also been utilized in
order to assess the accuracy of the models that were uti-
lized. A clear illustration of the statistical distribution of
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each variable may be found in the violin plots presented in
Figure 1. For the purpose of providing an explanation for
the overall frequency distribution of a data collection, the
distributions of the individual input variables can be uti-
lized. Developing a relative frequency dispersal, which
illustrates the occurrence with which parameter values
appear, is one method that may be utilized to investigate
the data.

2.2 Machine learning modeling

The properties of AAC’s rheology were tested in the lab.
The processes required seven inputs and returned three
outcomes: SYS, DYS, and PV. The goals of the study were
attained by the use of Python and Spyder (5.1.5) scripts run
through Anaconda Navigator. The SYS, DYS, and PV of AAC
were predicted using both standalone MLmethods (such as
MLPNN) and ensemble ML methods (like BE). Common
practice involves analyzing outputs in the context of input
features using ML algorithms. While 70% of the data was
utilized to train machine learning models, only 30% was
used for actual testing. The data split is essential to evalu-
ating machine learning models since it trains the model to
learn patterns on most of the data and then tests its gen-
eralization ability on an independent sample. This split
helps evaluate the model’s predicting abilities on unknown
data without over-fitting to the training set. Other scholars
have adopted similar splitting ratios in various studies
[35,36]. R2 of the expected result demonstrated the effi-
ciency of the model used. A low R2 value implies a big
difference between the predicted and observed values,

while a high value suggests a high degree of resemblance
[37]. The model’s accuracy was confirmed by employing a
diversity of methods, including statistical tests, error assess-
ments, and k-fold methodologies. Schematically represented
in Figure 2 is an example of event modeling.

2.2.1 MLPNN model

Among the many ML models, the ANN is among the most
powerful. Ecological and hydrological engineering have
made extensive use of it to address non-linear issues. The
MLPNN is now the most utilized ANN model. The MLPNN
approach has a three-layer structure consisting of input,
hidden, and output layers. Tansig, purelin, and Logsig are
the top three most usual triggering functions. Activations,
weights, and biased coefficients for the output and hidden
layers demand a lot of consideration. All of the model’s
parameters, or weights, are set to their final values as it
is being trained. Applying the k-fold approach ensures the
optimal structure is achieved. To construct the most effec-
tive ANN model, the three hidden layers (i.e., 7, 5, and 4)
that included the most number of neurons were utilized
[38]. In order to construct the system, the frontward-pass
input is lead, the weight is utilized, and a rough approx-
imation of the technique’s output is formed. These three
processes constitute the creation of the system. The results
of the calculations are then compared against the inputs
used to generate them. The model accounts for the inputs
while making predictions. Different outcomes can be
attained by employing various loss functions. It is pos-
sible to derive the partial derivatives of the cost function
that are specific to each operational factor by employing

Table 1: Statistics-based variable descriptions [34]

Descriptive
statistics

PC (kg·m−3) BFS (%) NaOH
(kg·m−3)

SiO2/
Na2O

Water
(kg·m−3)

Aggregate
(kg·m−3)

TA (min) SYS (Pa) DYS (Pa) PV (Pa·s)

Mean 378.30 92.07 14.84 0.50 175.57 1795.34 28.59 1242.50 259.32 122.63
Standard error 2.86 1.21 0.35 0.02 0.80 4.55 1.83 100.26 19.40 6.37
Median 369.00 100.00 14.40 0.50 176.00 1815.00 20.00 773.00 168.82 99.29
Mode 369.00 100.00 14.17 0.50 176.00 1815.00 5.00 501.87 106.68 55.20
Standard
deviation

34.41 14.58 4.26 0.27 9.65 54.77 21.99 1207.32 233.59 76.73

Sample variance 1184.34 212.70 18.11 0.08 93.15 3000.01 483.58 1457629.00 54562.82 5887.06
Kurtosis 4.04 1.82 0.12 0.60 1.00 6.09 −1.28 9.04 2.21 1.68
Skewness 2.19 −1.75 0.04 0.43 −0.53 −2.60 0.37 2.47 1.64 1.57
Range 167.50 50.00 19.87 1.25 44.00 312.00 60.00 8328.81 1040.25 335.60
Minimum 320.00 50.00 5.29 0.00 151.00 1574.00 5.00 114.12 6.25 37.28
Maximum 487.50 100.00 25.16 1.25 195.00 1886.00 65.00 8442.93 1046.50 372.88
Sum 54853.00 13350.00 2151.53 72.25 25457.00 260325.00 4145.00 180161.89 37601.44 17781.09
Count 145.00 145.00 145.00 145.00 145.00 145.00 145.00 145.00 145.00 145.00
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the technique of reverse propagation. The weights of the
model and the feedback losses are updated in an iterative
manner through the application of gradient descent.

2.2.2 BE model

A comparable ensemble method best describes the process
of incorporating new sets of training data into the forecast

model. Asymmetric splitting is used to replace the actual
set's values. Certain entries may be reproduced in each
new set of substituting splitting utilized for the training
data. Following bagging, each component’s likelihood of
being included in the updated data is equal. There has
been no relation among the training set size and the accu-
racy of the predictions. A better approximation of the
desired output may also significantly reduce the
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Figure 1: Violin diagrams depicting the input parameters’ distributions.
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divergence. This ensemble uses the typical forecast from
all run simulations. Regression uses the median forecast
from multiple simulations [39]. For the purpose of fine-
tuning the MLPNN-based bagging strategy and determining
its optimal output, 20 different models are utilized
independently.

2.3 Validation of models

It was necessary to use k-fold techniques and number
crunching in order to guarantee that the machine-learning
simulations were accurate. After randomly partitioning the
dataset into ten subgroups, the k-fold method is frequently
utilized in order to evaluate the accuracy of a simulation
[40]. Only one of the ten groups was employed for the
actual testing of the ML models. When both the error
and R2 are modest, the ML algorithm performs at its best.
The process also requires ten iterations before producing
the expected outcome. This method substantially increases
the model's accuracy for predictions. Statistical comparisons
of the accuracy of various ML techniques were also made
using error evaluation (mean absolute error [MAE], root
mean squared error [RMSE], and mean absolute percentage
error [MAPE]). Eqs. (1)–(3) were generated from previous
work [41,42] and used to statistically verify the accuracy of
the ML methods’ estimates
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where n is the data sample size, Pi is the predicted out-
comes, and Ti is the actual value.

2.4 SHAP analysis

SHAP was proposed by Lundberg and Lee [43] to describe
the additional feature attribute approach of machine learning.
The process’s input model is characterized by the linear sum
of input variables. Let us assume that x is the model’s input
variable; for the original model ( )f x , the interpretationmodel

( )′g x of the streamlined input x′ can be written as

( ) ( ) ∑= ′ = ∅ + ∅ ′
=

f x g x x .

i

M

i i0

1

(4)

In the absence of any features,∅0 is a constant equal to
M, where M is the total number of input features. Each of
∅0, ∅1, ∅2, and ∅3 will have a positive effect on the output
variables since they raise the value of ( )g x , but ∅4 has the
reverse effect. There are a few distinct types of SHAP tech-
niques, including kernel SHAP, Deep SHAP, and Tree SHAP.
To better understand tree-based machine learning models
like Bagging, tree SHAP [44] is employed here.

Dataset sample 
development

Data sample 
development from the 

literature

Descriptive statistic 
analysis of input and 

output parameters

Application of machine 
learning methods

MLPNN and bagging 
ensemble methods

Spyder (version: 
5.1.5) was used from 
Anaconda navigator

Model’s validation

Difference between 
actual and predicted 
results (errors) and 

coefficient of 
determination (R2)

Statistical checks: 
MAE, MAPE, and 

RMSE

K-fold analysis: 
MAE, RMSE, and R2

SHAP analysis

Impact of input 
parameters

Jupyter Notebook was 
used from Anaconda 

navigator

Figure 2: Data sample generation, modeling, and validation procedures flowchart.
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3 Results and analysis

3.1 MLPNN models

3.1.1 SYS MLPNN model

Figure 3 depicts the findings of employing the MLPNN
method to forecast the SYS of AAC. In Figure 3(a), we see
the connection between the tested SYS and the estimated
SYS. The MLPNN method estimated SYS with only a reason-
able level of precision and with moderate variance amongst
tested and projected findings. There is an acceptable level of
agreement between the real and estimated results when
using the MLPNN approach to approximate the SYS of
AAC (R2 = 0.88). Figure 3(b) shows the actual, estimated,
and absolute errors for the MLPNN. The mean absolute
error value is 341.28 Pa, with a spread from 100.79 and
769.60 Pa. The proportionate breakdown of the errors
also revealed that 8 readings were below 200 Pa, 29 were
between 200 and 500 Pa, and 7 were beyond 500 Pa. The
SYS of AAMs were accurately forecasted using the MLPNN
method, as evidenced by the dispersion of errors. Addi-
tional statistical information is shown in Figure 4, which
is a box plot and includes the following: minimum and
maximum values, median, mean, and the standard devia-
tion for both the experimental and projected test set out-
comes. Values on the graph illustrate the disparity between
the results that were predicted and those that were actually
observed.

3.1.2 DYS MLPNN model

The results of estimating the DYS of AAC using the MLPNN
technique are shown in Figure 5. In Figure 5(a), we see the
connection between the tested DYS and the estimated SYS.
The MLPNNmethod estimated DYS with only an acceptable
level of precision and reduce deviation amongst actual
and estimated results. It was established that the MLPNN
strategy was effective in order to approximate the DYS
of AAC; an R2 value of 0.89 demonstrated that there was
a better relation amongst the actual outcome and the
MLPNN estimated findings for the DYS. A representation
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Figure 3: Model for MLPNN with SYS: (a) connection between SYS tests and predictions; and (b) distribution of SYS tests, predictions, and errors.
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experimental results in a box plot.
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of the experimental, anticipated, and error dispersion for
the MLPNN approach is shown in Figure 5(b). The mean
error value is 83.63 Pa, with a spread between 7.62 and
226.84 Pa. Errors were also broken down proportionally,
and it was determined that 13 values were less than 50 Pa,
16 were in between 50 and 100 Pa, and 15 were greater than
100 Pa. The MLPNN approach was able to accurately predict
the DYS of AAMs, as seen by the spread of errors. Figure 6 is
a box plot displaying extra statistical information. The find-
ings from the test set, both experimental and anticipated, as
well as the minimum, maximum, median, mean, and stan-
dard deviation values, are included in this report. Values on
the graph illustrate the disparity between the results that
were predicted and those that were actually observed.

3.1.3 PV MLPNN model

Figure 7 shows the results of estimating the PV of AAC
using the MLPNN approach. In Figure 7(a), we see the
connection between the tested PV and the estimated SYS.
The MLPNN method predicted PV with a reasonable level
of precision, and with moderate difference between target
and estimated results but slightly lesser accuracy in com-
parison to the MLPNN models for SYS and DYS. At an R2 of
0.86, a respectable degree of agreement was seen among
the real and predicted results, suggesting that the MLPNN
method was effective in estimating the AAC PV. Figure 7(b)
displays the test, estimated, and absolute error spread for
the MLPNN technique. The average absolute error value is
26.19 Pa·s, with a spread between 6.601 and 99.66 Pa·s. In
addition, the errors were classified according to their pro-
portions: 29 of the total values were found to be below
25 Pa·s, 8 were found to be between 25 and 50 Pa·s, and 7
were found to be greater than 100 Pa·s. Figure 8, which is
a box plot, offers additional statistical details for the test
set’s experimental and predicted outcomes. These details
include the minimum, maximum, median, mean, and stan-
dard deviation values. Values on the graph illustrate the
disparity between the results that were predicted and
those that were actually observed.

3.2 BE models

3.2.1 SYS BE model

A forecast of the AAC’s SYS is shown in Figure 9, which
displays the outcomes of adopting the BE method. The
actual and predicted SYS are shown to have a correlation,
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Figure 5: Model for MLPNN with DYS: (a) connection between DYS tests and predictions; and (b) distribution of DYS tests, predictions, and errors.
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as shown in Figure 9(a). The BE model yielded the least
variations amongst real and model estimated findings,
making it the more preferred ML method compared to
the MLPNN method used. The BE method appears to be
more precise because of its R2 value of 0.95. The correlation
of the BE method's error distribution for test, predicted,
and error values is displayed in Figure 9(b). The findings
exhibited that the least, average, and greatest absolute
errors were 8.59, 228.58, and 598.54 Pa, respectively. The
frequency of different-sized errors was analyzed, and it
was discovered that 23 of the error values occurred at or
below 200 Pa, 19 occurred between 200 and 500 Pa, and
only 2 occurred at or above 500 Pa. According to the error
dispersion, the BE model is likewise more precise than the
MLPNNmodel. The BE model is found to be more accurate
and effective than the MLPNN technique in determining
the optimal output values because it utilizes 20 sub-
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Figure 7: Model for MLPNN with PV: (a) connection between PV tests and predictions; and (b) distribution of PV tests, predictions, and errors.

48.91202

228.17979

320.38

38.45

138.54591

55.4084

213.461

275.4

38.241

134.435

Test PV (Pa.s) Predicted PV (Pa.s)
0

50

100

150

200

250

300

350

400

450

R
an

ge

 Mean ± 1 SD
 Range
 Median Line
 Mean

Figure 8: Comparison of the MLPNN-PV model’s predictions and
experimental results in a box plot.

)b()a(

100

600

1100

1600

2100

2600

3100

3600

4100

0 500 1000 1500 2000 2500 3000 3500 4000

Pr
ed

ic
te

d 
st

at
ic

 y
ie

ld
 st

re
ss

 (P
a)

Test static yield stress (Pa)

Predicted SYS Linear (Predicted SYS)

y = 0.8238x + 248.09
R² = 0.9546

0

50

100

150

200

250

300

350

400

450

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

Pl
as

tic
 v

isc
os

iy
 (P

a.
s)

Data point no.

Test PV Predicted PV Absolute error

Figure 9: Model for BE with SYS: (a) connection between SYS tests and predictions; and (b) distribution of SYS tests, predictions, and errors.
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models to fine-tune the bagging process. Additional statis-
tical information is provided in Figure 10, which includes
the experimental and predicted test sets’ minimum, max-
imum, median, mean, and standard deviation values. The
discrepancy between predictions and outcomes is shown
by the numbers on the graph. Bagging model results
appear more in line with one another (actual and antici-
pated) than MLPNN model results.

3.2.2 DYS BE model

The results of the BE approach to estimate the AAC's DYS
are displayed in Figure 11. As shown in Figure 11(a), there is
a correlation amongst experiment and projected DYS. The

BE model appears to be more precise because of its R2

value of 0.96. The illustration of the BE technique's error
dispersal for test, predicted, and error values is depicted in
Figure 11(b). The findings exhibited that the least, average,
and maximum levels of absolute errors were 3.786, 44.56,
and 136.86 Pa, respectively. The frequency of different-
sized errors was analyzed, and it was discovered that 29
of the error values occurred at or below 50 Pa, 10 occurred
between 50 and 100 Pa, and only 5 occurred at or above
100 Pa. The DYS-BE model was found to be more precise
than the MLPNN model and equally accurate as the SYS-BE
model in determining the optimal output. Additional sta-
tistical information is provided in Figure 12, which includes
the experimental and predicted test sets’ minimum, max-
imum, median, mean, and standard deviation values. The
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mental results in a box plot.
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values on the graph illustrate the gap between forecasts
and actual results. Bagging model results appear more
in line with one another (actual and anticipated) than
MLPNN model results.

3.2.3 PV BE model

The results of employing the BE approach to predict the
AAC's PV are given in Figure 13. As shown in Figure 13(a),
there is a correlation amongst target and estimated PV. The
BE model appears to be more accurate due to its R2 value of
0.93, slightly less than the R2 of the BE model for SYS and
DYS. The illustration of the BE model's error dispersal for
actual, estimated, and error values is depicted in Figure
13(b). The findings exhibited that the least, average, and
maximum levels of error were 0.53, 23.28, and 70.66 Pa·s.
The frequency of different-sized errors was analyzed, and
it was discovered that 30 of the error values occurred at or
below 23 Pa·s, 9 occurred between 25 and 50 Pa·s, and only
5 occurred at or above 50 Pa·s. The DYS-PV model was
found to be more precise than the MLPNN model and mar-
ginally less accurate than the SYS and DYS BE models in
forecasting the desired outcomes. Additional statistical
information is provided in Figure 14, which includes the
experimental and predicted test sets’minimum, maximum,
median, mean, and standard deviation values. The values
on the graph illustrate the gap between forecasts and
actual results. Bagging model results appear more in line
with one another (actual and anticipated) than MLPNN
model results.

3.3 Model’s validation

The results of the error computations (MAE, RMSE, and
MAPE) that were performed using Eqs. (1)–(3) that were
previously described are presented in Table 2. It was found
that the MLPNN and BE models had MAE values of 341.28
and 228.59 Pa, respectively, while predicting SYS. However,
for forecasting DYS, MLPNN had an MAE value of 83.63 Pa,
and BE had an MAE value of 20.80 Pa. Similarly, in the case
of PV prediction, MLPNN and BE model’s MAE were found
to be 26.20 and 23.29 Pa·s. MAPE was calculated to be
46.30% for MLPNN and 32.70% for BE model while
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predicting SYS, whereas the MAPE value was 62.00 and
20.80% for DYS forecasting MLPNN and BE models, respec-
tively. In the case of PV, MAPE was found to be 19.90 and
18.60% for MLPNN and BE models, correspondingly. The
root-mean-square error (RMSE) values for SYS-based
MLPNN and BE models were also calculated to be 373.53
and 263.18 Pa, respectively. RMSE values were 98.29 and
56.56 Pa for MLPNN and BE models, respectively, for DYS
prediction. Similarly, for PV forecasting models, MLPNN
and BE had RMSE values of 33.33 and 28.29 Pa·s, respec-
tively. All these statistical results show the higher accuracy
of prediction of BE models over MLPNN models in all three
cases, as the error rate significantly decreases.

Table 3 displays the results of computing R2, RMSE, and
MAE, which were used to validate the k-fold approach. The
MLPNN and BE methods produced an SYS estimate with an
MAE of 372.90 and 273.60 Pa, respectively. DYS-based
MLPNN and BE models had average MAE values of 83.18
and 55.69 Pa, respectively. MAE mean values of 36.15 and

32.69 Pa·s were found in the case of PV-prediction MLPNN
and BE models. The MLPNN had an RMSE averaging
418.63 Pa, 98.40 Pa, and 45.13 Pa·s for SYS, DYS, and PV pre-
diction, respectively. However, in the case of BE modeling,
mean RMSE values of 365.23 Pa, 72.70 Pa, and 41.70 Pa·s
were found for SYS, DYS, and PV outcomes, respectively.
MLPNN and BE had maximum R2 values of 0.89 and 0.95
for SYS, whereas 0.89 and 0.96 maximum R2 for DYS,
respectively. Maximum R2 values of 0.87 and 0.93 were
found for MLPNN and BE models for PV estimation, respec-
tively. The finest BE model for predicting the SYS, DYS, and
PV of AAC had a higher R2 and lower errors. The improved
precision of BE models was also confirmed by analyzing
errors and R2 values noted from the k-fold analysis. How-
ever, the exactness of the MLPNN models was also in
satisfactory limits. As a result, MLPNN and BE models
may provide better estimates of AAC’s SYS, DYS, and PV.
All the existing forecasting models are compared in Figure
15, which is a Taylor diagram. With regard to all three cases

Table 2: Statistical analyses for assessing errors

ML Technique SYS DYS PV

MAE (Pa) MAPE (%) RMSE (Pa) MAE (Pa) MAPE (%) RMSE (Pa) MAE (Pa·s) MAPE (%) RMSE (Pa·s)

MLPNN 341.28 46.30 373.53 83.63 62.00 98.29 26.20 19.90 33.33
Bagging 228.59 32.70 263.18 44.56 20.80 56.56 23.29 18.60 28.29

Table 3: Outcomes of MAE, RMSE, R2 from k-fold analysis

Property ML model Parameter k-fold no.

1 2 3 4 5 6 7 8 9 10

SYS MLPNN MAE 151.99 807.51 536.43 367.19 256.43 402.98 132.94 516.52 232.68 334.36
RMSE 412.17 960.24 506.62 305.06 271.51 513.02 242.62 431.77 302.23 241.04
R2 0.43 0.57 0.42 0.46 0.63 0.89 0.58 0.61 0.53 0.25

BE MAE 203.79 116.30 336.02 278.97 235.47 605.49 304.07 252.52 125.17 278.21
RMSE 298.44 224.01 848.77 324.29 283.67 427.10 443.32 178.48 386.21 237.96
R2 0.61 0.59 0.76 0.70 0.48 0.35 0.95 0.60 0.59 0.46

DYS MLPNN MAE 245.85 44.51 57.13 69.29 70.71 90.50 75.17 64.86 95.25 18.49
RMSE 308.89 83.40 86.75 38.47 80.41 84.71 102.89 70.89 96.76 30.81
R2 0.59 0.59 0.23 0.44 0.62 0.31 0.89 0.59 0.44 0.53

BE MAE 12.72 174.45 51.25 35.13 48.27 61.72 46.91 72.28 20.32 33.88
RMSE 206.66 89.80 22.13 74.54 57.49 94.89 41.74 51.57 31.85 56.33
R2 0.96 0.68 0.59 0.31 0.38 0.55 0.30 0.74 0.52 0.45

PV MLPNN MAE 27.35 25.26 22.76 90.98 45.44 32.54 37.86 17.30 33.65 28.34
RMSE 98.64 41.35 38.91 54.00 42.67 40.42 42.36 22.96 33.19 36.78
R2 0.33 0.29 0.25 0.20 0.23 0.87 0.46 0.62 0.56 0.38

BE MAE 38.21 23.04 27.72 68.13 44.83 26.59 27.98 14.92 30.27 25.19
RMSE 95.08 48.13 29.35 44.52 35.95 47.98 18.98 36.41 28.75 32.78
R2 0.49 0.68 0.57 0.29 0.48 0.29 0.65 0.62 0.44 0.93
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(SYS, DYS, and PV), the bagging models stand out as the
most nearby, while the MLPNN models are the most
distant.

3.4 SHAP analysis results

This research scrutinized how input parameters affected
the rheological properties of AAC. Local SHAP and feature
impacts are clarified by the SHAP tree explainer for the
entire dataset. Figures 16–18 show the violin SHAP graph’s
results for all raw materials on AAC rheology. Each vari-
able value in this graph is colored, and the x-axis SHAP
value shows each raw material’s influence. As depicted in
Figure 16, PC, TA, BFS, and aggregate all these input para-
meters have a positive correlation with the SYS of AAC.
SYS, which is the effort required to initiate flow in con-
crete, increases as the content of the above-mentioned
parameters increases. However, water, SiO2/Na2O, and
NaOH parameters have a more negative correlation with
the SYS of AAC, which means that increasing the content of
these variables might result in a decrease in the SYS of the
AAC. Figure 17 illustrates the SHAP plot of input para-
meters for DYS. TA, aggregate, and BFS parameters have
a positive correlation with DYS, which is the minimum
effort required to maintain the flow of concrete. However,
the relation of parameters PC and SiO2/Na2O with DYS
of AAC was more negative, which means that the DYS
decreases with the increase in the content of these vari-
ables. Furthermore, the NaOH and water correlation with
DYS of AAC was balanced (both equally positive and nega-
tive). SHAP plot for PV correlation with the input para-
meters is shown in Figure 18, illustrating that the BFS,
water, and SiO2/Na2O have a more direct relationship
with the PV of AAC. However, the relationship of PC with
the PV of AAC was found to be more adverse. Furthermore,
NaOH, aggregate, and TA relationship with PV were found
to be equally positive and negative, suggesting that their
content increase might have a positive/negative impact on
the PC of AAC.

The SHAP approach exhibits a remarkable insight into
the interactions among input features, effectively demon-
strating the collective impact of several factors on predic-
tions. An integrated approach is required for realizing
complex correlations within ML models, as they might
not be effectively identifiable using correlation analysis
alone [35]. The color representation is used to Display the
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Figure 15: Taylor diagram: (a) SYS; (b) DYS; and (c) PV.
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level of correlation amongst two variables for each indivi-
dual parameter. In Figure 19, each dot is displayed with red
to imply a high score of the most dependent variable, and a
blue shade is displayed to represent a low value of the most
dependent variable. The graph primarily depicts the cor-
relation between the values of a specific variable and the
related SHAP values. There is a direct correlation between
the output of the model and the PC, which reaches its
highest point at 375 kg·m−3, as shown in Figure 19(a).
Figure 19(b) and (c) shows that the output values increase
as the amount of BFS and NaOH in the mixture increases.
On the other hand, Figure 19(d) and (e) illustrates an
indirect link between SiO2/Na2O and water, which indicates
a significant decrease in output with increasing content. Fol-
lowing that, Figure 19(f) and (g) illustrates the positive cor-
relations that exist between the aggregate content, the TA,
and subsequent outputs. The fact that these conclusions
are dependent on particular raw materials and data sam-
ples is an extremely important consideration to take into
account. Variations in the parameters and data that are
entered could potentially result in different outcomes.

4 Discussions

Traditional binding ingredient, OPC has a great global
impact based on both raw material Consumption [45]
and anthropogenic releases [46]. As a result, the OPC
industry needs to establish environmentally preferable
alternatives to OPC in order to cut down on the amount of

carbon dioxide emissions it produces. Because of their low
impact on the environment and low energy consumption,
AAMs, also known as AAMs, have garnered a lot of atten-
tion over the past 10 years as one of the most advanta-
geous building materials [47]. Through the application of
ML and SHAP methodologies, the purpose of this study
was to further human comprehension of the application
of AAMs. This study used MLPNN, and BE ML approaches
to estimate the SYS, DYS, and PV of AAC. To determine
which method is the most precise predictor, the accuracy
of each method was compared. The BE approach yielded
more accurate findings than the MLPNN technique, with
an R2 of 0.95 for SYS, 0.96 for DYS, and 0.93 for PV. The
MLPNN techniques had an R2 of 0.88 for SYS, 0.89 for DYS,
and 0.86 for PV. The discrepancy between actual and pre-
dicted results (errors) supported the BE approach’s higher
accuracy even further. In contrast to the MLPNN models,
the BE models’ experimental and predicted results agreed
quite well, as shown by the error analysis. Similar find-
ings from earlier research have demonstrated that the
BE methodology is superior to the individual ML methods
in terms of accuracy when it comes to calculating the
strength of construction materials [41,48].

In addition, ML methods were tested for accuracy
using both arithmetical and k-fold approaches. A smaller
amount of deviation (RMSE, MAPE, and MAE) and a higher
R2 indicate that the model is more accurate. Algorithm
performance depends on inputs and data samples, making
it difficult to identify the optimal machine-learning method
for attribute prediction across domains [41]. Ensemble ML

Figure 16: SHAP plot for SYS.
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approaches often use the weaker learner to train sub-
models on the dataset and tune them to improve accuracy,
resulting in outputs that surpass individual ML models. All
things considered, these outcomes show that BE models are
more accurate than MLPNN models. Additionally, the SHAP
analysis was performed to look at how raw materials
interact and affect the rheological aspects of AAC. The SYS
of AAC is positively correlated with the PC, TA, BFS, and
aggregate of the input parameters used to create the mate-
rial. The amount of work needed to commence flow in con-
crete, denoted by the parameter SYS, grows as the content of
the aforementioned variables does. However, DYS, TA,

aggregate, and BFS parameters have a positive correlation
with DYS, which is the minimum effort required to maintain
the flow of concrete. There is a stronger correlation between
the PV of AAC and the BFS, water, and SiO2/Na2O. However,
a greater negative correlation was observed between PC and
PV for AAC. Therefore, it can be concluded that using AAMs
as an alternative to OPC-based materials will result in better
construction materials having comparatively similar
strength-wise performance. Moreover, more importantly,
it will help reduce the environmental concerns associated
with OPC production and also control the depleting raw
materials used in OPC creation.

Figure 17: SHAP plot for DYS.

Figure 18: SHAP plot for PV.
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Figure 19: Interdependencies of input features: (a) PC; (b) BFS; (c) NaOH; (d) SiO2/Na2O; (e) Water; (f) aggregate; and (g) TA.
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5 Conclusions

AAC rheological properties were the focus of this research,
which developed prediction models using MLPNN and BE.
The generated models were trained and validated using
145 rheological data (yield stress [static/dynamic] and PV).
The primary outcomes of the research are as follows:
• The MLPNN models correctly predicted the rheological
parameters of AAC, including SYS, DYS, and PV, with R2

values of 0.88, 0.89, and 0.87. BE models predicted SYS,
DYS, and PV better with R2 values of 0.95, 0.96, and 0.93.

• The average error between experimental and projected
SYS, DYS, and PV in MLPNN techniques was 341.28 Pa,
83.63 Pa, and 26.19 Pa·s. However, BE models lowered
average error values to 228.58 Pa, 44.56 Pa, and 23.28 Pa·s
for SYS, DYS, and PV prediction. These error rates con-
firmed that MLPNN models were accurate and BE
approaches predicted AAC rheology better.

• Statistical and k-fold evaluations confirmed the effective-
ness of the created models. Better R2 and fewer mistakes
showed ML model accuracy. MLPNN models predicted
SYS, DYS, and PV with MAPEs of 46.20, 62.00, and 19.90%.
In BE models for SYS, DYS, and PV, MAPE values dropped
to 32.0, 20.80, and 18.890%. BE models had lower MAE
and RMSE values than MLPNN models, demonstrating
their improved AAC rheology prediction.

• There was a strong positive correlation between the
SHAP analysis and the SYS of AAC, and the two most
important input characteristics were TA and PC. However,
in the DYS prediction, as per the SHAP analysis, TA and
aggregate were the most influential parameters. PV of
AAC was more positively impacted by the BFS and water
based on the SHAP analysis.

Future research may focus on adding experimental
data to increase model accuracy. The study used MLPNN
and BE models. However, future research could examine
single and ensemble techniques like SVM, DT, and boosting,
as well as hybrid ML techniques like GA-PSO and RF-ANN.
The models’ functionality and predictive abilities might ben-
efit greatly from including these hybrid approaches. Also,
research into the AAC’s durability, dynamic characteristics
(fatigue), andmicrostructure is lacking, and a deeper explora-
tion of these longevity determinants via ML approaches is
required.
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