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Abstract: The main focus of this study is on the effects of
fly ash, basalt powder, and tungsten carbide (WC) on the
mechanical (tensile strength, flexural strength, impact
strength, and Shore D hardness) and tribology behavior
of sisal fiber-reinforced composites. Using epoxy resin,
the fillers (5–10 wt% of each) were mixed with sisal fiber
and resin (30 wt%). A tensile strength of 86.3–112.2 MPa
was observed with the addition of fly ash, basalt powder,

and WC fillers. The tensile strength of S2 composite
(basalt powder + epoxy resin) was 33.63% higher than
that of composite without fillers. The flexural strength
of S5 composite (basalt powder + WC) was found to be
166.4 MPa, which is nearly 19.95% higher than the compo-
site without filler. The fly ash with WC (S4) and basalt
powder (S5) composite showed similar impact strength
(5.34 J·m−2), which was nearly 62% greater than the com-
posites without filler. The superior hardness was noticed
in S5 composite compared to all other filler-added com-
posites. The least wear rate was noticed in S3 (WC) com-
posites irrespective of all the loading conditions. The
hybridization of fillers also enhanced the mechanical
properties of sisal fiber–reinforced composites. However,
single filler–reinforced composite (WC) improved the wear
resistance compare to hybrid filler–reinforced composites.
The inclusion of filler increases the load-carrying capability
and adhesion, as determined by scanning electron micro-
scope. The river-like pattern confirms that S2-composite
failure was dominated by ductile. The least wear debris
and grooved surfaces were results higher wear resistance
in the hybrid filler–reinforced composites.

Keywords: sisal fiber, epoxy resin, fillers, mechanical prop-
erties, SEM

1 Introduction

Composites of synthetic fiber-reinforced polymer are used
in aerospace and vehicle applications. Despite possessing
strong mechanical properties and a higher resilience to
environmental ageing, these fiber composites are both
environmentally and humanly dangerous. Researchers
are currently using natural fibers as reinforcement for
polymer-based composites. Natural fibers are superior
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to synthetic fibers because they are durable, biodegrad-
able, inexpensive, and lightweight [1]. These fibers are
excellent while using as reinforcement materials in the
production of polymer composites that are suited for a
variety of lightweight applications, including aircraft seats
and automobile components [2–8]. The disadvantages of
natural fiber-reinforced composites are fiber delamination,
low modulus, water absorption, and limited application to
low load-bearing materials [9–11]. With various polymer
resin matrices [12–16], natural fibers such as sisal, banana,
cotton, ramie, jute, pineapple, kenaf, coir, and bagasse were
utilized. Sisal fiber-reinforced polymer composites exhibit
remarkable advantages in their mechanical properties com-
pared to composites reinforced with other natural fibers
[17]. These fibers include a greater proportion of cellulose
components, which is the reason for their enhanced tensile
properties, and they do not absorb moisture quickly. Sisal
fibers have been widely used as reinforcement in cementi-
tious composites [18,19] in recent years. The type of fiber–-
matrix bond is principally responsible for determining
the qualities of sisal fibers. There are a number of factors,
including surface treatment, fiber length, strengthening, and
filler addition [19]. Sisal can be cultivated easily, and its
timing of plantation is less [17]. A study showed that sisal
fiber is extracted globally at a rate of about 4.5 million tonnes
annually [20]. It comes from the leaves of the sisal plant
(Agave sisalana), which is presently grown in tropical
African, West Indian, and Far Eastern countries [21]. Noor-
unnisa Khanam et al. [22] studied the influence of chemical
treatment on the mechanical behavior of sisal fiber-rein-
forced composites. Sisal fiber boiled in 18% aqueous NaOH
exhibited improved tensile and flexural strength. The capa-
city of the sisal fiber to attach was enhanced by the NaOH
treatment. Sisal fiber-reinforced composites did not have the
same tensile strength as synthetic fiber-reinforced compo-
sites [23,24]. The natural fiber-reinforced composite was
augmented with fillers to increase its mechanical qualities
[17]. According to Maurya et al. [25], the addition of fly ash to
sisal fiber-reinforced composites enhanced their tensile and
flexural strengths. Fly ashwith 46% silica displayed superior
tensile and flexural characteristics with epoxy-based com-
posites up to a 3% additive level [19]. Devaraju and Sivasamy
[26] studied the effect of nanoparticles (ZrO2 and ZnO) on
mechanical properties of sisal fiber composites. They con-
cluded that the mechanical properties of ZrO2 sisal fiber
composite were higher than those of ZnO sisal fiber compo-
sites. Ji et al. [27] studied the mechanical and water absorp-
tion properties of sisal fiber composite that contains fillers
such as talcum powder, CaCO3, and eggshell powder. The
addition of fillers improved the mechanical and water resis-
tance properties of the sisal fiber composites. Alemayehu

et al. [28] concluded that sisal fiber composite was good
replacement material for vehicle body applications. Athith
et al. [29] determined that natural fibers and tungsten car-
bide (WC) fillers enhanced the characteristics of hybrid
composites (jute/sisal/E-glass). The bagasse ash-filled com-
posite reinforced with sisal, flax, banana, and kenaf con-
siderably enhanced the composite material’s thermal and
mechanical qualities [30]. The addition of up to 3 wt%
bagasse ash to composites resulted in increased tensile,
flexural, and impact strengths [30]. Haldar et al. [31] eval-
uated themechanical characteristics of sisal fiber-reinforced
composites with and without the addition of aluminum
powder. The filler substance enhances fiber–matrix adhe-
sion and decreases void volume. Oladele et al. [32] examined
the mechanical and wear properties of CaCO3-filled, sisal-
fiber composites. The tensile, flexural, and hardness proper-
ties of the composite were improved by the inclusion of
CaCO3 filler. However, the impact properties of composites
were noticed. da Silva et al. [33] enhanced the mechanical
characteristics of the sisal fiber-reinforced composites by
adding silica micro-particles. Mohan and Kanny [34] observed
that the addition of nanoclays to sisal fiber-reinforced com-
posites led to a slight increase in tensile strength.

It appears that there are few studies in the literature
about how fillers influence the mechanical, tribology, and
physical characteristics of sisal fiber composites. But there
have not been many studies done on basalt and WC filler
used in sisal fiber-reinforced composites. The hybridiza-
tion of filler materials such as fly ash, basalt powder, and
WC with sisal fiber reinforcement has been found to be
very low. In this work, organic fillers (fly ash, basalt
powder) and inorganic filler (WC) were used to study their
effect on the tensile, flexural, impact, hardness, and wear
properties of sisal fiber-reinforced composites. In addition,
the mechanical properties and tribology behavior of sisal
fiber-reinforced composites are also studied, and the
results are compared to those of composites without filler.
The tensile fracture and wear pattern of hybrid filler-
reinforced composites are also examined in detail.

2 Materials and method

Sisal fiber used as reinforcement was purchased from Go
Green Products, Chennai, India. Before processing, these
fibers were soaked in a 2% NaOH solution for 24 h at
room temperature to improve the interfacial bonding
between the fiber and matrix, which resulted in improved
mechanical properties [35,36]. After that, these fibers
were rinsed with distilled water and then dried in a hot
oven at a temperature of 60°C. The dried fibers were
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chopped into 20–25 mm lengths and used in composite
fabrication. The hardener (HY951) and epoxy resin (LY556)
were purchased from Covai Seenu & Company in Coimba-
tore, India. The coal-fired fly ash was collected from power
plants. The fly ash was separately ground using a ball
milling machine. WC (size, 2 µm; purity, 99%) was purchased
from Ultrananotech Private Limited, India. The steps fol-
lowed for filler dispersion and composite manufacturing
are shown in Figure 1. The filler was mixed with acetone
by using a magnetic stirrer for 20min and then a probe
sonicator for 20min. Following the addition of sufficient
epoxy resin, this mixing process was carried out excessively.
Finally, the hardener was mixed with epoxy + filler. Non-
silicone white wax was applied inside the mold to avoid
adhesion of the mixture to the mold. After applying the
wax, the fiber was arranged in the mold of the compression

molding machine. The epoxy + filler + hardener mixture
was poured inside the mold. The operating parameters
used for manufacturing all composites in this study were
pressure (15MPa) and temperature (120°C).

The same fabrication procedure was adopted for all six
samples, and details of all the samples are listed in Table 1.
The presence of filler in the S4, S5, and S6 composites was
confirmed by the energy dispersive X-ray spectroscopy
(EDS) results as shown Figure 2(a–c).

After the composites were cured, they were sliced into
plates for testing. All mechanical testing samples were cut
as per the ASTM standard, and cutting was done using a
water jet cutting machine. Using Aimil universal testing
equipment, the tensile and flexural strengths of each
sample were tested in accordance with ASTM 3039 [1]
and ASTM 790 [1], respectively. The impact resistance of
the samples was determined using a digital Izod impact
tester in accordance with ASTM D-256 [17]. Using a Shore
D hardness tester, Shore D hardness testing was conducted
in accordance with ASTM D2240 [1]. The dry wear test was
conducted using pin-on-disc equipment (DUCOM machine)
in accordance with ASTM G99 specifications. The samples
measured 15 mm × 5 mm × 5 mm and were perpendicularly
drilled into an EN-32 steel disc with a 50-mm track dia-
meter. Using scanning electron microscopy (SEM), the ten-
sile fracture and worn surfaces were studied.

3 Results

3.1 Tensile results

Figure 3(a and b) depicts the stress versus strain graph and
specimens after the tensile test. Figure 4 displays the
results of the evaluation of the tensile several sisal fiber
polymer composites. Without the inclusion of filler compo-
nents, the tensile strength of composites reinforced with
sisal fiber epoxy was 83.96 MPa [37]. However, the inclu-
sion of fly ash, basalt powder, and tungsten carbide fillers

Figure 1: Manufacturing steps of filler reinforced composites.

Table 1: Sample designation and compositional details

S. No Sample designation Polymer composites

1 S1 Epoxy (70 wt%) + Sisal fiber (20 wt%) + Fly ash (10 wt%)
2 S2 Epoxy (70 wt%) + Sisal fiber (20 wt%) + Basalt powder (10 wt%)
3 S3 Epoxy (70 wt%) + Sisal fiber (20 wt%) + Tungsten carbide (WC) (10 wt%)
4 S4 Epoxy (70 wt%) + Sisal fiber (20 wt%) + Fly ash (5 wt%) + Tungsten carbide (5 wt%)
5 S5 Epoxy (70 wt%) + Sisal fiber (20 wt%) + Fly ash (5 wt%) + Basalt powder (5 wt%)
6 S6 Epoxy (70 wt%) + Sisal fiber (20 wt%) + Tungsten carbide (5 wt%) + Basalt powder (5 wt%)
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in the sisal fiber epoxy-reinforced composites boosted their
tensile strength in comparison to those without fillers. Max-
imum tensile strength of 112.2 MPa was recorded for S2 com-
posites with 10wt% basalt powder, an increase of almost
33.63% compared to sisal fiber polymer composites without

filler. S1 (10wt% fly ash) and S3 (10wt% WC) composites had
the lowest tensile strength compared to the other composites.
The reduced tensile strength of the S1 composites was caused
by an increase in fly ash content of more than 5wt%. Among
all, the lowest tensile strength was noticed in the S3 (WC).

Figure 2: EDS results: (a) S4, (b) S5, and (c) S6.
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Due to insufficient wetting of WC during tensile loading,
the interfacial adhesion between sisal fibers and matrix was
weakened, resulting in decreased tensile strength. Similar
cases were reported in sisal-reinforced epoxy composites
[38]. The improper mixing of the fly ash and WC may be
the reason for the lower strength as compared to the basalt
powder. S2 (10 wt% basalt powder) had a tensile strength
that was 23.43 and 30.01% higher than the S1 and S3 compo-
sites, respectively. The combined effect of two fillers in the
reinforced composites (S4, S5, and S6) enhanced the tensile
strength as compared with single filler-reinforced compo-
sites (S1 and S3). However, it was less than the S2 composites.
Despite the presence of two fillers in the sisal fiber rein-
forced composites, basalt powder was the most dominant

filler material, followed by fly ash and WC. The basalt with
WC (S6) composites showed the second-highest tensile
strength. The addition of fly ash filler to basalt (S4) and
WC (S5) composites did not significantly increase the ten-
sile strength in comparison to other composites (WC +

basalt powder). Finally, it was discovered that the fly
ash filler does not maintain effective load transfer during
composite tensile testing [38]. Basalt powder was the most
effective filler compared to other fillers used in this study.
Because of repulsion, the fly ash and WC fillers’ likely
agglomeration decreases as the cationic surfactant per-
centage increases. Inorganic also fills the matrix’s meso
and microvoids, strengthening the composites’ excellent
packing.

3.2 Flexural results

Figure 5(a and b) depict the stress vs strain graph and
specimens after the tensile test. Figure 6 illustrates the
flexural strength of several composites reinforced with
sisal fiber. The flexural strength of sisal fiber-reinforced
composites was 138.72 MPa without any filler [22].

The results demonstrate conclusively that fly ash,
basalt powder, and WC increased the flexural strength of
sisal fiber composites. The superior flexural strength of the
S5 composite was found to be 166.4 MPa, which was nearly
19.95% greater than composites without the addition of
filler material. The second-highest flexural strength was
noticed in the S2 and S4 composites. The flexural strength
of fly ash + WC reinforced composites and basal powder
composites did not differ significantly. The least flexural

Figure 3: Tensile test: (a) specimens and (b) stress–strain curves.

Figure 4: Tensile results.
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strength was noticed in the fly ash (S1) and WC (S3) filler-
reinforced composite (S1). The improved load transmission
and elastic deformation of the sisal fiber-reinforced com-
posite [17] were attributed to the increased interfacial stiff-
ness and better adherence of fly ash powder at smaller
particle sizes. Therefore, it was the primary reason for
the reduced flexural strength of composites reinforced
with fly ash. In addition, the addition of WC, fly ash, and
basalt powder to the composites decreased their flexural
strength. The accumulation of WC renders the composite
more brittle and decreases the sisal fiber’s rigidity. James
et al. [39] discovered that eliminating contaminants and

brittle particles from sisal fiber hybrid composites increases
their flexural strength.

The basalt powder filler boosted the composite’s flex-
ural strength in comparison to other fillers. In addition to
other fillers, the filler boosted the flexural strength of the
composite. Basalt powder bonds sisal fiber and epoxy resin
efficiently at their interfaces. Vivek and Kanthavel [30] saw
a similar effect, where the flexural strength of basalt
powder-reinforced natural fiber composites which were
depended entirely on how well the filler stuck to the fiber
and matrix. The main factor in the composite’s ability to
maintain its stiffness attributes was the filler’s strong inter-
facial bonding with sisal fiber and epoxy resin.

3.3 Impact results

Figure 7(a and b) depicts the impact test samples and
results of sisal fiber-reinforced composites with various
fillers. The results clearly demonstrate that the presence
of fillers increased the impact strength of the composites in
comparison to composites without filler. Without fillers,
Gupta and Srivastava [37] observed that the impact strength
of sisal epoxy-reinforced composites was 2 kJ·m−2. S4 (fly ash
+ WC) and S5 (fly ash + basalt powder) composites demon-
strated maximum impact strengths of 5.34 J·m−2, which were
nearly twice as high as the composites without filler. Single-
filler composites (S1, S2, and S3) had lower impact strength
than composites with two fillers (S4 and S5). S1 and S2 com-
posites showed the least impact strength compared to other
composites. S1 (fly ash), S2 (basalt powder), S3 (WC), S4 (fly

Figure 5: Flexural test: (a) specimens, (b) stress–strain curves.

Figure 6: Flexural results.
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ash +WC), S5 (fly ash + basalt powder), and S6 (WC + basalt
powder) improved their impact strengths by 36.10, 65.19,
47.22, 62.04, 62.54, and 53.16%, respectively. Normally, voids
form during the production of composites reinforced with
natural fibers [38]. These voids may increase the stress and
accelerate the formation and propagation of cracks. Fillers
significantly inhibit crack formation and propagation in
sisal fiber-reinforced composites by effectively filling these
voids.

Fillers can function as a connecting link between the
fiber and matrix, which increases interfacial adhesion and
contributes to the enhancement of impact strength. The
increase in impact resistance may be attributable to the
fact that fillers absorb energy due to their higher surface-
to-volume ratio [33]. The reduction in impact strength in S3
was due to insufficient wetting and agglomeration.

3.4 Shore D hardness test results

Figure 8 illustrates the effect of fillers on the Shore D hard-
ness of sisal fiber reinforced composites. The sisal fiber
epoxy-reinforced composite had a Shore D hardness of
77.3 [39].

The addition of filler materials such as fly ash, basalt
powder, and WC to the composite enhanced its hardness
properties as compared with sisal fiber composites without
filler. With the addition of fillers, the polymer and fiber
chains are held in place, which makes the composite stiffer
and harder. It was noticed that, over composites without
filler, the average Shore D hardness was increased by
3.375% (S1), 11.149 % (S2), 2.15% (S3), 5.73% (S4), 9.05%
(S5), and 6.86% (S6) for composites with filler added com-
posites. Basalt filler reinforced composite showed a signif-
icant improvement as compared to fly ash and WC. The
improper dispersion of WC fillers at minor loading resulted
in increased inter-particle distance, which was the primary
reason for inferior hardness in the S3. The decrease in
hardness in the S4, S5, and S6 composites may be attributed
to filler heterogeneities that result in a higher void content
in the composites. Megahed et al. [40] showed comparable
increases in hardness values for sisal fiber composites.

3.5 Wear test results

In this study, the dry wear test was carried out on a pin-on-
disc apparatus. Figure 9(a and b) depicts the pin-on-disc
apparatus and samples. The samples were subjected to the

Figure 7: Impact test: (a) samples and (b) impact results.

Figure 8: Shore D hardness test results.
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respective normal load and sliding velocities of 10, 20, and
30 N and 150, 250, and 350 rpm for the wear test.

Important operational parameters for the wear of
polymer composites included the applied load and sliding
velocity. Therefore, it was varied by a constant sliding dis-
tance of 700 m. In each combination, approximately three
specimens were evaluated, and the average value was
recorded. Figure 10 demonstrates that the wear rate of
all sisal fiber composites rises sharply with increasing
normal load and sliding velocity. S1 composites have the
highest wear rate, whereas S4 composites have the lowest
wear rate for all combinations of normal loads and sliding
velocity. The highest wear rate was found in the S1 compo-
site (1,450 µm) at 30 N load and 350 rpm. However, the least
wear rate was obtained in the S4 composite (84 µm) at 10 N
load and 150 rpm. The wear rate of S4 remains between 84
and 273 µm at lower sliding velocity (150 rpm) while the
wear rate remains between 360 and 920 µm at higher

sliding velocity (350 rpm) respective of the normal load
(10–30 N). The sisal fiber epoxy matrix interphase was
strongly incorporated by the WC with fly ash fillers, pro-
viding transfer films on the material surface that reduced
wear resistance under all loading circumstances. Similar
kinds of results were observed by Govindan et al. [41]. Next
to S4, the least wear rate was observed in the S5 composites
at lower sliding velocity (150 rpm) irrespective of normal
load. However, compared to S5, the wear rate of S2 was
lower at higher sliding velocity and normal load. It was
confirmed that the wear behavior of the S2 composite
was gradually reduced at higher loading conditions. The
decrease in wear resistance of the S5 composite at higher
loading conditions was mainly due to an increase in con-
tact area and less abrasion resistance of fly ash. The wear
rate of S2, S5, and S6 composites is in the range of
1020–1100 µm. The basalt powder was added to the S2,
S5, and S6 composites. However, the wear rate of the S2
composite was higher than S5 and S6. The hybridization of
filler material was the reason for a slight increase in the
wear resistance of S5 and S6. The highest wear rate was
noticed in S1 composites irrespective of all the loading
conditions. S1 composites decreased the resistance to abra-
sion due to the inclusion of fly ash filler. This can be a
result of an increase in the resin’s effective contact area
and a suitable filler level in the frictional composition. The
abrasion resistance of fly ash was lower than the WC and
basalt powder. From the wear studies, it was determined
that filler materials can lower the stress on sisal fibers and
avoid thermal and mechanical breakdown of the matrix in
the contact region. SEM was used to analyze the sample’s
worn surfaces in order to better comprehend the likely
wear process and material loss.

3.6 SEM tensile fracture results

Figure 11(a–c) depicts the SEM fracture surfaces of the
tensile samples S1, S2, S3, and S4 of sisal fiber-reinforced
composites (d).

A weak interfacial interaction between sisal fiber and
epoxy matrix allowed the fiber to separate from the matrix.
The creation of voids is one of the reasons why S1 samples
have a lower tensile strength. The existence of voids confirms
that the S1 sample failed to fracture in a responsible way. On
the fracture surfaces of S2 samples, a river-like pattern is
visible (Figure 11b). The occurrence of a river-like pattern
confirms the failure was dominated by the ductile. A similar
kind of failure was noticed in the graphene filler added to
banyan aerial root fiber composites [1]. The cohesiveness of
the matrix in the S2 sample is better, and this is confirmed by

Figure 9: (a) Pin-on-disc and (b) samples.

Figure 10: Wear rate of sisal fiber polymer composites.
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the presence of a river pattern on the fracture surface.
Clearly, a portion of the fibers have been split, enhancing
their load-bearing qualities. Figure 11(c) shows the fiber
tear and breakage along with voids. The fiber tear and voids
were the main reason for the decrease in tensile strength.
The fiber breakage on the fracture surface confirmed that the
adhesion between fiber and matrix was superior in the S3
sample. No fiber breakage is noticed on the S4 fracture sur-
face. However, the presence of voids in the fracture surface
was the primary reason for the drop in tensile strength, even
though there was no fiber breakage or cracks.

3.7 SEM results of worn surfaces

Figure 12(a–f) depicts the worn surfaces of all sisal fiber
composites subjected to maximum conditions at a normal
load of 30 N and sliding velocity of 350 rpm.

The wear debris, cracks, and large grooved surfaces
are noticeable in the S1 composite (Figure 12(a)). It con-
firms that a larger surface is worn due to a higher wear
rate. It reveals that a larger surface was worn because the
wear rate was higher. The surfaces cracking with grooved
surfaces are seen in the S2 composites (Figure 12(b)).
Deeply grooved grooves on the worn surfaces lead to a
higher composite wear rate. Renukappa et al. [42] observed
a similar sliding wear mechanism in nanoclay filler-added
epoxy composites. The absence of wear debris confirmed
the wear rate of S2 was less compared to S1. The worn
surface of S3 composite (Figure 12(c)) was completely dif-
ferent from those of S1 and S2. The wear debris was found
in a large portion, along with surface deformation and
micro-voids. From this, it was clearly noticed that the
binding of the WC filler in the epoxy resin was less than
that of the other two fillers. The occurrence of surface
deformation is the major cause of predominant wear in

Figure 11: Tensile fracture SEM: (a) S1, (b) S2, (c) S3, and (d) S4.

Fillers-reinforced sisal fiber composites for lightweight automotive applications  9



the S3 at higher loading conditions. Singh et al. [38] observed
that as the normal load and sliding speed increased, the
formation of surface deformation increased during the
dry wear of sisal fiber composites. Figure 12(d) demonstrates
the worn surface of S4 composites. Less wear debris and a
smaller portion of grooved surfaces were noticed in the SEM
of S4. The combination of fly ash andWC filler improved the
wear resistance of sisal fiber composites, particularly under

conditions of increased loading. From the worn surface, it
was confirmed that during wear, both fillers prevented the
matrix contact area from thermal and mechanical failures.
Therefore, the wear rate of S4 composites was less than that
of other composites. The surface cracks and wear debris are
seen in the worn surface (Figure12(e)) of S5 composites.
During high loading conditions, the influence of basalt
powder in the S5 composite was high compared to fly ash.

Figure 12: Worn surfaces at load 30 N and speed 350 rpm: (a) S1, (b) S2, (c) S3, (d) S4, (e) S5, and (f) S6.
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Hence, it was confirmed by the formation of scaling layers
and the absence of grooved surfaces. The worn surface pat-
tern of the S6 is similar to that of the S3, as shown in Figure
12(f). The intense surface deformation was formed due to
direct contact with the composite surface on the disc. A
similar kind of worn surface was noticed in Chang and
Friedrich’s [43] titanium oxide filler-reinforced composites.
The occurrence of wear debris in the S6 confirms that hybri-
dization fillers such as WC and basalt powder had no effect
compared to the other two composites (S4 and S5).

The automotive sector is one of the main industries
where sisal fiber composites are used. These composite
materials are used to make interior parts like door panels,
dashboards, and seat backs [44–46]. The composites are
ideal for these automotive applications because the addi-
tion of fly ash, basalt powder, and tungsten carbide
enhances their mechanical strength, stiffness, and impact
resistance [47–49]. Sisal is one of many natural fibers that
are employed because they reduce the use of synthetic
materials, which has a positive impact on the environ-
ment [50,51].

The construction sector is another application for sisal
fiber composites. Building supplies like roofing sheets, wall
panels, and floor tiles are made with the help of composites
[52–54]. The strength, fire resistance, and thermal insula-
tion of the composite materials are enhanced by blending
fly ash, basalt powder, and tungsten carbide with sisal
fibers [55–57]. They can thus withstand extreme environ-
mental conditions and enhance buildings’ energy effi-
ciency [58,59].

The use of sisal fiber composites in the aerospace
sector is advantageous. In the production of aircraft inter-
iors, such as cabin panels, overhead bins, and seating com-
ponents, these composite materials are used [60–62]. Fly
ash, basalt powder, and tungsten carbide are combined to
give the composites high strength-to-weight ratio proper-
ties, resulting in lightweight yet sturdy structures [63–65].
The use of sisal fibers also helps the aerospace industry
become more sustainable and reduce its carbon foot-
print [66–68].

Additionally, sisal fiber composites with fly ash, basalt
powder, and tungsten carbide additives are used in a
variety of consumer goods and sporting goods [69–71].
Items like furniture, toys, sporting goods, and musical
instruments are all made using the composites. The excep-
tional blend of materials enhances the products’ strength,
impact resistance, and aesthetic appeal [72–74].

All in all, the use of sisal fiber composites combined
with fly ash, basalt powder, and tungsten carbide using the
compression molding process method has a variety of

applications in industries like automotive, construction,
aerospace, as well as consumer goods and sporting goods
[75–77]. These composites are an excellent alternative for
manymanufacturing applications because of their enhanced
mechanical properties, environmental sustainability, and
improved performance [78,79].

4 Conclusion

The sisal fiber composites were incorporated with fly ash,
basalt powder, and WC using the compression molding
process method, following mechanical results. Fly ash,
basalt, and WC filler powders mixed with 30% sisal fiber
exhibited exceptional mechanical and wear properties.
The addition of base powder produced the highest tensile
strength of 112.2 MPa, while the addition of WC powder
produced the lowest tensile strength of 86.3 MPa. The
hybrid filler-added composite had a lower tensile strength
than the single filler-added composite. The agglomeration
of fillers in the composite causes a reduction in the tensile
strength.
1) Similarly, 7.26, 17.64, 9.71, 18.58, 19.94, and 14.186%

enhancements in flexural strength were observed with
fly ash, basal powder, WC, fly ash + WC, fly ash + basalt,
and WC + basalt. The hybrid filler-substituted (fly ash +

basalt) sisal fiber composite was shown to have improved
flexural strength.

2) The maximum impact strength of 5.34 kJ·m−2 was observed
when fly ash and basalt filler powders were substituted.
The lowest impact strength was observed in the fly ash
filler added sisal fiber composite.

3) Shore D hardness was improved by 3.375% (fly ash),
11.149% (basalt), 2.15% (WC), 5.73% (fly ash + WC),
9.05% (fly ash + basalt), and 6.86% (WC + basalt) for
composites with filler added.

4) The S4 (fly ash + WC) composite is less wear resistance
than the S1 composite.

5) The tensile samples’ SEM fractography revealed the
river pattern, fiber breakage, fiber tear, and pull out,
confirming that the addition of filler enhanced bonding,
and the tensile failure was dominated by ductile.

6) The least wear rate of the S2 composite was higher than
S5 and S6. The hybridization of filler material was the
reason for a slight increase in wear resistance of S5
and S6.

7) Wear debris in the S6 confirms that hybridization fillers
such as WC and basalt powder had no effect compared
to the other two composites (S4 and S5).
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