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Abstract: Using supplementary cementitious materials in
concrete production makes it eco-friendly by decreasing
cement usage and the corresponding CO, emissions. One
key measure of concrete’s durability performance is its
porosity. An empirical prediction of the porosity of high-
performance concrete with added cementitious elements is
the goal of this work, which employs machine learning
approaches. Binder, water/cement ratio, slag, aggregate
content, superplasticizer (SP), fly ash, and curing condi-
tions were considered as inputs in the database. The aim
of this study is to create ML models that could evaluate
concrete porosity. Gene expression programming (GEP)
and multi-expression programming (MEP) were used to
develop these models. Statistical tests, Taylor’s diagram,
R? values, and the difference between experimental and
predicted readings were the metrics used to evaluate the
models. With R?> = 0.971, mean absolute error (MAE) =
0.348%, root mean square error (RMSE) = 0.460%, and
Nash-Sutcliffe efficiency (NSE) = 0.971, the MEP provided
a slightly better-fitted model and improved prediction per-
formance when contrasted with the GEP, which had R* =
0.925, MAE = 0.591%, RMSE = 0.745%, and NSE = 0.923.
Binder, water/binder ratio, curing conditions, and aggregate
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content had a direct (positive) relationship with the porosity
of concrete, while SP, fly ash, and slag had an indirect
(negative) association, according to the SHapley Additive
exPlanations study.
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1 Introduction

In concrete, aggregates and hydrated cement paste come
together to produce a composite material with the poten-
tial to form any shape. Any air that is not released during
the process of concrete setting remains trapped inside the
concrete matrix [1,2]. Furthermore, the occurrence of micro-
scopic air pockets inside the concrete mass is a consequence
of the delayed interaction between cement and water, as
well as the evaporation of water during the setting process
that was initially filled with water [3,4]. Both factors eluci-
date the reason behind the porous nature of concrete
despite its durability in its solidified condition [5]. There is
a lot of curiosity about how concrete’s porosity affects its
transport characteristics, including its electrical resistivity,
migration of chloride ions, gas/water permeability, and carbon
dioxide and oxygen diffusion coefficients [6]. Figure 1 shows
the empirical link between the capillary porosity and the
compressive strength and transport qualities (intrinsic per-
meability) of concrete. In general, the mechanical strength
and permeability of concrete are both negatively affected by
the increase in porosity. Hence, porosity is an important
factor in predicting how long concrete constructions exposed
to harsh environments will last and how well they will func-
tion [7,8].

Several factors influence the porosity of concrete,
but one of the most important is the water-to-cement ratio
(w/c), which helps the cement paste hydrate. A higher w/c
results in hydrated cement paste with larger capillary
pore volumes. Since fewer large-dimension pores are filled
or joined by the pores of the calcium-silicate-hydrate
(C-S-H) gel, as the curing period and hydration continue,
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Figure 1: Variation in permeability coefficient and effective porosity of
pervious concrete at the point of compressive strength equilibrium [7].

the porosity decreases. Centered on the cement’s w/c ratio
and hydration level, Powers developed a traditional model
to determine the paste’s volumetric composition when it has
cured [9,10]. The interfacial transition zone (ITZ) aggregates
and strengthens concrete’s variability. Previous studies have
established that when the size and fraction of coarse ele-
ments in concrete are increased, it clues to an upsurge in the
permeability of the ITZ and a loss in the complete durability
qualities of the material [11]. The CaCO; to fine aggregate
weight ratio (CA/FA) is a key variable that influences con-
crete’s porosity, permeability, and coarse-to-fine aggregate
ratio [10,12,13].

Some studies have shown that supplemental cementi-
tious materials (SCMs) can improve concrete strength and
durability by partially replacing Portland cement [14,15].
Some SCMs that can aid in cleaner fabrication by plum-
meting CO, releases are fly ash, which is a byproduct of pig
iron manufacturing, and ground granulated blast-furnace
slag (GGBS), which is a consequence of coal powder com-
bustion in thermoelectric power plants [16]. When added
to concrete, GGBS causes a latent hydraulic reaction that
mends the pore configuration and makes the matrix denser,
both of which aid the cement’s hydration process. Over time,
this causes concrete’s porosity to decrease and its compres-
sive strength to increase. Cement hydrate mineralogy altera-
tions in concrete could lead to increased chloride binding
capabilities and elevated electrical resistivity [17,18]. Fly ash
concrete is believed to have reduced permeability due to a
combination of factors, including lower water quantity for
particular workability and a better pore configuration
brought about by the pozzolanic process. The pozzolanic
reaction has long-term effects, which become increasingly
noticeable in properly cured concrete as a result. Thus,
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another important aspect that affects the porosity of high-
performance concrete (HPC) is the curing state, which can
be either air or water [19]. In addition, superplasticizer (SP)
can help generate a denser pore structure while significantly
reducing the quantity of mixing water needed [20,21].

An analytical model of the formation of the complex
pore structure inside concrete can be hard due to differences
in concrete composition and the cement hydration process,
which is reliant on time [22]. One big problem is how little is
known about the hydraulic and pozzolanic reactivities of
slag and fly ash. Because SCMs can vary substantially in
chemical composition, it is very difficult to predict what pro-
portion of materials will be reactive. To forecast the chemical
makeup and volume of fly ash concrete, Papadakis put forth
a theoretical model [23,24]. All sorts of details are included in
the model, including the reactant and product molar weights
as well as the stoichiometry of the pozzolanic processes
involving the hydration of Portland cement and fly ash.
Unfortunately, the model does not take into account how
porosity changes over time since it presumes that Portland
cement and fly ash have fully hydrated and that all pozzo-
lanic processes have been completed. To foretell how the
degree of cement hydration will change over time, several
researchers have put forward statistical models [25]. One
way to monitor HPC’s chloride diffusion coefficient and por-
osity is with the use of the empirical cement hydration model
[26]. Using variables including fly ash percentage, micro
silica concentration, and water/binder ratio (w/b), Khan
[27] calculated the porosity of a concrete mixture at 28, 90,
and 180 days using multivariate regression. Because of this,
he was able to anticipate the permeability characteristics
of HPC by experimentation.

Accurate predictions of HPC’s mechanical qualities
and durability have been made using statistical machine
learning (ML) [28,29]. A recent example of ML’s use in the
concrete industry is the modeling of green concrete’s
mechanical and durability properties [30-33]. There is a
strong agreement between the projected values and the
concrete parameters measured experimentally, indicating
that ML is a viable method for simulating concrete with
complicated mixture compositions. The use of ML to fore-
cast concrete porosity, however, has received scant atten-
tion [10,34,35]. To predict the porosity, transport tortuosity,
and compressive strength of fly ash concrete, Boukhatem
et al. developed a neural network modeling framework
that takes into account the mix design components (aggre-
gates, binder, SP, and water), fly ash content, and age as
inputs [36]. Many ML-based techniques are being employed
by engineers and researchers, including support vector
machines, multi-expression programming (MEP), decision
trees, random forests, and gene expression programming
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(GEP) [37-39]. Furthermore, these methods can produce
accurate results. Additionally, civil engineers have trained
and utilized ML algorithms to create novel ultra-HPC, utilize
artificial neural networks to forecast the strength of fiber-
reinforced polymers, and ascertain the ultimate buckling
stress of composite cylinders with varying stiffness [40-42].
Thus, HPC can likewise benefit from ML modeling in its
design and development processes.

The aim of this study is to experimentally predict the
porosity (P) of HPC incorporating SCMs by applying MEP
and GEP. The first step was to compile a credible database
of 240 records detailing concrete porosity data from existing
literature. The effectiveness of ML algorithms was assessed
using a variety of measures, such as the R? coefficient,
statistical tests, and the dispersion of expected results.
Investigating the efficacy of ML techniques in reliably pro-
jecting material attributes was the driving force behind
this study [43,44]. Datasets are essential for ML approaches;
they can be created through exploratory experiments or
mined from preexisting databases. By examining this infor-
mation, ML algorithms may gain a more accurate under-
standing of the material’s qualities. Experimental data and
seven input criteria were used to evaluate the potential of ML
approaches to anticipate the P of HPC. Using SHapley Addi-
tive exPlanations (SHAP) analysis, the importance of the raw
ingredients was further explored. The newly collected fea-
tures and developed ML models could be used to improve
the existing SCM database or perhaps guide the design of HPC
mixes. To evaluate the data-driven method against the tradi-
tional chemo-mechanical model for porosity prediction in
concrete, the suggested case study might be used.

2 Methods of research

2.1 Collecting and analyzing data

Predicting the porosity (P) of the HPC was the goal of this
research, which employed MEP and GEP simulations in

Table 1: Numerical interpretations of a set of variables
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order to examine 240 data points collected from experi-
ment research [45-50]. This study predicted the P centered
on seven input factors such as GGBS, water-binder ratio
(WBR), binder (B), fly ash (FA), SP, aggregate ratio (AR), and
curing days (CD). The process of gathering and organizing
the data relied heavily on data preparation. Preparing
information for the purpose of data mining is a common
tactic in the popular knowledge discovery from data tech-
nique that helps to circuamvent a major hurdle. By removing
unnecessary features and noise, data preparation aims to
make the data easier to understand and work with. Several
descriptive statistics were computed using these data, and
their findings are shown in Table 1. The table includes the
mean value, median, mode, standard deviation, and range
of input and output parameters used in the database. It also
contains the minimum and maximum values of all the para-
meters used for modeling. The validity of the used models
has also been evaluated for their effectiveness [51]. The his-
tograms in Figure 2(a)-(h) display the frequency of distinct
parameters. A dataset’s total frequency distribution can be
described by integrating its component distributions. One
way to see how common certain values are in a dataset is
to look at their relative frequency distributions.

2.2 ML modeling

Through laboratory testing, the porosity (P) of HPC was
determined. P, the final product, has seven inputs that
went into its manufacturing. The use of advanced ML tech-
niques such as GEP and MEP allowed for the prediction of
HPC’s P. When applied to input data, ML algorithms often
yield evaluation results. ML model training consumed 70%
of the total data, whereas testing was carried out on 30% of
the data. Similar percentages of data split were identified
in the literature [52,53]. This model worked as expected
because the expected outcome had a high R? score. Dis-
parity is high when R* is small [54-56], whereas a big
number suggests that the predicted and actual outcomes

Statistical parameters WBR Binder (kg-m'3) Fly ash (%) GGBS (%) SP (%) AR (CA/FA) CDs P (%)
Mean value 0.48 369.94 0.15 0.04 0.00 1.7 89.36 10.36
Standard error 0.01 4.77 0.01 0.01 0.00 0.02 7.04 0.19
Median 0.50 350.00 0.05 0.00 0.00 1.72 28.00 10.33
Mode 0.50 350.00 0.00 0.00 0.00 2.00 28.00 10.30
Standard deviation 0.10 73.96 0.18 0.11 0.00 0.29 109.1 2.88
Range 0.35 296.00 0.67 0.40 0.02 0.81 364.00 15.65
Minimum 0.35 295.00 0.00 0.00 0.00 1.19 1.00 2.40
Maximum 0.70 591.00 0.67 0.40 0.02 2.00 365.00 18.05
Count 240.00 240.00 240.00 240.00 240.00 240.00 240.00 240.00
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Figure 2: Distribution of database input features by frequency: (a) WBR, (b) binder, (c) fly ash, (d) GGBS, (e) SP, (f) AR, (g) CDs, and (h) Porosity.
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Figure 3: An overview of the ML methodology.

are very congruent. Statistical tests and evaluations of mis-
takes were among the methods used to verify the techni-
que’s accuracy. A streamlined representation of the event
model is displayed in Figure 3. Table 2 displays the hyper-
parameter parameters used by the MEP model.

Table 2: Set of parameters for the MEP and GEP techniques
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2.2.1 GEP model

J. H. Holland created the genetic algorithm (GA) [43], out of
which Darwin’s theory of evolution emerged. The genomic
progression is considered complete when a succession of
GAs is observed, and continuously longer chromosomes
serve as a marker for this completion. This innovative
genetic algorithm technique is what Koza calls “genetic
programming” [57]. GAs are employed in generalized pro-
blem-solving (GP) to construct an evolutionary framework
[58]. Due to its ability to utilize nonlinear structures like
parse trees, GP is highly adaptable and can be used instead
of binary strings of constant length. In line with Darwin’s
theory, proven Al algorithms tackle issues connected to
facsimiles by leveraging genetic components that occur
naturally, such as procreation, overlap, and modification
[59-61]. In GP, a plan is made to eliminate wasteful pro-
grams from the next iteration. Replanting the area using
the chosen approach entails cutting down the unwanted
trees, precisely as in the earlier illustration. Conversely,
evolution safeguards early convergence [59,62]. Prior to
implementing the GP approach, five critical parameters
must be established, priority activities in the field, suitability
valuation, principal serviceable operators (including cross-
over and populace extent), and conclusions produced by

MEP GEP

Parameters Settings Parameters Settings

Number of runs 15 Genes 4

Operators/variables 0.5 Data type Floating number

Error MSE, MAE Function set +, =, X, ¥, square root

Function set +, —, %, +, square root General CrA

Problem type Regression Random chromosomes 0.0026

Replication number 15 Head size 8

Sub-population size 100 Gene recombination rate 0.00277

Mutation probability 0.01 IS transposition rate 0.00546

Number of treads 2 Lower bound -10

Cross over probability 0.9 Stumbling mutation 0.00141
One-point recombination rate 0.00277

Number of generations 500 RIS transposition rate 0.00546

Code length 40 Leaf mutation 0.00546

Number of sub-populations 50 Upper bound 10

Number of sub-populations 50 Linking function Addition

Terminal set Problem input Inversion rate 0.00546
Mutation rate 0.00138
Two-point recombination rate 0.00277

Constant per gene 10
Gene transposition rate 0.00277
Chromosomes 200
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technique-precise endpoints [59]. A crossover genetic pro-
cessor is responsible for most of the parse tree development,
even if GP’s model construction is repeated [47]. Nonlinear
GP forms make it more difficult for desirable qualities to
develop because they are both phenotype and genotype [62].

GEP is an alternative to the GP that Ferreira first
suggested [62]. The GEP model incorporates static-length
aligned genomes into parse trees, following the popula-
tion-generation hypothesis. GEP is an upgraded variant of
GP that uses basic, fixed-length chromosomes to encrypt
software of moderate size. One advantage of GEP is that it
may be used to create equations that can reliably predict
outcomes for complicated and nonlinear issues [63,64].
Like GP, it has a fitness function, parameters, and a final
set of conditions for termination. Although the GEP tech-
nique generates chromosomes with seemingly random
numbers, they are really identified as such before produc-
tion by means of the “Karva” dialectal. A line of constant
length is necessary for GEP to function. The data proces-
sing code in GP, on the other hand, shows parse trees of
different lengths. Each cord is characterized as a genome
with a fixed length, and its chromosomes are depicted by
nonlinear manifestation/parse trees with varying sizes of
pronged morphologies [59]. The genetic code of these gen-
otypes and a small number of additional phenol strains
are distinct from one another [62]. The GEP ensures that
the genome is preserved from one generation to another,
eliminating the need for costly structural mutations or
duplications.

In a typical chromosome, the “head” and the “tail” are
the two complementary regions. Amazingly, multi-gene
entities evolved from a single genome [59]. These genes
include the instructions for basic algebra, logic, and arith-
metic as well as Boolean calculations. A hereditary code
operator assigns a cell a specific function. One recently
discovered language, Karva, can infer the contents of these
chromosomes, which allows for the formulation of empirical
formulas. A change in power takes place after the ET, and
travel in Karva starts. By referring to Eq. (1), ET determines
where to place the nodes in the layer below [63]. The degree
and duration of GEP gene K-expression may be determined
by the total number of ETs.

ET GEP = log[i - %] )

As an advanced ML algorithm, the results of GEP are
independent of previous associations. A GEP mathematical
equation goes through a number of steps, as seen in
Figure 4. At birth, a person’s chromosome number remains
the same. After confirming that these chromosomes are ETs,
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comprehensive health examinations can be carried out. The
strongest and healthiest persons are given priority when it
comes to having children. Using the most capable people in an
iterative process leads to the best outcome. Mutation, cross-
over, and breeding are the three generations of genetic pro-
cesses that culminate in the final numerical manifestation.

2.2.2 MEP model

The MEP is a cutting-edge, exemplary linear-based GP
approach since it utilizes linear chromosomes. There is a
remarkable degree of software similarity between the MEP
and the GEP. Unlike its predecessor, the GP technique, MEP
may encode multiple software components (alternatives)
into a single chromosome. You can achieve your goal by
using fitness analysis to select the best chromosome [66,67]
According to Oltean and Grosan, this phenomenon occurs
when a bipolar scheme recombines to create two different
generations [68]. The process will continue running until
either the termination form is satisfied or the best program
is discovered, as shown in Figure 5. Mutations that impact
infants are listed below. A number of components can be
combined using the MEP model, just as in the GEP para-
digm. The length of the algorithm or code, the number of
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subpopulations, the number of functions, and the potential
of crossover are all essential criteria in MEP [51,69]. Assess-
ment gets more complex and time-consuming when the
population size is equal to the total number of packages.
Code length is another critical component that affects the
size of the produced mathematical expressions. According
to Table 2, a complete set of MEP parameters is required
for an accurate representation of rheological properties.
Literature datasets are heavily used in both approaches’
assessment and modeling stages [70,71]. When it comes to
predicting the properties of practical concrete, some experts
think that popular linear GP methods like the MEP and the
GEP are better. The optimal neural network-based approach
was found by Grosan and Abraham to be linguistic program-
ming combined with maximum likelihood estimation [72].
The GEP’s operation approach is slightly more complex than
the MEP’s [69]. Regardless that GEP has a higher density
than MEP [73], dissimilarities encompass the capacity to
reuse code in MEP, (i) the explicit encoding of function argu-
ment references in the MEP and (ii) the requirement that
non-coding components not be shown at a static point inside
the genes. It is commonly believed that the GEP chromo-
some has better competency due to the codes located at its
“head” and “tail” that facilitate the writing of syntactically

SCMs-based concrete porosity estimation using modeling approaches
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accurate software programs [68]. This necessitates a more
thorough evaluation of each of these genetic approaches to
engineering challenges.

2.3 Models validation

A test set was used for statistical testing of models that
were constructed using GEP and MEP. Each created model
had seven different statistical metrics computed [71,74-77]:
mean absolute percentage error (MAPE), Pearson’s corre-
lation coefficient (R), mean absolute error (MAE), relative
squared error (RSE), root mean square error (RMSE),
Nash-Sutcliffe efficiency (NSE), and relative root mean
square error (RRMSE). All of these statistical measures
have their formulations in Egs. (2)-(8).

Z?=1(ai - a)(p; - b

R = T n s (2)
\/mzel(l’i - b

1
MAE = —) |Pi - T, ®
nia

. — T2
RMSE = 1/zw, @

100%% |P; - T

MAPE = 277 s (5
z?=1(ai - p)?
RSE= o0—— -, (6)
2i(@ - ap)?
Z?=1(ai - Pi)z
NSE=1- o, @)
2i-1(a; - pi)z

n - 2
RRMSE = %,/—Zl:l(a’ P , ®)
|al n

where n is the total number of data points, a; and p; are
the ith actual and predicted values, respectively; a; also
represents the average actual and predicted values. The
relationship coefficient, abbreviated as R, is a common
way to measure a model’s projection power (a; and p;). A
high value of R indicates a robust relationship between the
predicted and actual output amounts [43,78,79]. Compo-
nent R’s value is independent of both divisibility and multi-
plication. When comparing the actual and expected results,
R* was computed since it offers a more accurate represen-
tation of the true value. A more effective method for con-
structing models is indicated by R* values that are closer to
1 [80,81]. Similarly, when confronted with progressively
more severe errors, both MAE and RMSE performed quite
well. Less significant errors result in higher performance
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from the generated model and MAE and RMSE that are
closer to zero [82,83]. However, upon closer inspection, it
became apparent that continuous and smooth databases
are where MAE truly excels [84]. When the values of the
errors computed above are smaller, the model often per-
forms better.

In conjunction with statistical validation, the Taylor
diagram is among the most useful tools for determining
a model’s predictive power. In order to determine which
models are more credible and accurate, the plots show
their divergence from the truth, which serves as the refer-
ence point [85,86]. Model placement is indicated by three
components: standard deviation (x- and y-axes), connec-
tion coefficient (outspread outlines), and RSME (circles
focused on the true value point). A reliable model is one
that consistently produces high-quality forecasts [18,85,87].

3 Results and discussion
3.1 P-GEP model

The GEP technique yielded ETs-based models that calcu-
lated porosity (P) by deducing mathematical correlations
based on chromosomal number and head size, as shown in
Figure 6. The numerical maneuvers (+, x, -, +, and square
root) are used to construct most of the sub-ETs in the HPC’s
P. What comes out of encrypting the GEP method’s sub-ETs
is an arithmetical formula. Estimating the future P of HPC
is possible using the input data and the yield value of these
equalities Egs. (9)-(13). With sufficient data, the produced
model surpasses an ideal model operating under perfect
circumstances. The solid blue line in Figure 7(a) depicts a
perfect fit to the data, and the dotted lines reflect the per-
cent deviation (20%) from the perfect match. This graphi-
cally shows the agreement between the experimental and
projected P. P values predicted by the GEP model and those
measured were very close. The GEP technique was quite
effective in determining the HPC P; it had an R?0f0.925 and
predicted 97% of the time inside the 20% threshold, indi-
cating significantly improved accuracy. Figure 7(b) shows
the absolute error plotted against experimental results to
show how far the GEP model could be from reality. The
results showed that the GEP equation’s predictions are
quite close to the experimental data, with an MAE of
0.590% and a range of 0.00-1.564%. The error values
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Figure 6: Model of the P-GEP expressed as an expression tree.
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spread out like a bell curve, as seen in Figure 8. Error
readings for 30 results were below 0.5%, 21 were between
0.5 and 1.0%, and 21 were over 1.0%. You should know that
maximal error frequencies are extremely rare.

P (%)=A+B+C+D, €)]

A = ((((FA x CD) x SP) + WBR) x 7.137) x AR),  (10)
J((B + CD) - 9.829 x AR)

= 11

B JAR - 4128 ’ av

C=((((§x —5184) - (-2.681x 8)) x ((-5.184 x S) 12

- FA)) + 2.189),
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Figure 8: Violin plot for the GEP model’s error distribution.

D = ((((CD + FA)x FA)x(8.161 x DA))
— ((FA + S) + (-9.823 + FA))),

13

where WBR is the water binder ratio, B is the binder, FA is
the fly ash, S is the GGBS, SP is the superplasticizer, AR is
the aggregate ratio, and CD is the curing days.

3.2 P-MEP model

To find the P of HPC, an empirical formula was established
after examining the MEP findings to consider the effect of
the seven autonomous constituents. The last set of sculpted
calculated equations is shown in Eq. (14).

P(%) = (AR + WBRYB - SP — WBR x S x CD
- SP((2</B - SP + 2/CD
- BxFA x AR)(WBRYB - SP

SP x BxFA x AR S+ CD _ @ 0
- X X X - -

2 B+ S§xCD
+ S(WBR x §Sx CS + 2SP(2+/B — SP + 24/CD

- Bx AR x CD)),

where WBR is the water binder ratio, B is the binder, FA is
the fly ash, S is the GGBS, SP is the superplasticizer, AR is
the aggregate ratio, and CD is the curing days.

Figure 9(a) shows that the MEP model can handle over-
simplification and is well-trained thanks to its R* value of
0.971. Furthermore, it performs adequately on new, untested
data. The P-MEP model outperforms the P-GEP model in
terms of accuracy, as evidenced by its higher R* value. A
perfect fit to the data is depicted by the solid blue line in
Figure 9(a), whereas the dotted lines show the percent
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Figure 9: The P-MEP method entails: (a) a correlation between the
anticipated and tested P-value and (b) a distribution of the expected and

tested P-values, along with all errors.
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Figure 10: Violin plot for the MEP model’s error distribution.

model decreases the correlation coefficient and standard
deviations of the errors, as demonstrated in Figure 10’s
violin plot. Because of its simplicity and generalizability,
the MEP equation sees extensive use. With a higher correla-
tion coefficient and lower error levels, in comparison to the
GEP model, the MEP model seems to be more effective.

3.3 Validation of the models

Using the previously mentioned Egs. (2)-(8), the following
efficiency and error metrics were calculated: RRMSE, NSE,
R, MAE, RSE, and RMSE. The results of these computations
are presented in Table 3. Improving the accuracy of pre-
dictions is demonstrated by decreasing the error values of
the models. The equivalent P-MEP model has an MAE value
of only 0.348%, a considerable decrease from the 0.591%
found for the P-GEP model. In contrast, the similar P-MEP
model saw a significant decrease in the MAPE value from
6.10% in the P-GEP model to 3.80%. The trend was also

deviation (20%) from that line. The measured values of P
were quite close to the predictions of the MEP model. The
MEP approach was used to efficiently identify the P of HPC.
Its predictions were within the 20% threshold 99% of the
time, indicating very good accuracy. The outcomes of a com-
parison of the target and actual values, as calculated in MEP
simulations, are shown in Figure 9(b). The data showed that
the MEP forecast had a marginal error of 0.348% on average
and ranged from 0.021 to 2.145%. The overall error rates
were below 1.5%, with 59 error values being less than
0.05%, 19 between 0.05 and 1.0%, and just 2 larger than
1.0%. When comparing the two models, the MEP model pre-
dicts extreme values better than the GEP model. The MEP

observed when looking at other error-based statistical

Table 3: Findings obtained through statistical analysis

Property CrA-GEP CrA-MEP
MAE (%) 0.591 0.348
MAPE (%) 6.10 3.80
RMSE (%) 0.745 0.469

R 0.962 0.986
RSE (%) 0.244 0.346
NSE 0.923 0.971
RRMSE (%) 0.626 0.512
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Figure 11: Taylor diagram for the models’ validation.

measures including RRMSE, RSE, and RMSE. The produced
models were not only validated based on errors but also
assessed for efficiency using two metrics: Pearson’s coeffi-
cient (R) and NSE. The accuracy of a model’s predictions is
directly proportional to its efficiency rating. The NSE value
rose to 0.971 in the similar P-MEP model, compared to 0.923
in the P-GEP model. Applying Pearson’s coefficient (R) to
the produced models produced similar outcomes. A Taylor
diagram comparing the built forecasting models GEP and
MEP is shown in Figure 11. The MEP technique seems to be
substantially more in line with the experimental line when
predicting the P of HPC, in contrast to the GEP model. Due
to its high efficiency, small standard deviation, low error,
and high R% the MEP technique has the best ML-centered
strategy for predicting the P of HPC.

o & o0

Binder oo .
Curing days
WBR
Superplasticizer
Aggregate Ratio
Fly Ash

GGBS
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3.4 SHAP analysis findings

The influence of different raw constituents on the P of HPC
was explored. From one dataset to another, the SHAP tree
interpreter is employed to provide further details regarding
the local SHAP explanations and the overall feature effects.
The results of the violin SHAP graph for each raw material
and their effect on the P of HPC are displayed in Figure 12.
The x-axis SHAP value shows the relative contribution of
each raw ingredient, and the graph employs different
hues to indicate the different factors. According to the
SHAP analysis plot in Figure 12, there was a positive cor-
relation between the input binder and WBR with the P of
HPC. This is seen by the higher-intensity red dots on the
positive side of the plot compared to the lower-intensity
blue dots on the negative side. It clearly illustrates that
increasing the binder and WBR values after a certain limit
will result in the increase in P in HPC. The SHAP study
confirms the same relationship between binder and WBR
with porosity as previous research in the same field [88].
Figure 12’s SHAP analysis plot further demonstrates that,
as seen by the red dots on the positive side of the plot
and the lower intensity of the blue dots on the negative
side, the porosity was positively and directly correlated
with the CDs and AR. Moreover, the link between the SP,
FA, and slag with porosity is more indirect, as more dots
can be observed on the negative side of the plot, which
implies that increasing the content of these variables
will result in a decrease in the P of HPC. It is important
to note that these findings rely on inputs and size of the
database utilized in this study. By changing the input
parameters and data points, diverse results may be
obtained.
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Figure 12: The significance and impact of input elements are suggested by the SHAP plot.
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4 Discussion

To compare the findings of the current study, Table 4 has
been constructed. Several previous studies that used GEP
and MEP tools to estimate the various properties of building
materials have been listed in the table. It was identified that
the findings of the other researchers were also in line with
the present study results, i.e., MEP models exhibited
superior predictability than GEP models. The GEP and
MEP models used in this study have the benefit of being
HPC-specific predictions because they can only be fed data
from a small set of seven factors. All the models use the
same unit measurements and testing procedure; therefore,
their predictions for P are trustworthy. A deeper under-
standing of the mix design and the effect of each input
parameter can be achieved by incorporating mathematical
equations into the models. If more than seven parameters

DE GRUYTER

are included in the composite analysis, it can render the
predicted models useless. Models trained using data that
are drastically different from their target application may
fail to deliver expected outcomes. The models’ predictive
capabilities could be compromised if the units of the input
parameters were changed or stored inconsistently. The
models cannot function unless the unit sizes are constant.
Forecasting material strength, ensuring quality, evaluating
risk, performing predictive maintenance, and enhancing
energy efficiency are just a few of the many applications
of ML-based models in the construction industry. On the
other hand, there are certain problems with these models.
For instance, they aren’t always accurate, they use inaccu-
rate data, and they heavily depend on human input. Future
research could look into ways to improve ML-based solu-
tions and overcome these limitations. Some ideas include
incorporating IoT devices, creating hybrid models, using

Table 4: List of previous studies that used GEP and MEP methods and comparison with present study results

Ref. Type of material Material property predicted Value of R? obtained
GEP MEP
Current study HPC Porosity 0.92 0.97
[89] Eggshell and glass-based concrete Water absorption 0.88 0.90
[90] Metakaolin-based concrete Compressive strength 0.91 0.96
[91] Alkali-activated concrete Compressive strength 0.89 0.93
[91] Alkali-activated concrete Slump 0.86 0.92
[92] Plastic sand paver block Compressive strength 0.87 0.91
[65] Rice husk ash concrete Compressive strength 0.83 0.89
[93] Alkali-activated materials Compressive strength 0.82 0.86

Traffic
management

Optimize traffic glow,
predict congestion etc.

Quality control

Monitor and control
of material’s quality.

Energy efficiency @

Optimizing heating,
air conditioning etc.

Urban Planning

Analysis of demographic data,
and traffic patterns etc.

Figure 13: ML applications in civil engineering.

Structure health
assessment

Analysis of sensor data

Predictive
maintenance

Predictive models
for roads, building etc.

Construction
management

Scheduling, resource
allocations etc.

Geotechnical
engineering

Sub-surface conditions,
foundation designs etc.
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explainable Al techniques, considering sustainability, and
customizing data generation and distribution for specific
industries. The construction business stands to benefit
momentously from these technological advancements,
which could lead to fewer project delays, higher levels
of safety, and more sustainable practices by improving
efficiency, interpretability, transparency, and informed
decision-making. This study’s results have the potential
to encourage more sustainable building practices by
increasing the use of HPC in the construction sector.
Figure 13 displays the applications of ML in the field of
engineering.

5 Conclusion

In this study, prediction models were built for HPC’s por-
osity using MEP and GEP. A total of 240 data samples were
obtained for HPC’s porosity from the related experimental
studies. The generated dataset was used for training, testing,
and model validation. The primary findings of the study are
as follows:

» The porosity of HPC was adequately estimated by the
GEP approach (R* = 0.925), whereas the MEP method
demonstrated greater precision (R* = 0.971).

» For GEP, the average discrepancy between actual and
predicted porosity (errors) was 0.590%, whereas for
MEP, it was 0.348%. The MEP method provided a more
accurate prediction of HPC’s porosity, and the error rates
confirmed the reasonable accuracy of the GEP model.

» The models’ efficacy has been validated statistically. ML

models have decreased errors and enhanced R In con-

trast to the MEP model’s 3.80% MAPE, the GEP model was

6.10%. Whereas the GEP model had an RMSE of 0.745%,

the MEP model had 0.469%. Additional domains of model

performance validation were bolstered by these decisions.

SHAP analysis showed that the relation of binder, WBR,

CDs, and aggregates ratio with the porosity of HPC is

direct (positive), which means that increasing the con-

tent of these input variables would result in an increase
in porosity. Whereas, the relation of SP, fly ash, and

GGBS as per the SHAP analysis was more in-direct.

The factor that makes GEP and MEP so crucial for
feature prediction in other databases is the unique math-
ematical expression they provide. Quickly evaluating,
improving, and rationalizing the proportioning of concrete
mixtures is possible with the mathematical models that
scientists and engineers can apply to this work. The built
prediction models for the porosity of concrete may aid

SCMs-based concrete porosity estimation using modeling approaches
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academics and the building sector in making quick predic-
tions and mix design optimization of concrete.
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