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Abstract: The construction sector has been under growing
public attention recently as one of the leading causes of
climate change and its detrimental effects on local commu-
nities. In this regard, geopolymer concrete (GPC) has been
proposed as a replacement for conventional concrete.
Predicting the concrete’s strength before pouring is, there-
fore, quite useful. The mechanical strength of slag and
corncob ash (SCA–GPC), a GPC made from slag and corncob
ash, was predicted utilizing multi-expression programming
(MEP). Modeling parameters’ relative importance was deter-
mined using sensitivity analysis. When estimating the com-
pressive, flexural, and split tensile strengths of SCA–GPC
with MEP, 0.95, 0.93, and 0.92 R2-values were noted between
the target and predicted results. The developed models were
validated using statistical tests for error and efficiency. The
sensitivity analysis revealed that within the mix propor-
tions, the slag quantity (65%), curing age (25%), and fine

aggregate (3.30%) quantity significantly influenced the
mechanical strength of SCA–GPC. The MEP models result
in distinct empirical equations for the strength characteris-
tics of SCA–GPC, unlike Python-based models, which might
aid industry and researchers worldwide in determining
optimal mix design proportions, thus eliminating unneeded
test repetitions in the laboratory.

Keywords: geopolymer concrete, corncob ash, mechanical
strength

1 Introduction

Over time, the environmental impact of concrete’s lengthy
history as a key construction material has come into focus
[1]. The global demand for cement and concrete is pre-
dicted to triple by 2050, which will increase carbon emis-
sions and hasten the loss of biodiversity [2]. Researchers
have been trying to develop new binders to replace Port-
land cement (PC) because of its high energy and carbon
footprint [2]. The primary binding component in concrete,
PC, is made using around 1.7 tons of raw ingredients and
0.8 tons of carbon dioxide [3]. In light of this, immediate
action is necessary to mitigate the effect of cement produc-
tion on climate change [2]. Scientific and technological
advancements have made it possible to recycle agricultural
and industrial waste into new construction materials, which
contributes to material sustainability [4–6]. Supplementary
cementitious materials made from recycled agricultural and
industrial waste have positive effects on the environment,
the economy, and society as a whole [7–9]. Substituting
reused products for PC is an effective, cost-effective, and
sustainable way to lessen one’s impact on the environment
[10–12].

An eco-friendly alternative to traditional concrete, geopo-
lymer concrete (GPC) uses recycled agricultural and industrial
materials in place of cement as a binder [13–15]. Geopolymer-
ization indicates that the utilization of alkali silicate/alkali
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hydroxide is involved in the initiation of raw materials
grounded on aluminosilicate [16]. Aluminate and silicate
species are released as a result of the source materials’ dis-
solution and de-polymerization during this process. The spe-
cies undergo reorganization and polymerization, eventually
creating a network of geopolymer in three dimensions. As
time passes, the resultant gel hardens, adding to the mate-
rial’s durability [17]. Fly ash (FAS), silica fume, metakaolin
(MK), red mud, ground granulated blast furnace slag (GGBFS),
and rice husk ash (RHA) are only a few of the many examples
of recycled agricultural and industrial materials that show
promise as geopolymer (aluminosilicate) precursors [18–27].
As an alternative to GPC, GGBFS’s reasonable cost-benefit and
low environmental impact make it a promising component of
eco-friendly and cost-effective concrete [28,29], augmented
stiffness [30], and great opposition to chemical attacks
[31,32]. However, CCA is a relatively new ingredient. Due to its
increased silica concentration, CCA can be used in place of or in
addition to traditional pozzolanic materials such as FAS and
RHA. Sustainable infrastructure projects use geopolymer-stabi-
lized road bases [33]. This technology increases road strength
and durability, minimizing maintenance and increasing life-
span [34]. Geopolymer technology is widely used to build
strong, eco-friendly transportation networks. Researchers are
looking toward making this green concrete at room tempera-
ture in order to avoid the problems associated with using GPC
that have been baked in an oven on-site. Understanding that
meeting strength standards is not the only criterion for evalu-
ating performance is also crucial. Resistance to environmental
and other pressures should be considered when estimating a
building’s service life. One possible alternative to traditional
concrete for environmentally sensitive places is GPC, which
provides longer life and stronger mechanical characteristics
[31]. The aforesaid sources all agree that GPC’s superior dur-
ability and mechanical capabilities can be attributed to the
material’s distinct chemical composition [23,35,36]. In recent
years, GPC’s performance has increased because of the use
of nano-silica and recycled plastic particles [37–39].

Engineers, scientists, researchers, and computer pro-
grammers are finding that artificial intelligence (AI) greatly
influences their work in developing new products and

improving existing ones. Researchers who are able to apply
AI to their regular work are in high demand to answer a
wide range of difficulties facing the engineering industry.
Despite the promising future of AI-based systems, several
drawbacks and performance worries remain. They had a
hard time with things that humans take for granted, such
as recognizing objects and following conversations [40].
Because of this, current AI has a hard time coming up
with adequate alternatives for teaching computer intuition.
Machine learning (ML) has been employed by AI systems as
a means of addressing these concerns [40,41]. ML algorithms
allow computers to acquire the knowledge they need to
perform an action by inspecting a sufficiently big data col-
lection [42,43]. Prior to implementing the strategy, it is neces-
sary to reclaim the characteristics that best characterize the
most precise data. The phrase “feature extraction” is used to
characterize this technique. Then, the sample data, attri-
butes, and pattern separation instructions are trained using
ML [40,44,45]. Modern research in civil engineering must
incorporate statistical methods and AIAI to tackle increas-
ingly complex challenges. One popular use of AI and statis-
tical approaches in civil engineering is to forecast concrete’s
compressive strength (CS) [1,20,46,47]. Some of the more
challenging problems that have been addressed with these
methods include the prediction of chloride penetration, the
shear behavior of beams, the axial behavior of various col-
umns, and the strength and slump of self-compacting concrete
[48–51]. Future studies can benefit from these predictions
since they limit the number of potential test configurations,
which in turn makes them shorter and cheaper. Many ML
methods, such as gene expression programmings (GEPs), arti-
ficial neural networks (ANNs), decision trees (DTs), boosting,
gaussian process regressions, regression trees, expression
trees, support vector machines (SVMs), and MEPs, can be
used to predict concrete strength [52–54]. The mechanical
properties were forecasted employing the MEP approach,
which is one of the highly accurate ML methods. Prior
ML-based relevant research work is provided in Table 1.

In this study, the mechanical strength of GPC made
from slag and corncob ash (SCA–GPC) was predicted using
AI techniques based on experimental results. The objectives of

Table 1: ML-based literature study

Ref. Materials studied Properties predicted ML method employed

[55] Fiber-reinforced concrete Ultrasonic pulse velocity Gradient boosting extreme gradient boosting.
[56] ordinary portland cement–concrete CS SVM and ANN
[57] Wood ash–cement–nano TiO2-based mortar Mechanical properties ANN
[58] Phosphoric acid slurry Dynamic viscosity ANN, DT, and random forest (RF)
[59] Lightweight geopolymer mortar CS GEP
[60] MK-based concrete Mechanical properties GEP and MEP
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the study were achieved by employing the multi-expression
programming (MEP) method. The MEP approach was opted
for because it provides empirical equation-based models that
can be implemented worldwide in potential future mix design
formulations. Running statistical tests and comparing the
modeled and observed results allowed for an assessment of
the models’ approximative correctness. Experiments are labor
and resource-intensive because of the complexities inherent
in their techniques as they involve obtaining the required
materials, casting the samples, curing them to increase their
strength, and finally evaluating them. Applying state-of-the-
art modeling techniques, such as ML, to the building industry
could substantially aid in mitigating these issues. The com-
bined impact of themany parameters on SCA–GPC strength is
very difficult to detect using conventional testing methods. In
this study, sensitivity analysis was employed to look at the
relative significance of different variables. The information
that ML techniques need can be gathered from previous
studies. That means that the dataset can be utilized in ML
procedure runs, estimates of material properties, and inves-
tigations of impacts. The effectiveness of the MEP method for
forecasting SCA–GPC strength was verified in this article by
using an experimental dataset. The outcomes of this study
have the potential to influence sustainable building methods
and increase GPC’s adaptability in the construction industry.

2 Investigation methods

2.1 Gathering data and evaluation

This study sought to forecast the CS, flexural strength (FS),
and split-tensile strength (STS) of SCA–GPC, a GPC made
from slag and corncob ash (CCA), using MEP models [47].
A grand total of 260 data points were produced by the
experimental investigation. The anticipated STS, FS, and
CS of SCA–GPC were established on the following 10 input
factors: CCA, molar concentration (MC), fine aggregate (FA),
blast furnace slag (BFS), sodium hydroxide pellets (SHP),
coarse aggregate (CA), curing day (CD), sodium silicate gel
(SSG), water (W), and concrete grade (CG). In order to gather
and arrange the data, data preparation was employed. It
is common practice to employ data preparation for data
mining in order to circumvent a major roadblock while
attempting the recognized method of information finding
from data. Cleaning the data of noise and unnecessary details
is what data preparation is all about. The outcomes of
numerous descriptive statistics that were computed with
these data are presented in Table 2. The accuracy of the
models used was also evaluated through validation. TheTa
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Figure 1: Statistical dissemination of dataset parameters.
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graphs in Figure 1 demonstrate the distributions of the
values’ frequencies. Just by adding together the distributions
of all the pieces of a dataset, you may determine its overall
frequency distribution. By creating a relative frequency dis-
tribution, one may observe the frequency with which parti-
cular values occur.

Input data distribution and patterns are known to affect
the prediction model. Figure 1 shows the resulting distribu-
tion of frequencies of the supplied dataset. The graph below
shows that the input data frequencies are relatively high,
and the distribution is not uniform, suggesting that the

models can be used for more varied data. In addition,
Table 2 provides a variety of statistical values for data to
shed light on the database. These tables display information
about the input data, such as its distribution (standard
deviation and variance), mean, extreme, and pattern (kur-
tosis and skewness). Skewness was used to check the sym-
metry of the data, and everything was fine there because all
the research variables were within the optimal range of 3 to
+3. A measure of the distribution’s peakedness or flatness
called kurtosis was also employed [61]. All of the model
variables’ kurtosis values fell within the acceptable range
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of 10 to +10, indicating a well-shaped distribution and
avoiding drastic outliers [62,63].

2.2 ML simulations

In a controlled laboratory setting, the mechanical charac-
teristics of SCA–GPC were investigated. The production of
STS, FS, and CS requires the incorporation of ten distinct
ingredients. A cutting-edge ML technique called MEP was
used to forecast the SCA–GPC’s STS, FS, and CS. The pri-
mary use case for ML algorithms is the comparison of out-
puts to inputs. 70% percent of the data was utilized to train
ML models, whereas just 30% of it was used for testing. In
order to train the model to learn patterns on most of the
data and then assess its generalization performance on an
independent set, the data split is a crucial step in evalu-
ating ML models. To avoid over-fitting to the training set
and get a good idea of the model’s predictive skills, this split
is useful for testing how it does on unknown data. A similar
data-splitting approach has been adopted by other scholars in
comparable nature studies [64–66]. The R2 score of the pre-
dicted result demonstrated the reliability of the model. The R2

number indicates how well the actual results match the pre-
dictions; a low value indicates a large mismatch [67]. The
accuracy of the model was confirmed by multiple analyses,
including statistical analyses and error checks. Figure 2 shows
a streamlined illustration of an event model. Table 3 displays
the values of the hyper-parameters used by the MEP model.
The selection of a fitness function, the representation of

programs as linear chromosomes, and the use of evolutionary
operators, including mutation, crossover, and selection, are
all important requirements in MEP. Important parameters
that affect the model are the length of the algorithm or
code and the number of subpopulations. Themodel’s capacity
to grasp complex relationships in the data is influenced by the
complexity and expressive power of the evolved programs,
which are, in turn, affected by the number of subpopulations
and the diversity of the population, both of which affect the
exploration–exploitation trade-offs.

Symbolic mathematical expressions are generated by
MEP, an evolutionary computation technique, in the

Dataset sample 
development

Application of 
machine learning 

methods
Model’s validation SHAP analysis

Data sample 
development 

from the 
literature.

Descriptive statistic 
analysis of input and 
output parameters.

Multi Expression 
Programming 

(MEP) 

Difference between actual 
and predicted results 

(errors) and coefficient of 
determination (R2)

  Statistical checks: 
  MAE, MAPE, and RMSE 

etc.

Impact of input 
parameters

Interaction 
between input 

parameters

Figure 2: Diagram for a ML-based investigation.

Table 3: Details for MEP models defined

MEP

Factors Settings

Terminal set Problem input
Number of generations 500
Problem type Regression
Number of treads 2
Number of runs 15
Function set Square root, +, −, ×, ÷
Error MSE, MAE
Mutation probability 0.01
Subpopulation size 100
Replication number 15
Code length 50
Number of subpopulations 50
Operators/variables 0.5
Crossover probability 0.9
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context of GPC mechanical property prediction. Finding
the optimal program to describe the link between input
parameters and CS is the goal of MEP, which is accom-
plished through an iterative process of creating mathema-
tical programs within a population. There are evolutionary
operators that direct population refinement and a fitness
function that assesses how well each program approxi-
mates observations of mechanical property values. Using
the input parameters, the MEP-generated model predicts
the mechanical properties of GPC by extracting the best-
performing mathematical expression. The size and com-
plexity of MEP mathematical expressions depend on code
length. Longer codes allow more complex expressions,
which may capture data relationships. Table 3 lists the
parameters, including generations, population size, subpo-
pulations, and code length set for optimized MEP models.
They affect the algorithm’s capacity to evolve correct math-
ematical representations of mechanical features.

2.2.1 MEP model

The MEP is a state-of-the-art, demonstrative linear-based
GP method because of its usage of linear chromosomes.
Differentiating MEP from other, more recent variants of
the GP method is its ability to encode numerous bits of
software (alternatives) into a single chromosome. The
result is reached by employing fitness analysis to pick
the optimal chromosome [68,69]. According to Oltean and
Grosan, this happens when a bipolar system recombines to
form two new offspring, with each offspring choosing one
parent [70]. As shown in Figure 3, the procedure will con-
tinue until the optimal program is found prior to the ter-
mination condition. Fitness analysis is crucial in MEP for
evaluating evolved mathematical expressions for dataset fit-
ting. The fitness function determines the best chromosomes
for reproduction by measuring the difference between a pro-
gram’s output and its target outputs. MEP favors fit programs
through selection, crossover, and mutation. Iteratively, the
algorithm stops when it reaches a fitness level, a number of
generations, or limited improvement, guaranteeing it stops
within restrictions. Mutations in MEP arise during evolution
and modify linear chromosomal elements. Small chromo-
somal program mutations increase genetic diversity in the
population. Mutations begin early in the MEP optimization
process, enabling for unique solutions and impacting future
generations’ genetic material. Mutations improve the algo-
rithm’s solution space search and fitness landscape adapta-
tion. Similar to the otherML paradigms, theMEPmodel allows
for the combination of different parts. In MEP, some of the
criteria that matter include the number of subpopulations, the

length of the algorithm/code, the probability of crossover,
and the number of functions [71]. Assessing the population
becomes more challenging and time-consuming when the
population size is the whole number of packages. Also sig-
nificantly impacted by code length is the size of the pro-
duced mathematical expressions. See Table 3 for the full
list of MEP parameters needed to build a trustworthy rheo-
logical property model.

Using literature datasets is commonplace in the MEP
method’s evaluation and modeling stages [72,73]. Popular
linear GP methodologies like the MEP are deemed by some
scholars to be superior for predicting the properties of
viable concrete. Linear genomic programming, in conjunc-
tion with maximum-likelihood estimation, was determined
by Grosan and Abraham to be the most effective neural
network-based strategy [74]. The GEP’s method of opera-
tion is marginally more intricate than that of the MEP [71].
Notwithstanding MEP’s reduced density compared to GEP,
there are a few key differences: (i) MEP explicitly encodes
function argument references; (ii) non-coding components
are not required to be exhibited at a set point contained by

Start

Creation of chromosomes 
population

Selection of two parents 
(Binary tournament procedure)

Production of off-springs

Fitness evaluation

End

Terminate

Yes

No

Figure 3: MEP procedure’s method flowchart [76].
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the chromosomes; and (iii) MEP allows code re-process
[75]. The signs located at the “tail” and “head” of a normal
GEP gene make it easy to write syntactically accurate soft-
ware programs, which leads many to believe that the GEP
has superior capabilities [70]. This necessitates a more
thorough evaluation of each of these genetic approaches
to engineering challenges.

2.3 Authentication of MEP simulations

Models constructed using MEP were tested for statistical
validity against a test dataset. The three outputs were eval-
uated employing (7) distinct statistical techniques [73,77–80]:
Nash–Sutcliffe efficiency (NSE), root mean square error
(RMSE), mean absolute error (MAE), relative root mean
square error (RRMSE), relative squared error (RSE), mean
absolute percentage error (MAPE), and Pearson’s correla-
tion coefficient (R). Eqs. (1)–(7) provide the formulas for
various statistical metrics:
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where n is the whole set of numerical values; ai and p
i
are

the ith actual and predicted values, correspondingly; and ai

and p
i
are the average actual and predicted values, respec-

tively. Usually, the correlation coefficient (R) is used to
quantify the prediction power of a model. The correlation
between observed and predicted output quantities is high
when R is greater than 0.8 [81]. Component R’s value, how-
ever, remains unchanged when multiplied or divided. R2

gives a better approximation of the real value since it was
computed between the predicted and observed outcomes.

The values of R2 that are closer to 1 indicate that the model
was more effectively built [82,83]. Both MAE and RMSE
fared exceptionally well when confronted with progres-
sively more severe mistakes. MAE is the average absolute
difference between anticipated and actual values, while
RMSE squares these differences, weighting bigger errors.
MAE is more effective when big mistakes are not punished,
but RMSE is more susceptible to outliers due to the squaring
effect. They show how error size affects model performance:
greater errors increase RMSE, making it ideal for scenarios
where minimizing large errors is critical. When errors are
few, the constructed model works better, and the mean
absolute error and RMSE get close to zero [84,85]. The
most effective datasets for MAE, according to subsequent
research, are continuous and smooth [86]. Typically, the
model’s performance improves as the values of the previous
errors decrease.

3 Results and appraisal

3.1 MEP models

3.1.1 CS MEP model

The evolutionary process of MEP yields the empirical for-
mula for GPC CS calculation. The program investigates
mathematical expressions involving GPC’s ten components
such as material kind and proportion. MEP optimizes coef-
ficients and constituent connections to forecast CS using a
symbolic formula that best fits the data. To improve the
formula, fitness evaluation, selection, crossover, and muta-
tion are used. The empirical formula is a mathematical
model of the complicated concrete constituent-CS relation-
ship. The following equation represents the final model
equation:
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where CCA represents corncob ash, SSG represents the
Na2SiO3 gel, BFS represents the blast furnace slag, W
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represents the water; SHP denotes the NaOH pellets, CG
represents the concrete grade, CA represents the coarse
aggregate, CD denotes the curing day, MC represents the
molar concentration, and FA denotes the fine aggregate.

In addition to successfully handling oversimplification,
the MEP model exhibits good performance on new, untested
data, as seen in Figure 4(a). Well-trained MEP models have
learned complex data linkages to capture problem nuances.

The model must prevent overfitting and generalize well to
new data, but it must also handle oversimplification. This
balance shows the MEP model’s ability to handle complexity
without becoming too complicated to anticipate real-world
outcomes. This model has an R2 value of 0.956. The CS-MEP
model predicts the CS of SCA–GPC more accurately, which is
why it has a higher R2 value. Figure 4(b) shows the results of
some MEP simulations that look at the absolute discrepancies
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Figure 4: CS-MEP model in SCA-GPC: (a) the relationship between assessed and predicted CS and (b) the dispersion of errors in assessed and
forecasted CS.
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between the actual and ideal values. Examining absolute dif-
ferences shows how significantly MEP forecasts diverge from
actual values on average. A smaller absolute difference indi-
cates amore accurate forecast, whereas greater discrepancies
indicate a wider error range, demonstrating the MEP model’s
dispersion and reliability. Based on the information provided,
the MEP forecast error might be anywhere from 0.04 to
7.13MPa. In addition, the standard deviation of the errors

was less than 1.79MPa, with 34 of the readings being less
than 1MPa, 36 being between 1 and 3MPa, and 16 being
greater than 3MPa. Using theMEP equation reduces the error
standard deviations and the degree of correlation (R2). The
MEP equation is often used because of its simplicity and
versatility. It would appear that the MEP model is among
the best ML prediction models due to its high correlation
coefficient and low error rates.
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Figure 5: FS-MEP model in SCA-GPC: (a) the relationship between assessed and predicted FS and (b) the dispersion of errors in assessed and
forecasted FS.
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3.1.2 FS MEP model

The empirical formula for GPC FS calculation comes from
MEP evolution. This application examines mathematical
formulas involving GPC’s ten components, including mate-
rial kind and proportion. For FS prediction, MEP optimizes

coefficients and constituent links using a symbolic formula
that matches data. Fitness evaluation, selection, crossover,
and mutation improve the formula. The complex concrete
constituent–FS relationship is mathematically modeled by
the empirical formula. The following equation displays the
final model equations:
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Figure 6: STS-MEP model in SCA-GPC: (a) the relationship between assessed and predicted STS and (b) the dispersion of errors in assessed and
forecasted STS.
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where CCA represents the corncob ash, SSG represents
the Na2SiO3 gel, BFS represents the blast furnace slag, W
represents the water, SHP represents the NaOH pellets, CG
represents the concrete grade, CA represents the coarse
aggregate, CD denotes the curing day, MC denotes the
molar concentration, and FA denotes the fine aggregate.

As seen in Figure 5(a), the MEP model handles over-
simplification and fresh, untested data well. Well-trained
MEP models capture problem nuances with extensive data
linkages. While preventing over-fitting and generalizing to
new data, the model must also handle oversimplification.
This balance indicates the MEP model’s capacity to handle
complexity without making it too difficult to predict real-
world outcomes. The model’s R2 value is 0.932. The FS-MEP
model, like the CS-MEP model, has a high R2 value, which
means it predicts the FS of SCA–GPC quite accurately. The
utter inconsistencies between the goal and observed values
are inspected and shown in Figure 5(b) using MEP simula-
tions. The absolute differences show how far MEP predic-
tions deviate from actual values on average. The MEP
model’s predictions are dispersed and reliable, with smaller
absolute differences indicating a more accurate forecast and
larger differences indicating a wider error range. Based on
the data provided, the predicted MEP values fell somewhere
between 0.0016 and 0.710MPa. Moreover, the average error
value was less than 0.199MPa due to the following: 23 read-
ings below 0.1 MPa, 43 values between 0.1 and 0.3 MPa,
and 20 values beyond 0.3 MPa. Both the CS and FS models’
standard deviations of errors and coefficient of correla-
tion (R2) were significantly reduced when the MEP equa-
tions were used.

3.1.3 STS MEP model

MEP evolution produces the empirical formula for GPC STS
calculation. The tool examines GPC’s ten components, including
material kind and proportion, in mathematical terms. A data-
fitting symbolic formula optimizes coefficients and con-
stituent connections to forecast STS in MEP. Crossover,
mutation, fitness measurement, and selection improve
the formula. The empirical formula represents the com-
plex concrete constituent–STS relationship mathemati-
cally. The following equation provides the mathematical
equation for the STS model:
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( )
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− − +

−
− +

+
− + − +

STS MPa

CCA 1 FA CA CG

CD

2MC

CG W 1

CD

SHP 1 BFS FA CA CG

,

(10)

where CCA denotes the corncob ash, SSG denotes the
Na2SiO3 gel, BFS denotes the blast furnace slag, W denotes
the water, SHP denotes the NaOH pellets, CG denotes the
concrete grade, CA denotes the coarse aggregate, CD repre-
sents the curing day, MC represents the molar concentra-
tion, and FA represents the fine aggregate.

Figure 6(a) shows that the MEP model handles over-
simplification and fresh, untested data well. Highly trained
MEP models capture problem nuances through compli-
cated data linkages. The model must manage oversimplifi-
cation, over-fitting, and generalization to new data. In this
equilibrium, the MEP model handles complexity without
being too sophisticated to predict real-world outcomes.
With an R2 value similar to both the CS and FS-MEPmodels,
the STS-MEP model appears to be a very accurate predictor
of STS in SCA-GPC. As shown in Figure 6(b), MEP simula-
tions investigate the absolute size of the gaps between the
observed and desired values. Specifically, absolute differ-
ences show how far MEP predictions deviate from actual
values on average. Lower absolute differences indicate a
more accurate forecast, while larger differences indicate a
wider error range, demonstrating the MEP model’s disper-
sion and reliability. Predictions of MEP were within a range
of 0.0033 to 0.440MPa, according to the available data. There
were 41 readings below 0.1 MPa, 36 values between 0.1 and
0.3MPa, and 9 values over 0.3 MPa, resulting in an average
error value lower than 0.136MPa.

To avoid inaccuracies caused by differing scales, stan-
dardized unit measurements are used to guarantee that
ML models consistently reflect input data. To reliably

Table 4: Results of statistical examination

Property MEP models

CS (MPa) FS (MPa) STS (MPa)

RSE 0.292 0.324 0.314
R 0.977 0.966 0.959
NSE 0.956 0.932 0.914
RMSE 2.347 0.265 0.173
MAE 1.79 0.199 0.136
RRMSE 0.614 0.556 0.628
MAPE 5.60 4.00 4.00
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compare the performance of models across various data-
sets, it is necessary to provide a consistent testing approach
that guarantees uniform evaluation metrics. By offering a
consistent framework for input representation and perfor-
mance evaluation, these components improve the consis-
tency and reliability of strength predictions in ML models.
Inconsistent input representations and biases can result from
changing or utilizing erroneous units in ML models. It may
distort feature relevance,misinterpret relationships, and impair
model generalization. Accurate and standardized units are

essential for model accuracy and meaningful comparisons
across scenarios or datasets.

3.2 Authentication of MEP simulations

Table 4 shows the outcomes of the efficiency and error
computations that were conducted using the aforemen-
tioned Eqs. (1) through (7): RSE, NSE, R, RMSE, RRMSE,
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and MAE. The generated models have a higher level of
accuracy in their predictions if their error values are
smaller. The MEP models that relied on CS had an MAE
of 1.79 MPa, FS had an MAE of 0.199 MPa, and STS had an
MAE of 0.136 MPa. However, the MAPE values for the MEP
models based on CS, FS, and STS were 5.60, 4.0, and 4.0,
respectively. The other statistical errors, including RMSE,
RSE, and RRMSE, also showed small values for the devel-
oped MEP models. The created models were evaluated not
only for errors but also for efficiency, using two metrics:
NSE and R. The greater the efficiency of a model, the more
accurate its predictions will be. The MEP models based on
CS, FS, and STS all had NSE values near 1 (0.956, 0.932, and
0.914, respectively), demonstrating the high quality of the
MEP method’s predictions. Similarities between the created
models were revealed by the Pearson’s coefficient (R). All of
the statistical parameter-based forecasting models are com-
pared in a bar chart (Figure 7). Among the most precise ML-
based methods for predicting the mechanical characteristics
of SCA–GPC, the MEP model stands out with its high R2, low
error, excellent efficacy, and low average deviation.

3.3 Sensitivity analysis results

The focus of this research is on the effect of different input
parameters on the SCA–GPC predictions of CS, FS, and STS.
There is a strong correlation between the inputs and the
outcomes that can be expected [87]. Figure 8 shows how
each factor affects the mechanical properties of SCA–GPC,
giving us a glimpse into the concrete of the future. BFS was
the most influential factor (65%) among CS, FS, and STS;
other factors that had a role were CD (25%), FA (3.30%), CG
(2.50%), CCA (2.00%), water (1.00%), SHP (0.80%), and MC
(0.50%). In contrast, the sensitivity analysis showed that
SSG and CA had zero percent of an effect on the mechanical
properties of SCA–GPC, indicating that there was very little
variance in the dataset of parameters. The number of data
points used in the sensitivity analysis was shown to be
associated with the quantity of parameters used in the
model. The study results changed based on the quantities
of the concrete mix and other input parameters, which
were initially hidden but became apparent upon imple-
menting the ML technique. Input variables’ relative impor-
tance was calculated using the following equations:

( ) ( )= −N f x f x ,i i i
max min

(11)

= ∑ −
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N

N
,i

i

j i

n

j
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where ( )f xi
max

and ( )f xi
min

represent the highest and
lowest predicted values over all ith outputs, respectively.

4 Discussions

Benefiting from operating within a limited range of 10
input parameters, the study’s MEP model ensures that
the projections are particular to SCA–GPC, which is a major
plus. Since all of the models use a similar investigating
protocol and uniform unit measurements, their strength
projections are also consistent. The mathematical equa-
tions utilized in models greatly aid in comprehending the
mix design and the impact of each input component.
Though, the predicted models might not work if
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Figure 9: Benefits of producing and adopting waste-derived GPC in
construction [90].

Table 5: Previous modeling techniques used for GPC

Ref. Technique Input
variables

Property Best R2-
value

[88] DNN, ResNet 9 CS 0.98
[20] SVM, BPNN, ELM 14 CS 0.95
[87] ANN, Boosting,

AdaBoost
9 CS, FS 0.96

[89] GEP, MEP 8 CS 0.97
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parameters other than the ten inputs used are included in
the overall evaluation. When fed data that is not what the
models were built to handle, they may not function as
intended. Incorrect or changed units of the input para-
meters might cause models to provide erroneous results.
Maintaining constant unit sizes is critical to the model’s
performance. ML models have numerous uses in the con-
struction industry, including predicting the strength of
materials, ensuring quality, assessing risks, performing
predictive maintenance, and improving energy efficiency.
The requirement for human intervention, the existence of
imprecise data, and the existence of erroneous models are
just some of the constraints on these models. The Internet
of Things, hybrid model development, explainable AI tech-
nique application, sustainability consideration, and industry-
specific adjustments to data generation and distribution are
all areas where these gaps might be filled and ML-based
solutions enhanced by way of future studies. Reduced project
duration and improved worker and environmental outcomes
are possible effects of enhanced construction efficiency, inter-
pretability, transparency, and data-driven decision-making.
The results of this research could encourage more builders
to use GPC, which would be a step toward more eco-friendly
construction methods. Figure 9 displays the benefits of using
GPC produced from waste in the building industry, whereas
Table 5 offers the prior ML research conducted on GPC’s
various features with R2-values, suggesting the current study’s
comparable performance.

5 Limitations and
recommendations for future
research

CS, flexural strength, and split tensile strength were pre-
dicted using 260 data records in the current investigation.
These forecasts were created after taking ten variables into
account. Adding more records of data from experimental
investigations could be a focus of future studies to further
increase the models’ accuracy. Predictions made by the
model can be made more confidently and accurately by
increasing the size of the dataset. In addition, MEP models
were used in this investigation. However, future studies
could investigate the use of hybrid ML techniques such
as the genetic algorithm with particle swarm optimization
and the RF-ANN, as well as individual/standalone and
ensemble algorithms such as the SVM, DT, bagging,
and boosting. These hybrid methods have the potential
to significantly improve the models’ performance and

prediction capacities; therefore, it makes sense to incor-
porate them. There are additional post hoc explanatory
techniques that can be used to shed light on the ML model’s
prediction, such as the SHapley Additive exPlanations tech-
nique, Local Interpretable Model-Agnostic Explanations, and
Partial Dependence Plots, which were not used in this study
but are available. Most of the available literature on using
ML techniques to predict the properties of GPC focuses on
mechanical properties. Nonetheless, there is a clear lack of
studies looking at the GPC’s durability, dynamic attributes
(fatigue), and microstructure. More research is needed to
use ML techniques to investigate these durability factors in
depth.

6 Conclusions

This study developed mechanical property prediction models
for slag-CCA GPC (SCA–GPC) using MEP. The models were
trained and verified using 260 sets of mechanical character-
istics data, including compressive, flexural, and split tensile
strengths. The study’s main findings are as follows:

The study concluded that MEP models performed excep-
tionally in terms of data prediction accuracy in forecasting
the mechanical strength of SCA-GPC.

For SCA–GPC’s mechanical properties prediction, CS-
MEP, FS-MEP, and STS-MEP models achieved R2 values
above 0.90, which exhibits that MEP models agreed well
with the actual findings.

The effectiveness of the developed models was assessed
using statistical performance measures (MAE, RMSE, MAPE,
R, RSE, NSE, and RRMSE). Lower errors and higher R indi-
cate MLmodel accuracy. Error rates and R results supported
the claim that MEP models accurately predicted SCA–GPC
mechanical properties.

According to the sensitivity analysis, BFS (65%), CD
(25%), and FA (3.30%) were the key input parameters
with a higher impact on the mechanical properties of
SCA–GPC.

MEP’s significance lies in the fact that it offers a one-of-
a-kind mathematical formula that can be applied to the
prediction of features in another database. The mathema-
tical models resulting from this study can help scientists
and engineers rapidly assess, enhance, and rationalize GPC
mixture proportioning.
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