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Abstract: Popular and eco-friendly alkali-activated mate-
rials (AAMs) replace Portland cement concrete. Due to the
considerable compositional variability of AAMs and the
inability of established materials science methods to under-
stand composition–performance relationships, accurate
property forecasts have proved impossible. This study set
out to develop AAM compressive strength (CS) evaluation
machine learning (ML) models using techniques including
extreme gradient boosting (XGB), bagging regressor (BR),
and multi-layer perceptron neural network (MLPNN). Ten
input variables were used with a large dataset of 676 points.
Statistical and K-fold studies were also used to evaluate the
developed models’ correctness. XGB predicted the CS of
AAM the best, followed by BR and MLPNN. The MLPNN
and BR models had R2 values of 0.80 and 0.90, respectively,
whereas the XGB model had 0.94. Results from statistical
analyses and k-fold cross-validation of the used ML models
further attest to their validity. The built models can poten-
tially compute the CS of AAMs for a variety of input
parameter values, reducing the requirement for costly and
time-consuming laboratory testing. Researchers and busi-
nesses may find this study useful in determining the neces-
sary quantities of AAMs’ raw components.

Keywords: alkali-activated materials, machine learning,
compressive strength

1 Introduction

An estimated 5–8% of the world’s total anthropogenic CO2

emissions [1] come from ordinary Portland cement (OPC)
manufacturing, and this number is expected to increase by
8% in 2050 under current projections [2], which questions
whether or not the Paris Agreement’s zero-emissions goal
can be achieved. In order to reduce CO2 emissions from the
OPC business, it is crucial to find alternatives to OPC that
are less harmful to the environment [3,4]. As a result of
their low energy requirements and negative impact on the
environment, alkali-activated materials (AAMs) have gar-
nered interest as one of the most promising building mate-
rials during the past few decades [5,6]. Alkaline activators
react with alumino-silicate resources (mining wastes, indus-
trial by-products, and minerals) to produce AAMs [7,8].
Some of the alumino-silicates that can be used as building
blocks in the production of AAM are described in previous
studies [9–12] and include fly ash, blast furnace slag, met
kaolin, red mud, and rice husk ashes, respectively. In order
to acquire appropriate technical features at a reasonable
cost, activators based on sodium have been widely used
[13]. Sodium carbonate, water glass, and sodium hydroxide
are all examples. Some large-scale construction projects
have used AAMs; examples include offshore structures,
houses, watertight buildings, and immobilizations of heavy
metals [14]. A more general term for a wide range of pre-
cursors that have been activated by alkaline solutions is
AAM [15]. One kind of AAM, called geopolymers, is made
by polymerizing aluminosilicate minerals in an alkaline
environment. This process makes the material more uni-
form and organized. When it comes to high-performance
concrete, geopolymers are often used because of their unique
and controlled polymerization mechanism, in contrast to
AAMs, which cover a broader range of compositions and
structures [7,16]. Although there are some obvious problems
that need fixing, such as the tendency for cracking due to
shrinking [17], as an alternative to OPC concrete, AAMs
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have proven to be highly effective. AAMs have several advan-
tages, which are shown in Figure 1.

Compressive strength (CS) is the main topic of this
study since it is a crucial performance indicator for struc-
tural materials. By using CS, models can be trained, and
predictive analyses can be conducted efficiently, with a
primary focus on structural integrity; hence, a lot of studies
have been performed to determine how factors like water/
binder ratio (w/b), precursor type, activator dosage, and
curing conditions affect it. For example, Yang et al. [18]
examined the effects of changing the w/b on the mechan-
ical characteristics of alkali-activated slag concrete based
on Ca(OH)2. They discovered that by decreasing the w/b,
the CS increased at a pace analogous to that of OPC con-
crete. Most alkali activation plants employ either ground
granulated blast furnace slag (GGBFS) or fly ash as their
precursor. Xie et al. [19] studied the impact of fly ash and
GGBFS on the mechanical strength of recycled aggregate
alkali-activated geo-polymer concrete. CS was shown to
increase with increasing GGBS/fly ash ratio. This result
agrees with that of Puertas et al. [20], who found that
increasing the slag fraction in NaOH-activated fly ash/slag
blends increased the blends’ CS. The limited range of
building applications for AAMs may be traced back to a
lack of understanding of the vital implications of the mul-
tiple parameters on their CS.

Altering the activator types and the relative amounts
between them allows for fine-tuning of AAMs’ mechanical
properties. To better understand alkali activation, Turkish

slag’s mechanical properties were studied by Aydın and
Baradan [21], who looked into the effects of Na2SiO3 and
NaOH activators. The test findings showed that the CS of
the Na2SiO3-activated slag mortars was more than that of
the NaOH-activated specimens. CS was also shown to be
highly dependent on the Na2O content and the SiO2/Na2O
ratio. Na2SiO3 and NaOH mortars, for instance, with SiO2/
Na2O ratio equal to 1.2 and Na2O 8% of slag proportion,
achieved the maximum CS after 28 days. Curing, the first
step of geo-polymerization, is very sensitive to tempera-
ture. Rovnaník [22] examined the effects of the material’s
mechanical and microstructural properties at different
curing temperatures (10, 20, 40, 60, and 80°C) on the geo-
polymer that was based on kaolin. The aforementioned
parameters should be considered while planning the CS
strength of AAM combinations. It used to take a lot of trial
batches in the lab to get the right CS. However, it is a time-
consuming and costly operation to prepare many AAM
specimens. Predictions of AAMs’ CS without spending a
lot of time and money on batch tests are better because
they conserve resources and do not waste materials.

Soft computing approaches are quickly becoming the
go-to for simulating the technical properties of different
materials. To make informed forecasts, data-drivenmachine
learning (ML) models are invaluable [23]. The complex
design and inherent randomness of construction materials
make accurate quality estimations challenging. ML techni-
ques have been extensively used in estimating the engi-
neering parameters of building materials. Materials such
as self-compacting concrete, recycled aggregate concrete,
fiber-reinforced concrete, PCM-integrated concrete, and light-
weight concrete are some of the current and classic concretes
whose properties have been studied using ML algorithms
[24–28]. Numerous studies have shown that when estimating
different concrete engineering qualities, robust ML models
perform better than more conventional physical and
empirical models. Some of the computational challenges in
effectively forecasting concrete parameters [29–31] include
cement paste’s non-linear time and temperature-dependent
performance and the intricate nature of cement hydration
and microstructure development. On the other hand, input
data on mixture proportions and curing conditions can be
used to build MLmodels that can correctly predict the target
attributes. ML models have various benefits, including the
ability to make accurate and broad predictions, require less
computation, and are easy to reproduce.

According to researched works, a trustworthy compu-
tational framework for predicting the CS of AAM compo-
sites may be established using well-trained ML algorithms.
The current research aims to examine the CS of AAMs
by employing a number of strong ML models. A data set
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Figure 1: Advantages of AMMs.
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comprising 676 points has been compiled from research
publications in the open literature. In order to forecast
the CS of AAMs, regression models based on multi-layer
perceptron neural network (MLPNN), bagging regressor
(BR), and extreme gradient-boosting (XGB) were created.
Arithmetical checks and K-fold analysis were conducted to
ensure the validity of the models. The findings may have
far-reaching consequences for the building sector as a
whole due to the novel instruments and methodologies
they provide for the controlled investigation of material
properties with little to no human intervention.

2 Methods

2.1 Data sample

The Anaconda Navigator program performed all the Python
codes for the models used in this investigation. The models
used a data set of AAMs from Zhang et al. [32] to make
predictions about CS. A total of 676 datasets were used for
the model comparisons, 80% of the entire data was used to
train the model, and 20% was utilized to test it. A k-fold
validation technique was used to confirm the accuracy of
the required models. Data preparation was employed to
gather and arrange the data. There is a well-known obstacle
to knowledge discovery from data, but effective data pre-
paration for data mining can assist in overcoming it. The
goal of data preparation is to simplify the data by removing
clutter and unimportant information. The model was exam-
ined by means of regression and techniques for distributing
errors. Ten variables, including fly ash (F-Ash), slag (S), coarse
aggregate (CA), w/b, fine aggregate (FA), sodium hydroxide
(SH), sodium silicate (SS), curing temperature (C-Temp), spe-
cimen age (S-Age), and relative humidity (RH), were taken
into account to determine CS. Because of the profound effect
they have on AAM concrete, these criteria were selected.
Histograms are shown in Figure 2 to display the frequency
dispersion of each variable. The dispersion of the variables
that make up a dataset is a good indicator for its frequency
distribution. Viewing the relative frequency distribution of a
dataset reveals the prevalence of each value.

2.2 Modeling approaches

The CS of AAMs was assessed by actual trial techniques.
The procedures took ten input parameters and returned
only one output, i.e., CS. Anaconda Navigator scripts written

in Python and Spyder (5.1.5) were employed to achieve the
study’s goals. Individual ML techniques, such as MLPNN, as
well as ensemble ML techniques, such as BR and XGB, were
employed to estimate the CS of AAMs. Applying ML algo-
rithms to assess outputs in light of input features is a wide-
spread practice. Only 20% of the data was actually used for
testing, while 80% was used to train ML models. The R2 of
the expected result demonstrates the efficiency of the model
employed. If the R2 value is high, the predicted and observed
values are very close, whereas if it is low, the disparity is
substantial. Statistical testing, error valuations, and k-fold
methods were also employed to confirm the model’s correct-
ness. Some of the statistics used in these evaluations included
the mean absolute percentage error (MAPE), mean absolute
error (MAE), and the root mean square error (RMSE). These
parameters were chosen for ML model validation based on
their effective usage in previous similar studies [33,34]. Figure
3 depicts the modeling of a sequence of events. The study’s
use of ML algorithms and validation strategies are discussed
in the following sections.

2.2.1 MLPNN

The artificial neural network (ANN) is the most effective
ML model available. It has been extensively used in ecolo-
gical and hydrological engineering to deal with non-linear
problems. The most popular ANN model is the MLPNN.
Input, hidden, and output layers make up the MLPNN
model’s three-layer architecture. The three most frequent
activation functions are logsig, purelin, and tansig. The
output and hidden layers rely heavily on activations, bias
functions, and weights. The model’s weights or variables
take on their final values during training. The hidden
layers employ Tansig activation, whereas the output layer
makes use of purelin. To get the best possible structure, the
k-fold method is applied. In Figure 4, a generic neural net-
work schematic chart is shown. In order to build one of
these systems, one must first transmit the forward-pass
input, then apply weight to it, and finally provide an esti-
mate of the technique’s output. Then, the calculated out-
puts are weighed against the factors that went into their
creation. Predictions from the model take into account the
inputs.

2.2.2 Bagging

The BR method is depicted in a simplified flowchart format
in Figure 5. The incorporation of additional training data
into the forecast model is primarily characterized by an
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analogous ensemble method. Statistics from the original
set are replaced with an asymmetrical sampling technique.
If replacement sampling is used in training data, certain
observations may be repeated in every new set. After bag-
ging, each constituent has the same chance of appearing in
the fresh data set. There is no correlation between the size
of the training dataset and the projection quality. It is also
possible that the divergence can be greatly decreased by
improving the approximation of the target output. The
average prediction across all simulations is used for this

ensemble. The average prediction from many simulations
is used in regression [36]. The bagging method based on
MLPNN is fine-tuned with the help of 20 sub-models to find
the most productive output value.

2.2.3 XGB

Chen and Guestrin [38] created the XGB method, which is
broadly renowned as a useful implement for data science

Figure 2: Variation in input parameters’ relative frequency distribution and output for the database.
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investigators due to its tree-based collaborative learning
approach. Utilizing many parameters to predict results in
agreement with Eq. (1), the gradient boosting style forms
the root of extreme gradient boosting (XGB) [39].
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When the kth factual job of a tree is reduced, the
resulting weight of the leaf is denoted by fk (Eq. (3)):
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Figure 3: Flow diagram of data sample generation, modeling, and validation techniques.

Figure 4: The MLPNN method depicted in a simplified diagram [35].
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Figure 5: Schematic interpretation of the BR model [37].

Figure 6: A simplified flowchart of the XGB method [40].
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often rounded to zero, and the dividing line requirement is
assumed. The gain regulates a regulating variable that acts
meanderingly on the system. For example, the gain factor
could be significantly lowered to stop the leaf convolution
process by using a higher regularization value. However,
doing so would diminish the model’s performance on test
data. Figure 6 depicts the fundamental hierarchy of the
XGB tree algorithm.

2.2.4 Validation methods

The ML simulations were validated employing arithmetical
methods and k-fold procedures. The k-fold strategy is fre-
quently employed to evaluate a simulation’s accuracy by
arbitrarily splitting the dataset into ten distinct groups [41].
Figure 7 displays that out of the ten groups used, only one
was used for testing ML models, and nine were used for
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training. In cases where the error is minor and the R2 is
large, the ML algorithm excels. In addition, repeating the
process ten times is required to see the expected results.
This technique considerably improves the model’s already
excellent accuracy. Statistical error estimation (MAPE, MAE,
and RMSE) was also employed to scrutinize the precision of

various ML approaches. Using the acquired Eqs (5)–(7), we
statistically checked the accuracy of the estimates from the
ML techniques [42,43].
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where n is the statistics sample size, Pi is the projected
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Table 1: Statistical analyses for assessing errors

ML method MAE (MPa) MAPE (%) RMSE (MPa)

MLPNN 8.235 22.90 9.545
BR 5.140 15.20 6.239
XGB 4.125 10.70 5.064
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3 Results and analysis

3.1 MLPNN model

Figure 8 displays the outcomes of using the MLPNN tech-
nique to estimate the CS of AAMs. Figure 8(a) shows the
relationship between the estimated CS and the one that
was tested. The MLPNN model predicted CS, however,
with only a modest degree of accuracy and with significant
variation between experimental and projected results. An
R2 of 0.80 shows a reasonable agreement between the
actual and estimated outcomes, demonstrating that the
MLPNN approach is useful for approximating the CS of
AAMs. Figure 8(b) exhibits the experimental, expected,
and error dispersion for the MLPNNmethod. The mean error
value is 8.23MPa, ranging between 0.25 and 28.57.32MPa.
Errors were also broken down proportionally, and it was
found that out of all the strengths determined, just one was
below 1MPa, 31 were between 1 and 5MPa, and 104 were
above 5MPa. The CS of AAMswas accurately forecasted using
the MLPNNmethod, as evidenced by the dispersion of errors.

3.2 BR model

The outcomes of using the BR strategy to forecast the AAM’s
CS are shown in Figure 9. As displayed in Figure 9(a), there is
an association between the actual and projected CS. The BR
method produced the fewest discrepancies between the
experimental and estimated outcomes, making it the pre-
ferred method above the MLPNN model utilized in the pre-
sent study. The BR model seems to be more accurate due to

its R2 of 0.90. The graphical representation of the BR tech-
nique’s error dispersion for experimental, estimated, and
deviating values is shown in Figure 9(b). The results showed
that the lowest, median, and highest levels of errors were
0.12, 5.13, and 19.03MPa. We examined how frequently dif-
ferent-sized errors occurred and discovered that 2% of them
occurred at or below 1MPa, 71% occurred between 1 and
5MPa, and 63% occurred at or above 5MPa. The error dis-
persion also shows that the BR model outperforms the
MLPNN model in terms of precision. The BR method is
more precise than the MLPNN model in determining the
optimal output-producing value since it uses 20 sub-models
to fine-tune the bagging method.

3.3 XGB model

The outcomes of using the XGB algorithm to forecast the
CS of AAMs are displayed in Figure 10. The connection
between the actual and predicted CS is presented in
Figure 10(a). When comparing observed and anticipated
results, the XGB approach turned out to be more precise.
The XGB model’s R2 of 0.94 indicates its superior accuracy.
The XGB method’s distribution of actual, estimated, and
error values is illustrated in Figure 10(b). The average
deviation was found to be 4.12 MPa, with a maximum of
13.65 MPa. The distribution of the errors revealed that
there were 18 values below 1 MPa, 71 values between 1
and 5 MPa, and 47 values exceeding 5 MPa. According to
the error dispersion, the XGB technique outperformed the
MLPNN and BR models. It is possible to deduce that the
XGB approach is more precise than the MLPNN and BR in

Table 2: Outcomes of MAE, RMSE, and R2 from the k-fold approach

k-fold number CS (MPa)

MLPNN BR XGB

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

1 10.86 13.98 0.71 10.46 12.91 0.64 10.14 17.71 0.68
2 11.59 10.81 0.68 7.58 8.49 0.71 10.06 12.63 0.70
3 9.79 14.83 0.56 11.12 13.99 0.64 7.08 10.73 0.76
4 10.28 16.31 0.22 12.52 16.70 0.57 9.65 10.26 0.39
5 13.71 27.53 0.80 11.90 22.76 0.90 7.28 11.76 0.77
6 15.47 14.38 0.17 13.27 15.74 0.25 10.56 15.43 0.29
7 10.26 15.41 0.78 10.71 12.88 0.68 6.64 7.84 0.93
8 8.67 13.87 0.58 11.79 14.63 0.38 8.81 14.65 0.33
9 16.30 16.41 0.15 11.31 16.51 0.48 10.21 16.73 0.67
10 12.06 9.89 0.73 9.69 12.40 0.62 8.00 9.94 0.64
Avg 11.90 15.34 0.54 11.04 14.70 0.59 8.84 12.77 0.62
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predicting the CS of AAMs. However, the MLPNN model’s
precision is very impressive. Accordingly, the CS of AAMs
can be evaluated using any model, as all models showed
significant prediction accuracy, as illustrated by the R2

values and cross-validation techniques. The superior per-
formance of XGB compared to other ML models is attributed
to its gradient-boosting architecture that incorporates sophis-
ticated features, such as regularization, parallel tree genera-
tion, and a proprietary loss function. By minimizing model
complexity and resolving overfitting, XGB decreases bias and
variance, resulting in higher predictive accuracy.

3.4 Model’s validation

Using Eqs (5)–(7), the results from the error computations
(RMSE, MAPE, and MAE) are shown in Table 1. It was found
that the MLPNN, BR, and XGB all had MAE values of 8.235,
5.140, and 4.125 MPa, respectively, while predicting CS.
MAPE was calculated to be 22.90% for MLPNN, 15.20% for
BR, and 10.70% for XGB. Other results showed that RMSE
values were 9.545 MPa for MLPNN, 6.239 MPa for BR, and
2.380 MPa for XGB. In comparison to the MLPNN and BR
models, the XGB approach achieves a lower error rate, as

shown by these results. The validation scores for the k-fold
approach, including R2, RMSE, and MAE, are displayed in
Table 2. Figure 11 displays the outcomes of k-fold evalua-
tions of several ML approaches to CS prediction. The
MLPNN method produced a CS estimate with an MAE of
11.90 MPa, with a range of 8.67–16.30.75 MPa. The BR has an
MAE of around 11.04 MPa on average, with a range of
7.58–13.27 MPa. Comparatively, the MAE for XGB ranged
from 6.64 to 10.56 MPa, with a mean value of 8.84 MPa.
The mean RMSEs for the MLPNN, BR, and XGB approaches
were 15.34, 14.70, and 12.77 MPa, respectively. While BR and
XGB have average R2 values of 0.59 and 0.62, MLPNN’s
value is only 0.54. The finest XGB model for predicting
the CS of AAMs has higher R2 and lower errors. The
increased accuracy of the XGBmodel was further validated
by an analysis of these errors and R2 values obtained uti-
lizing the k-fold method. However, the accuracy of the
MLPNNmodel is likewise satisfactory. Similarly, the Taylor
diagram in Figure 12, which compares all of the forecasting
models, served as validation. Therefore, it is possible that
MLPNN, BR, and XGBmodels can be used to estimate the CS
of AAMs more accurately.

4 Discussion

As the only binding material, OPC has a large global foot-
print in terms of both raw material depletion [45] and
anthropogenic emissions [46]. Because of this, the OPC
sector must find environmentally preferable replacements
for OPC in order to reduce its CO2 emissions. AAMs have
gained a great deal of attention over the past decade [47] as
one of the most capable building materials due to their low
environmental influence and energy depletion. AAM CS
was estimated using MLPNN, BR, and XGB ML. To find
the most accurate predictor, each approach was compared.
XGB predicted CS more accurately than MLPNN and BR,
with an R2 of 0.94. MLPNN and BR had CS estimate R2 of
0.80 and 0.90, respectively. The XGB approach’s accuracy
was further enhanced by the error gap between the actual
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Figure 12: Taylor diagram for validation of models.

Table 3: Previous ML-based similar studies

Ref. Technique Material type Property Best model (R2-
value)

[49] Ridge regression, RF, LightGBM, and XGB Fly ash-slag based one-part AAM CS XGB (0.94)
[50] Decision tree, RF, ANN, XGB Concrete Interface shear strength XGB (0.94)
[51] XGB Asphalt concrete mixture Dynamic modulus XGB (0.96)
[52] BRegressor, ETRegressor, NuSVR, ANNs, and

XGBoost
Fiber-reinforced concrete, mortar, and
rocks

Fracture toughness XGB (0.92)
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and forecasted outcomes. Error analysis demonstrates that
XGB models match experiments and predictions better
than MLPNN and BR models. Previous studies have demon-
strated that the XGB approach outperforms the individual
ML methods when it comes to assessing the strength of the
building materials [42,48], which is illustrated in Table 3.

The accuracy of ML methods was also assessed using
both arithmetic and k-fold processes. Increases in R2 and
decreases in MAE, RMSE, and MAPE indicate that a model
is more accurate. The finest ML approach for predicting
attributes in different study areas might, however, be dif-
ficult to define and suggest because algorithm performance
is chiefly reliant on the amount of variables and dataset
engaged [42]. Sub-models trained on the database and fine-
tuned to increase accuracy are typically created using the
weak learner in ensemble ML approaches. The R2 disper-
sion for the XGB-CS sub-models is 0.62 on average, with
values between 0.29 and 0.93. According to these findings,
XGB-CS sub-models outperform MLPNN and BR models in
terms of accuracy. Thus, adopting AAMs instead of OPC-
based composites will produce better construction mate-
rials with equivalent strength. More importantly, it will
lessen OPC production’s environmental impact and control
its depletion of raw supplies.

The current study estimated CS utilizing 676 data records.
These predictions considered ten variables. Future studies
could add experimental data to improve model accuracy.
By expanding the dataset, the model can make more accurate
predictions. This study also used individual and ensemble ML
models. However, hybrid ML methods like GA-PSO, Multi-
Expression Programming, and RF-ANN, as well as indivi-
dual/standalone and ensemble algorithms like SVM, DT, and
boosting, could be studied in the future. These hybrid strate-
gies can boost model performance and prediction; hence,
they should be used. This study did not apply the sensitivity
approach, LIME (local interpretable model-agnostic explana-
tions), or PDP (partial dependence plots), but they can be used
to explain the ML model’s prediction. Mechanical qualities
have been the primary focus of the existing literature on
using ML approaches to the prediction of AAM’s parameters.
The microstructure, dynamic properties (fatigue), and long-
evity of AAMs have been the subject of a few investigations.
Further research is required to thoroughly examine these
aspects affecting durability using ML approaches.

5 Conclusions

This study created the CS of ML models to predict AAMs. A
vast dataset of 676 experimental integrating combinations

was collected from scholarly literature. The CS of AAM was
predicted using ML models, such as MLPNN, BR, and XGB.
The statistical parameters and k-fold analysis examined
the developed model’s prediction accuracy. The study find-
ings are summarized as follows:
• MLPNN and BR methods had a sufficient level of preci-
sion, with R2 of 0.80 and 0.90, respectively, though the
XGB method had a superior level of correctness, with R2

of 0.94, for CS estimation.
• The difference between the experimental and estimated
CS (errors) in the MLPNN, BR, and XGB techniques, on
average, was 8.23, 5.14, and 4.12 MPa, respectively. These
error values also supported MLPNN and BR models’
appropriate accuracy, while the XGB method had a
greater precision in predicting the strength of AAMs.

• The efficiency of the built models was proven by statis-
tical evaluations. Better R2 and lower errors indicated
the accuracy of ML models. For the CS prediction in
the MLPNN, BR, and XGB models, the MAPE values
were found to be 22.00, 15.20, and 10.70%, respectively.
The MAPE results supported the XGB model’s superior
ability to forecast the CS of AAMs.

• The XGB model outperforms the MLPNN and bagging
models in terms of performance towards the intended
outcome, as confirmed by the k-fold validation approach.

The findings of this study shed new light on the design
of AAMs based on the robust prediction frameworks estab-
lished here. Scientists and engineers can benefit from
the study’s methods by more easily assessing, improving,
and rationalizing the mixture proportioning of AAMs. The
assistance that MLmodels offer inmixture design encourages
sustainable building and reduces the environmental chal-
lenges of the conventional concrete industry.
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