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Abstract: As a new type of environmentally friendly building
material, cemented sand and gravel (CSG) has advantages
distinct from those of concrete. Compressive strength is an
important mechanical property of CSG. However, his method
of testing is mainly by doing experiments. For this reason, a
deep learning algorithm, long short-term memory (LSTM)
model, was proposed to predict the compressive strength of
CSG by using four input variables, namely cement content,
sand rate, water-binder ratio, and fly ash content, with a total
of 114 sample data. Three metrics – coefficient (R2), root mean
square error (RMSE), and mean absolute error (MAE) – were
used to evaluate the model’s performance, and the predicted
results were compared with the traditional machine learning
algorithm, namely the random forest (RF) model. Finally,
SHapley Additive exPlanations can be combined to explain
the contribution degree of each input feature in the machine
learning inquiry model to the prediction results. The results
show that the prediction accuracy and reliability of LSTM are
higher. The LSTM model has R2 = 0.9940, RMSE = 0.1248, and
MAE = 0.0960, while the RF model has R2 = 0.9147, RMSE =

0.4809, and MAE = 0.4397. The LSTM model can accurately
predict CSG compressive strength. Cement and sand rate
contribute more to the predicted results than other input
characteristics.

Keywords: long short-termmemory, random forest, cemented
sand and gravel, compressive strength, deep learning, machine
learning

1 Introduction

In response to the world development trend and the
national call for “carbon neutrality,” the construction of
environmentally friendly water conservancy projects has
become the mainstream trend [1]. Compared with a roller-
compacted concrete dam, cement consumption is less,
aggregate preparation and mixing facilities are greatly
simplified, temperature control measures can be cancelled,
the construction speed is significantly accelerated, and the
project cost is significantly reduced. Its material, cemented
sand and gravel (CSG), is an economical, safe, green, and
low-carbon new building material formed by river bed
gravel or local waste materials after mixing, rolling, and
vibrating with cementing materials and water [2,3]. As an
ultra-poor cementing material, it is similar to concrete but
has many differences and advantages. Compared with con-
crete, the reduction in cement content significantly reduces
its hydration heat. The selection of raw materials is very
simple, and the aggregate with large particle sizes removed
does not need to be sieved. To avoid the destruction of land
vegetation to the greatest extent [4], it is necessary to study the
properties of CSG to apply and popularize it more efficiently.

For the various properties of CSG, compressive strength
is directly related to the safety of the structure and is a
necessary condition for evaluating the performance of the
structure in the whole life cycle [5]. Therefore, compressive
strength is one of the most important properties of CSG.
However, CSG is a heterogeneous mixture of complex mate-
rials, and each component is randomly distributed in the
CSG mix ratio, and factors such as cement content, water-
binder ratio, and waste composition will affect the compres-
sive strength [6]. Therefore, it is very difficult to accurately
predict the compressive strength of CSG with a complex
matrix. Scholars have conducted relevant studies on the
compressive strength performance of CSG, including test
methods, and relevant scholars have taken some tests to
assess the compressive strength of CSG, statistical rule ana-
lysis, and influence analysis. Chen et al. [7] established a
dataset of CSG mix ratio and 28-day compressive strength
and analyzed the distribution law of CSG compressive strength
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by using skewness kurtosis and single-sample Kolmogorov–
Smirnov test. Li et al. [8] conducted an experimental study on
the effects of sand rate, water-binder ratio, fly ash, and other
parameters on the properties of CSGmaterials in differentmix
ratios. Chai et al. [9] studied the influence of fly ash content on
the compressive strength of CSG. However, taking the test
method generally requires a lot of time and economic cost,
so it is necessary to seek a low-cost and high-prediction accu-
racy method to predict its performance.

With the development of artificial intelligence, intelli-
gent algorithms have been applied in many fields. Zhou
et al. [10] proposed a fire prediction model based on the
CatBoost algorithm to predict fire points. Liu et al. [11]
proposed a prediction model based on the XGBoost algo-
rithm for pipeline safety assessment. Ilić et al. [12] realized
water-quality prediction in five different regions through
the Naïve Bayes algorithm. Wang et al. [13] developed an
improved back propagation (BP) neural network to predict
surface runoff coefficients in different rainfall conditions.
Intelligent algorithms are also used to predict the strength
of civil engineering materials, mainly concrete. For example,
Wu and Zhou [14,15] employed an optimized support vector
regression (SVR) model to predict the splitting tensile and
compressive strength of sustainable concrete, and the results
showed that the optimized model can achieve an accurate
prediction of concrete mechanical properties. Latif [16] used
boosted decision tree regression (BDTR) to predict the com-
pressive strength of concrete and compared it with support
vector machine (SVM). The results show that BDTR has better
prediction accuracy with an R2 of 0.86, which can accurately
predict the compressive strength of concrete, but this may
depend on the input adequacy of the data set. Ahmad et al.
[17] adopted decision tree, bagging regressor, and Ada-
Boost regressor to predict geopolymer concrete compressive
strength, and the results showed that the bagging model had
the best prediction accuracy. But it is also possible to compare
the accuracy of predictions with other machine learning
models. Yuan et al. [18] used machine learning methods
such as gradient boosting and random forest (RF) to predict
the compressive strength and flexural strength of recycled
aggregate concrete. The results show that RF has better pre-
diction accuracy than gradient boosting, and it is suggested
that environmental characteristics can be further added as
input variables. Mozumder et al. [19] tried using SVR to predict
the uniaxial compressive strength of FRP-confined concrete.
The results show that SVR can be used as an alternative phy-
sical tool to predict the strength of fiber reinforced polymer
(FRP)-confined concrete. However, the research on the proper-
ties of materials is mainly focused on concrete, but there is a
lack of research on the properties of CSG, especially when it
comes to the application of intelligent algorithms in strength.

In addition, most of the above intelligent algorithms
are traditional machine learning algorithms, whose predic-
tion ability is limited. Compared with traditional machine
learning algorithms, it may be a better choice to explore
deep learning models with better prediction performance.
For example, Liu et al. [20] proposed a convolutional neural
network (CNN)-based foreign exchange rate prediction model,
and the results show that its long-term prediction accuracy is
better than artificial neural networks, SVR, and other models.
Salinas et al. [21] adopted an autoregressive recurrent neural
network (RNN) (DeepAR) to produce probabilistic predictions
and showed an accuracy improvement of about 15% com-
pared to the latest methods. Wu et al. [22] combined a deep
learning gate recurrent unit network with wavelet packet
decomposition for the automatic diagnosis of internal defect
signals of concrete structures, and the results showed that the
accuracy rate of the model reached 90.76% and the prediction
performance was good. Zhang and Ci [23] used the deep belief
network (DBN), and their results suggest that DBN has excel-
lent performance in forecasting and direction. However,
selecting toomany hidden layers in pursuit of prediction accu-
racy may cause the problem of gradient disappearance [24].
One of the characteristics of long short-term memory (LSTM)
model is that it can learn long-term dependencies to avoid the
problem of disappearing gradients [25]. Qiu et al. [26] pre-
dicted river water temperature by LSTM and achieved a
good prediction effect. Latif [27] predicted the compressive
strength of concrete through LSTM and proved the superiority
of the LSTM model.

In view of the multiple advantages of CSG over con-
crete, the rare application of intelligent algorithms in CSG
material properties, the advantages of deep learning, and
the advantages and disadvantages of different algorithms,
this article uses 114 sets of compressive strength test data to
predict the compressive strength of CSG for the first time
through deep learning LSTM. Compared with the tradi-
tional machine learning RF, the effectiveness of the LSTM
model and the advantages of deep learning compared with
traditional machine learning are verified, which provides a
theoretical basis for the practical application of CSG and
promotes the practical application of CSG.

2 Experimental design and method

2.1 Experimental raw materials and mix
ratio

The purpose of this experiment was to measure the compres-
sive strength of CSG under different mix ratios. According to
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the “Technical Guidelines for Cemented Granular Material
damming” (SL678-2014), the amount of cementing material
should not have been less than 80 kg·m−3, and the amount
of cement should not have been less than 32 kg·m−3. The
sum of cement content and fly ash content in this test was
between 80 and 110 kg·m−3, and the mix ratio is shown in
Table 1.

The cement used in the experiment was 425# ordinary
Portland cement, produced in Henan Yodongda Cement
Co., Ltd, with physical and mechanical properties as shown
in Table 2; the fly ash was Class FⅡ dry discharge fly ash
from Zhengzhou Thermal Power Plant, with properties as
shown in Table 3. The mixing water was tap water, and the
coarse aggregate and fine aggregate came from the North
Ruhe material Yard in Ruzhou City.

2.2 Experimental process

2.2.1 Preparation methods

In view of the fact that CSG material properties are between
roller-compacted concrete and earth-stone materials, the
forming and maintenance of CSG specimens in this test
were carried out according to the “Technical Guidelines
for Dam Construction with Cemented Particle Material”
(SL678-2014) and “Test Procedure for Hydraulic Rolled
Concrete” (DL/T5433-2009). The preparation process of
the CSG specimen in this test is shown in Figure 1. First,
the aggregate was screened and then stored in silos with
different particle size standards. The mixture was designed
according to the mix ratio, and themixture was mixed at the
end. In order to improve the mixing uniformity, mechanical
mixing and manual mixing were combined, and the mixing
machine used was the single horizontal shaft concrete SJD-
60 mixer. After the mixing, loading, vibrating, and forming
were carried out. During the loading, the cast iron test mold
pre-painted with oil was used. First, manual vibration was
carried out for no less than 25 times and then moved to the
shaking table. The weight block was put on, and the hand
was righted. The vibration time was strictly controlled to

Table 1: Mix ratio of CSG

Experimental variables Variable level

Cement (kg·m−3) 40 50 60 70
Sand rate (%) 10 20 30 40
Water-binder ratio 1.0 1.2 1.4 —

Fly ash (kg·m−3) 20 30 40 50

Table 2: Physical and mechanical properties of cement

Project Specific surface area
(m2·kg−1)

Density
(kg·m−3)

Setting time (min) Compressive strength (MPa) Flexural strength (MPa)

Initial set Final set 3 day 28 day 3 day 28 day

Result 382.00 3035.00 143.00 191.00 30.40 49.60 6.30 8.60

Weighing according to 
the mix proportion 

design
Raw material mixing Loading, vibrating

Standard curing room 
maintenance

Stand still according to 
the standing time

Counterweight, 
vibration

 

Figure 1: Preparation process of a CSG specimen.

Table 3: Performance of fly ash

Ignition loss (%) Specific surface area (m2·kg−1) Density (g·cm−3) Chemical composition (%)

Fe2O3 CaO MgO Al2O3 SiO2

2.48 420 2.42 3.87 2.27 0.81 29.09 53.36
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vibrate the shaking table. After the vibration was completed,
the specimen was moved down, i.e., the specimen was
formed. After the specimen was covered and left for 48 h,
the mold was removed, and finally the specimen was put
into the standard curing room for curing until the test age.

2.2.2 Experimental methods and results

The compressive strength test was carried out according to
the “Standard for Test Methods of Physical and Mechanical
Properties of Concrete” (GB/T 50081-2019). The pressure testing
machine adoptedWAW-1000 electro-hydraulic servo universal
testing machine, as shown in Figure 2. The compressive
strength test of the CSG specimen was carried out by using
the computer to automatically control the test process. The
specimen was placed in the middle of the pressure plate under
the testing machine after inspection, and the bearing surface
was perpendicular to the top surface when forming. Under
continuous and uniform loading, the specimen approached
failure and began to rapidly deform until it was completely
destroyed, and the failure load was recorded. The CSG spe-
cimen is a secondary standard cube specimen of 150 × 150 ×

150mm. There are 114 groups of tests, with three specimens in
each group of tests. The compressive strength was tested
according to the above method standards, and the representa-
tive value of CSG compressive strength was determined
according to the “Concrete Strength Inspection and Evaluation
Standard” (GB50107). The 114 sets of data obtained after the
final selection are shown in Figure 3.

3 Methodology

3.1 LSTM networks

LSTM networks are a special type of RNN. It was proposed
by Hochreiter and Schmidhuber in 1997 [28]. RNN is a loop

network in which information is transmitted from the cur-
rent loop to the next loop. This chain structure indicates
that RNN is a normal neural network structure that can
be used. However, regular RNN has the problem of long-
term dependencies, which means that as the distance
between loops increases, the link of information in the
RNN can break. However, LSTM can solve the problems of
gradient disappearance and gradient explosion during
long sequence training in the machine learning field.
The LSTM is able to learn long-term dependencies due
to the presence of special properties in the model repeti-
tion module.

LSTM uses storage units and gates to control long-term
information stored or retained in the network. As a powerful
recursive neural network model, LSTM can extract long- and
short-term correlations in time series, enabling the model to
extract data features effectively [29–31]. LSTM includes a
forget gate, an input gate, an update gate, and an output
gate in the main structure. The main equations of the LSTM
structure are as follows:

( ( ) )= +−f σ W h x b, ,t f t t f1
(1)

( ( ) )= +−i σ W h x b, ,t i t t i1
(2)

( ( ) )= +−g W h x btanh , ,t g t t g1
(3)

= +−c f c i g ,t t t t t1
(4)

( ( ) )= +−o σ W h x b, ,t o t t o1
(5)

( )=h o ctanh ,t t t (6)

where ft , it, gt, and ot are the output values of forgetting
gate, input gate, update gate, and output gate, respectively;
Wf , Wi , Wg , and Wo are weight vectors; bf ,bi, bg , and bo areFigure 2: Compressive strength test of a 150 mm cube CSG specimen.

Figure 3: Compressive strength experimental value of CSG.
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bias vectors; ct and σ are memory unit and sigmoid activa-
tion functions, respectively.

3.2 RF

The RF algorithm was proposed by Breiman in 2001 [32].
The core idea of RF is ensemble learning, which consists of
multiple decision classification trees, each of which is built
from a bootstrap sample of application data. In the process
of tree construction, variables are randomly selected as the
candidate variable set at each split, and the results are
collected by randomly selecting the features of each classi-
fication tree. Finally, the results are stably and accurately
predicted by majority voting or average according to each
specific problem. Assuming a set of input data sets is
{ · · ·( ) =H x θ i   k, , 1, 2 ,i } and the prediction value of a single
decision tree is { ( )H x θ, i }, the final prediction result of the
RF model is the average of the prediction results of all
decision trees:

( ) ( )∑=
=

H x
k

H x θ‾

1

, ,

i

k

i

1

(7)

where ( )H x‾ is the predicted value of the RF model, θi is a
random variable of a single decision tree, x is the charac-
teristic variable, and k is the number of decision trees.

3.3 Interpretable machine learning method

Interpretability shortage is one of the restrictions of using
a machine learning model, and SHapley Additive exPlanations
(SHAP) belongs to the method of model post-interpretation. Its
core idea is to calculate themarginal contribution of features to
themodel output and then explain the “black boxmodel” from
the global and local levels [33]. SHAP is an interpretable
machine learning method based on game theory that involves
constructing a combination of different input variables to com-
pare the average change of the model output and then quanti-
fying the specific contribution of each feature to the model
results. The SHAP value of each input variable is the weighted
average of the marginal contribution of the variable, which is
calculated as follows:

∣ ∣ ( ∣ ∣ )
[ ( { }) ( )]

( )
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!
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(8)

where Φi is the SHAP value of input variable i. A positive
(negative) SHAP value indicates that variable i contributes
to the prediction result; n is the number of input variables;
N is the complete set of input variables; S is the set

excluding variable i and is a subset of N; and F(S) is the
prediction based on the input S.

4 Database establishment

4.1 Sample data

The sample data used in this study came from the experi-
mental data of CSG mechanical properties obtained in the
previous experiment, with a total of 114 sample data. As an
additional data set independent of the training set and the
test set, the validation set can be used to evaluate the
model to better determine whether the model has good
generalization ability. In view of the necessity of the ver-
ification set and to further increase the reliability of the
model, the sample data were randomly divided into three
parts: 77 training set data, 20 verification set data, and 17
test set data, and the modeling was carried out on the basis
of these data. Input variables in this article were comple-
tely consistent with the test mix ratio and material dosage.
Input variables included cement content, sand rate, water-
binder ratio, and fly ash content, which involved all raw
materials (cement, fly ash, sand, water, and sand gravel) in
the test. Although increasing the number of input features
in some machine learning algorithms could improve the
model’s performance to a certain extent, it usually requires
more data support [34]. In view of the limited amount of
data in this article, it was appropriate to select four input
variables, and the model in this article could achieve very
good prediction accuracy, whereas too many input fea-
tures might have easily led to overfitting problems. At
the same time, the computational complexity of the model
will be increased [35]. In addition, the output variable was
set to compressive strength. The description of the overall
data in the model is shown in Table 4, which provides the
mean value, median value, standard deviation, sample var-
iance, range, minimum value, maximum value, sum, and
number of sample data of the corresponding data. In order
to ensure that all models obtain the best results from the
parameters, it was crucial to identify these parameters.

4.2 Data preprocessing and evaluation index

Due to the differences in the units of input variables in this
study, if they were directly substituted into the model for
learning, the final result would be affected to some extent,
so it is necessary to normalize the data. The normalization
process retains all the features, converts the parameter
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values into data between 0 and 1, and converts dimension-
less expressions into dimensionless expressions, so that the
data are numerically comparable and the model has higher
accuracy. In this study, min–max standardization was used
as a normalization method, and the expression equation is
as follows:

=
−

−
y

x x

x x
,i

i min

max min

(9)

where yi represents the normalized data, xmin represents
the minimum feature data, xmax represents the maximum
value of the feature, and xi represents the data before
normalization.

In order to test the performance of the model, this
article evaluated its performance through coefficient of
determination (R2), root mean square error (RMSE), and
mean absolute error (MAE). Each index has its ownmethod
to infer the performance of the model. R2 is used to check
the linear correlation between the experimental value and
the predicted value. When R2 is >0.8 and <1, the model is
considered valid [36]. RMSE is used to evaluate the differ-
ence between the experimental value and the predicted
value and is the most commonly used index to measure
the regression quality of regression trees. MAE is used to
assess the average error between the experimental value
and the predicted value. For these two indicators, the
lower the value, the higher the model performance. R2,
RMSE, and MAE formulas are as follows:
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where N is the number of sample data, yi is the experi-
mental value (MPa), y̅i is the average of the experimental
value (MPa), fi is the predicted value of model regression
(MPa), and f̅i is the average of the predicted value from the
model regression (MPa).

5 Model prediction and result
analysis

The purpose of this study was to evaluate the performance
of the LSTM model and the RF model for CSG compressive
strength prediction. In order to analyze and compare the
predictive performance of the two models, the experi-
mental value and the predicted value were plotted in rela-
tion to each other. The input data set included cement
content, sand rate, water-binder ratio, and fly ash content,
and the output variable was compressive strength. R2,
RMSE, and MAE were used as the performance indexes
for model evaluation, and the predictive performance of
the two models was compared and analyzed. The effective-
ness of deep learning algorithm and machine learning
algorithm in CSG compressive strength prediction was
compared. The deep learning algorithm chosen in this
article was LSTM, and the machine learning algorithm
was RF.

Both the LSTM model and the RF model successfully
predicted CSG compressive strength. Grid search is widely
used as a machine learning tuning technology. It evaluates
the model effect of each different parameter combination
for random combinations of parameters within a given
range through cross-validation to find a set of optimal
parameters. This method has good applicability in both
machine learning and deep learning and has strong robust-
ness during operation. It can exhaust all possible para-
meter combinations to ensure that the global optimal
solution can be found, especially in problems with small
parameter space [37,38]. In view of the advantages of this
method and the small parameter space of the proposed
model, the grid search method was used to optimize the
parameters of the LSTM and RF models.

For the parameter adjustment of the LSTM model, grid
search was used to find the optimal parameter structure,
and cross-validation was carried out under the conditions
of a given range of relevant parameters. The optimal para-
meter structure was obtained as follows: the activation
function was “relu,” the step size was 2, the number of

Table 4: Statistical description of the overall data

Category Cement
(kg·m−3)

Sand rate Water-
binder
ratio

Fly
ash
(kg·m−3)

Mean 57.54 0.28 1.19 36.40
Median 60 0.3 1.2 40
Standard
deviation

9.78 0.097 0.16 10.44

Sample
variance

95.72 0.0096 0.027 109.00

Range 30 0.30 0.40 30
Minimum 40 0.10 1 20
Maximum 70 0.40 1.40 50
Sum 6,560 32.1 118.8 4,150
Count 114 114 114 114
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hidden layers was 256, the number of batch selections was
32, the learning rate was 0.001, the output scale was 1,
and the output scale corresponded to an output variable
(compressive strength). In addition, the epoch number
of iterations was 250, which determined the fitting and
convergence of model training to a large extent. The
model required several iterations to fit convergence. As
the number of epochs increased, the number of weight
update iterations increased, and the curve changed from
the initial state of unfitting to the state of optimal fitting
and finally into the state of overfitting. The iteration of the
LSTM model in this article is shown in Figure 4. It could be
seen from the figure that both the training set and the
verification set began to converge when the number of
iterations reached 200 and then entered the optimization

fitting state. Therefore, the epoch number of iterations of
the LSTM model in this article was 250.

For the parameter adjustment of the RF model, the
tuning of the RF model mainly involves two parameters:
the number of decision trees and the number of leaf nodes
[39]. The number of decision trees is often referred to as
“the number of trees in a RF,” and the number of leaf nodes
controls the depth of each decision tree. These two para-
meters affect the overall performance and running speed
of the RF, and a few other parameters will also have a
certain impact on the model, such as “min_samples_split”
and “max_feature.” Given the range of relevant para-
meters, the number of main parameter decision trees
was 0–200 and the number of leaf nodes was 0–10. After
cross-verification, the optimal parameter structure was
obtained as follows: the number of decision trees was 39,
the number of leaf nodes was 1, “min_samples_split” was 2,
“max_feature” was “auto”, where “min_samples_split” and
“max_feature” were default values, and the model would
have obtained the best performance under this parameter
structure.

The LSTM and RF models were divided into the same
training set, validation set, and test set to facilitate com-
parative analysis, and training and learning were carried
out under the optimal parameter structure. The results
after successful prediction were analyzed. Figures 5 and 6,
respectively, show the errors between the predicted value
and the experimental value of the LSTM and the RF models
under different data sets. By observing the bar chart, it
could be seen that the absolute error of the LSTM model’s
prediction results under the training set and the test set wasFigure 4: LSTM model iteration process.

Figure 5: Error plots of predicted and experimental values of the LSTM model in different data sets: (a) train set and (b) test set.
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mainly concentrated in [0–0.3], while the absolute error
of the RF model’s prediction results under the training
set and the test set was mainly concentrated in [0.2–1.0],
and the error of the LSTM model’s prediction results was
much smaller than that of RF model. It can be seen from
the dot plot in the Figures 5 and 6 that the predicted value
curves of the LSTM model in both the training set and the
test set were more in line with the test value curves than
those of the RF model, and the predicted value was more in
line with the test value, which further reflected that the
prediction accuracy of the LSTM model is much higher
than that of the RF model.

In order to more intuitively represent the prediction
accuracy of the model, the scatterplot of the prediction
effect of each sample of the LSTM model and RF model is
shown in Figure 7, and the fitting of the prediction results
is also shown. Compared with the RF model, the scatter
point of the LSTM model was closer to the diagonal line,
indicating that the model had better fitting performance
under both the training set and the test set. The predicted
value of the LSTM model had better consistency with the
compressive strength test value of the CSG model, and it
had higher prediction accuracy than the RF model. This
can also be seen in the coefficient of determination

Figure 6: Error plots of predicted and experimental values of the RF model in different data sets: (a) train set and (b) test set.

Figure 7: Fitting curves of different models: (a) LSTM model and (b) RF model.
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between the predicted value and the experimental value.
In addition, the R2 of the LSTM model and the RF model
were close to each other in the training set and the test set,
indicating that the models were not overfitted, which ver-
ified the effectiveness of the models.

Statistical analysis was carried out on the LSTM model
and RF model, and the evaluation indicators are shown in
Table 5. It could be seen that the R2 value of the LSTM
model was 0.9940, which was closer to 1 than that of the
RF model, the RMSE value was 0.1248, and the MAE value
was 0.0960, all of which were much lower than those of RF
model, indicating that the prediction accuracy of the LSTM
model was higher. The results of this study were similar to
those of previous literature. Gao [40] realized the deep
learning CNN could predict the compressive strength of
recycled concrete and compared it with the traditional
machine learning BP neural network and SVM. The results
showed that CNN had higher prediction accuracy, and the
training error of 28-day compressive strength was 0.25%.
The test error was 0.66%. In addition, Latif [27] predicted
the compressive strength of concrete through deep learning
LSTM and compared it with the traditional machine learning
SVM. The results showed that the accuracy of the LSTMmodel
was better than that of SVM, and the R2 values were 0.98 and
0.78, respectively. Similarly, Chen et al. [41] used LSTM to
predict the compressive strength of high-strength concrete
and compared it with the traditional SVR. The results showed
that the LSTM model had higher accuracy and reliability.
Therefore, it could be concluded that the results of this study
were similar to those of other studies in the field, and LSTM
could be used as a reliable prediction model for CSG.

6 Interpretability analysis

The above research showed that for CSG with a given mix
ratio, the LSTM model can accurately predict its compres-
sive strength. For CSG, if the predicted compressive strength
value does not meet expectations, the content of each com-
ponent of CSG needs to be adjusted continuously. However,
in a situation where the influence and contribution of each

input variable to the output result are unknown, these
attempts are blind, and there will be a lot of trial and error.
Based on this, in order to enhance the interpretability of the
model, this article put forward a displayed SHAP, which can
explain the machine learning method to study the impor-
tance of each input variable to the output and contribution
to the size of the positive and negative.

As shown in Figure 8, the average SHAP value on the X
axis indicates how important the input variable was to the
output result. It could be found that in this study, the input
variable that had the greatest influence on the compressive
strength of CSG was cement content, followed by sand rate,
water-binder ratio, and fly ash. In addition, the influence of
global features that illuminated the input features is illu-
strated in Figure 9, where each point represents the fea-
tures and SHAP value observed separately in the data set.
The X axis represents the SHAP value of each input vari-
able, i.e., the impact of each input variable against pressure
strength, and the Y axis represents the importance ranking
of the four input variables. The high eigenvalue of each
sample in the figure indicates that this input variable had a
positive and negative effect on the output result. It could be
clearly seen from Figure 9 that the influence of cement
content and fly ash content on compressive strength was
positive, i.e., the compressive strength increased with the
increase in dosage. On the contrary, the influence of sand

Table 5: Model performance comparison

Model Dataset R2 RMSE MAE

LSTM Train set 0.9931 0.1377 0.1179
Test set 0.9940 0.1248 0.0960

RF Train set 0.9228 0.4655 0.3758
Test set 0.9147 0.4809 0.4397

Figure 8: Global importance of the input variables.

Figure 9: Global feature influences of the input features.
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ratio and water-binder ratio on compressive strength was
negative, and the increase in the content of these two com-
ponents would have led to a decrease in the compressive
strength of CSG, which was consistent with the actual law
in a certain range, and the interpretation result had a
certain credibility.

7 Conclusion

In this article, deep learning LSTM is used to predict the
compressive strength of CSG, and the prediction results of
the LSTM model are compared with machine learning RF.
The main conclusions are summarized as follows:
1) The LSTM model can well deal with the complex non-

linear relationship between variables, and the coeffi-
cient of determination R2 exceeds 0.99 in both the
training set and the test set.

2) Compared with the traditional machine learning RF,
deep learning LSTM has higher prediction accuracy
and better performance. It can be used as a method to
predict the compressive strength of CSG. The predicted
compressive strength of CSG can be obtained through
LSTM model prediction before the laboratory compres-
sion test, which will greatly reduce the time and mate-
rial costs of the laboratory compression test. Good for
environmental protection.

3) Among the four input variables in this article, cement
content and sand rate are the two variables that have
the greatest influence on compressive strength.

4) The influence of cement content and fly ash content on
compressive strength is positive, and the compressive
strength increases with the increase in the content, while
the influence of sand rate and water-binder ratio on com-
pressive strength is negative, and their increase will lead
to a decrease in the compressive strength of CSG.

In this article, LSTM and RF models are proposed to
predict the compressive strength of CSG, both of which can
be predicted successfully. LSTM has better accuracy and
generalization ability, but there are some limitations. Since
LSTM is a recursive neural network, it requires a lot of
computational resources and time, and it is recommended
to develop a more simplified deep learning model in future
studies. The performance of RF models is often limited
when processing high-dimensional data, and it is suggested
that this problem should be studied in future studies. In
addition, it is very important to evaluate the generalization
ability of the model, which is also one of the challenges
faced by the current research field. In future studies, more
data sets can be used to evaluate the generalization ability

of the model in this article so as to better adapt to the needs
of practical applications. In addition to expanding the data
set, it is necessary to integrate the prediction model into
the existing system or software before practical application
and consider the strategy of data update andmodel retraining
to ensure the effectiveness and sustainability of the model.
Furthermore, better methods can be adopted for model inter-
pretation and analysis to determine the limitations and risks
of the model.
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