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Abstract: Due to environmental and financial concerns,
there is a growing demand for composite materials in a
wide range of industries, including construction and auto-
motive industries. In 2020, the market for wood plastic
composites was estimated to be worth $5.4 billion. By
2030, it is expected to have grown to $12.6 billion, with a
compound annual growth rate of 8.9% between 2021 and
2030. The fundamental disadvantage of reinforced compo-
sites by natural fibers is the different nature of the hydro-
philic lignocellulosic and the hydrophobic thermoplastic
polymers, although natural fibers would lower total costs.
These composites typically fail mechanically as a result of
fiber debonding, breaking, and pull-out. In a fiber-rein-
forced composite, the matrix’s function could be described
as distributing the force to the added fibers using interfa-
cial shear stresses. A strong connection between the poly-
meric matrix and the fibers is necessary for this procedure.
Weak adhesion at the interface prevents the composite
from being used to its maximum potential and leaves it
open to attacks from the environment that could damage
it and shorten its lifespan. Poor mechanical performance is
caused by insufficient adhesion between hydrophobic poly-
mers and hydrophilic fibers in natural fiber-reinforced
polymer composites. Consequently, during the past 20 years,
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a variety of chemical, thermal, and physical methods have
been employed to address these issues. These methods lar-
gely concentrated on the grafting of chemical groups that
could enhance the interfacial contacts between the matrix
and natural fibers. This review article aimed to give infor-
mation on several types of fiber treatments and natural
fiber-treated composites with a specific focus on their phy-
sical and mechanical properties.
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1 Introduction

Wood plastic composite (WPC) is a synthetic composite
made from a polymer matrix imbedded with wood fiber/
wood flour. Thermosettings and thermoplastics are the two
main categories of polymers. High-density polyethylene
(HDPE), polypropylene (PP), and polyvinyl chloride (PVC)
are the most often used thermoplastic polymers as a matrix
for natural fibers (Table 1), whereas polyester, epoxy, phe-
nolic, and resins are the most widely employed thermoset
materials (Table 2) [1]. The fact that thermoplastic polymers
can be cut, screwed, and nailed using tools previously used
for wood construction and their processing temperatures,
which are often lower than wood’s thermal degradation
temperature (180-200°C), make them appealing for WPCs,
where HDPE (83%), PP (9%), and PVC (7%) are the most
common thermoplastic polymers used in WPCs [2].

In response to the rising demand for biodegradable,
renewable, and sustainable materials, this class of composite
material, also known as “green composites,” has emerged as a
significant group of engineering materials. Due to the exis-
tence of wood as an organic material, WPCs have a sustain-
able nature that allows for environmental conservation and
waste reduction. Such materials also offer substantial benefits
that justifiably support their use [3]. Although the majority of
polymers are non-biodegradable, wood fibers (as well as the
other main natural-organic fillers including waster
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Table 1: Properties of typical thermoplastic polymers used in natural fiber composite fabrication (adapted from ref. [1])

Property pp? LDPE HDPE PS Nylon 6  Nylon 6,6
Density (g-cm'3) 0.899-0.920 0.910-0.925 0.94-0.96 10.4-1.06  1.12-1.14  1.13-1.15
WA-24 h (%) 0.01-0.02 <0.015 0.01-0.2 0.03-0.10 1.3-1.8 1.0-1.6

Ty (°O) -10 to -23 -125 -133to -100 N/A 48 80

Tm (°C) 160-176 105-116 120-140 110-135 215 250-269
Heat deflection Temp (°C) 50-63 32-50 43-60 Max. 220  56-80 75-90
Coefficient of thermal expansion (mm™mm™-°C x 10°)}-cm™  6.8-13.5 10 12-13 6-8 8-8.86 7.2-9
Tensile strength (MPa) 26-41.4 40-78 14.5-38 25-69 43-79 12.4-94
Elastic modulus (GPa) 0.95-1.77 0.055-0.38 0.4-1.5 4-5 29 2.5-3.9
Elongation (%) 15-700 90-800 2.0-130 1-2.5 20-150 35->300
Izod impact strength (:m™) 21.4-267 >854 26.7-1,068 1.1 42.7-160  16-654

PP = polypropylene, LDPE = low-density polyethylene, HDPE = high-density polyethylene and PS = polystyrene.

Table 2: Properties of typical thermoset polymers used in natural fiber
composites (adapted from ref. [1])

Property Polyester Vinyl ester Epoxy
resin resin
Density (g-cm ™) 1.2-1.5 1.2-1.4 1.1-1.4
Elastic modulus (GPa) 2-4.5 3.1-3.8 3-6
Tensile strength (MPa)  40-90 69-83 35-100
Compressive 90-250 100 100-200
strength (MPa)
Elongation (%) 2 4-7 1-6
Cure shrinkage (%) 4-8 N/A 1-2
WA (24 h@20°C) 0.1-0.3 0.1 0.1-0.4
Izod impact 0.15-3.2 25 0.3

strength ('m™")

agriculture fibers) are usually added to the polymer matrix
up to 40-70% by weight and reduce non-biodegradable pro-
portion of WPC significantly [4]. Furthermore, it is possible to
use waste or recycled polymer materials to produce WPCs
with the minimum negative effect on the environment.
Finally, the thermoplastic-based green composites are recycl-
able and more biodegradable due to their polymer features
and natural fiber content, respectively.

The benefits of wood flour include its low cost, light-
weight, and accessibility, making it an economically friendly
material that can be used in composites [5-8]. The construc-
tion and automotive industries are where WPCs are most
commonly used, but they are also employed in packaging,
the creation of different home furnishings, office equipment,
and other goods [5,6,9]. Salemane and Luyt [10] investigated
how adding wood flour improved the mechanical properties
of a composite made of wood and PP. Since fibers have
substantially greater strength and stiffness amounts than
matrices, adding fibers to a polymer matrix usually signifi-
cantly improves the tensile properties of composites.

It is imperative to create alternative, affordable, and
ecologically friendly natural fiber sources for plastic com-
posites due to rising wood pricing and demand for tradi-
tional wood sectors. The composite’s mechanical, thermal,
and other properties are quickly enhanced by the plant
fiber utilized as a reinforcing material [11]. For their per-
suasive characteristics, including cheap prices, lightweight,
low density, biodegradability, recyclability, high stiffness
and strength, and renewable features, natural fibers are
favored against synthetic fibers (Table 3) [12]. Plant-based
natural fibers including flax [13,14], hemp [15,16], jute
[17,18], sisal [19,20], kenaf [21,22], bagasse [11,23,24], banana
[25,26] coir [27,28], plantain [29-31], and pineapple fibers
[32,33] have been adopted by composite sectors as replace-
ments for synthetic fibers in an attempt to substitute them
due to their numerous benefits during the recent dec-
ades [34].

Natural fibers have many inherent drawbacks,
including weak compatibility with polymer materials. The
hydrophilic feature of the natural fiber that led to weak
adhesion and moisture absorption causes weak compat-
ibility in biocomposites. As a result, natural fibers must be
pretreated in order to increase the biocompatibility between
the fibers and matrix by the activation of fiber’s hydroxyl
groups [35]. Pre-processing modifications of composite
elements are performed to prevent the fibers’ hydrophi-
licity and to improve the interfacial characteristics of
polymer and natural fibers. Chemical, mechanical, and
thermal treatment methods represent the three basic
types. Although chemical treatment is frequently employed,
it has negative environmental effects. Hence, environmen-
tally acceptable alternatives to chemical treatment including
mechanical and thermal methods were recommended [36].
The fiber modification aims to increase the fibers’ hydro-
phobicity, interfacial connection between the fiber and
matrix, roughness, and wettability as well as to reduce
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Table 3: Physical and tensile properties of natural fibers and glass fibers (adapted from ref. [56])

Fiber type  Diameter (um)  Relative Tensile Elastic Specific modulus Elongation at
density (g-cm3) strength (MPa) modulus (GPa) (GPa x cm*-g™) failure (%)
E-glass <17 2.5-2.6 2,000-3,500 70-76 29 1.8-4.8
Abaca — 1.5 400-980 6.2-20 9 1.0-10
Alfa — 0.89 35 22 25 5.8
Bagasse 10-34 1.25 222-290 17-27.1 18 11
Bamboo 25-40 0.6-1.1 140-800 1-32 25 2.5-37
Banana 12-30 1.35 500 12 9 1.5-9
Coir 10-460 1.15-1.46 95-230 2.8-6 15-51.4
Cotton 10-45 1.5-1.6 287-800 5.5-12.6 6 3-10
Curaua 7-10 1.4 87-1,150 11.8-96 39 1.3-4.9
Flax 12-600 1.4-15 343-2,000 27.6-103 45 1.2-33
Hemp 25-600 1.4-1.5 270-900 23.5-90 40 1-35
Henequen — 1.2 430-570 10.1-16.3 1 3.7-5.9
Isora — 1.2-1.3 500-600 — — 5-6
Jute 20-200 1.3-1.49 320-800 30 30 1-1.8
Kenaf — 1.4 223-930 14.5-53 24 1.5-2.7
Nettle — — 650 38 — 17
Oil palm — 0.7-1.55 150-500 80-248 0.5-3.2 17-25
Piassava — 1.4 134-143 1.07-4.59 2 7.8-21.9
PALF 20-80 0.8-1.6 180-1,627 1.44-82.5 35 1.6-14.5
Ramie 20-80 1.0-1.55 400-1,000 24.5-128 60 1.2-4.0
Sisal 8-200 1.33-15 363-700 9.0-38 17 2.0-7.0

moisture absorption, which will improve the composites’
mechanical properties [37-41].

An overview of current developments in the field of
natural fiber-treated composites is given in this study, and
the effect of various treatments on the mechanical and
physical characteristics of composites reinforced by nat-
ural fibers is highlighted.

2 Thermal treatment

Thermal treatment of wood, which significantly alters its
physical and mechanical properties, is one of the most sig-
nificant wood treatment techniques [42]. In recent years, the
application of thermal modification has accelerated, and it is
still expanding as an industrial technique [43]. Normal oper-
ating temperatures for thermal treatment are 180 to 260°C.
The wood structure is not considerably affected by tempera-
tures below 140°C, while unfavorable degradation occurs at
temperatures above 260°C [44]. Wood’s chemical com-
pounds are impacted by heat treatment. The temperature
of the treatment has been discovered to have a greater
impact on chemical modifications than duration [45].
The chemical modifications that take place in wood by
thermal treatment have a number of positive effects on the
physical characteristics of wood, including less swelling
and shrinkage, improved durability to biological deterioration,

alteration in color, and lower equilibrium moisture content.
Thermally treated timber has a significant and substantial
drawback because its mechanical features deteriorate, lim-
iting its utilization for strength-bearing purposes, and its
MOE decreases [46].

Ayrilmis et al. [47] studied how thermal treatment
affected the mechanical futures and dimensional endur-
ance of WPCs produced by the flat press method. The dry
mixture of Eucalyptus camaldulensis and 50% PP powder
was used to make the WPC samples in an autoclave for 20
and 40 min at three different temperatures (120, 150, and
180°C) by employing a standard flat press procedure in a
laboratory environment. The study confirmed that depending
on the temperature and time circumstances, the thermal
treatment of the wood fibers resulted in decreases of 60
and 31% in the TS and water absorption (WA) after 28 days
of water soaking, respectively (Table 4). This was mostly due
to the thermal treatment’s hydrolysis of hemicelluloses. The
TS and WA of the WPC panels were significantly affected by
the thermal treatment of the wood fibers, especially over
150°C for 40 min. However, the treatment temperature had
a greater impact on the TS and WA than the treatment dura-
tion (Table 4) [47]. Based on the duration and temperature
circumstances, the modulus of elasticity, rupture, and the
internal bond (IB) strength of the wood fibers treated by
this method fell by 5 to 19%, 7 to 22%, and 9 to 28%, respec-
tively, while the screw withdrawal resistance reduced from 3
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Table 4: The relationship between the WPC panels’ physical characteristics and the thermal treatment of the wood fibers (the ratio of wood fiber to

PP: 50:50 by wt) (adapted from ref. [47])

Thermal-treatment

Physical properties

level (°C, min)

Density Thickness swelling (%) WA (%)
(grem™)
1-day 7-days 14-days 28-days 1-day 7-days 14-days 28-days

Untreated reference 0.82 3.98A7 5.06A 7.82A 8.15A 6.45A 16.53A 24.12A 25.94A
120,20 0.80 2.94B 3.82B 4.97B 5.20B 4.82B 14.72B 21.59B 23.18B
120,40 0.82 2.64BC 3.48BC 4.59B 4.84B 4.39B 14.09B 20.96B 21.46B
150,20 0.81 2.28C 3.15CD 4.27B 4.51C 3.85C 13.37BC 19.77C 21.12C
150,40 0.82 2.05CD 3.05D 3.81C 4.02C 3.47CD 12.96C 19.25C 20.58D
180,20 0.83 1.84D 2.28E 3.17D 3.39D 3.15D 10.88D 17.92D 18.64E
180,40 0.81 1.72D 2.05E 3.06D 3.25D 2.91E 9.79E 16.95E 17.84E

@ Letters show Duncan’s multiply range test (p < 0.01).

to 11% (Table 5). The IB outcomes depicted that raising the
intensity of the thermal treatment had a negative impact on
the mechanical interlocking between the polymer and wood
fibers [47].

The creation of soluble acidic compounds, including
acetic acid and formic acid, from the decomposition of
hemicellulose may be responsible for the WPC panels’
loss of mechanical features [48]. The crystalline structure
of cellulose (long chain) is broken down into shorter pieces
by these acids, which speed up the cellulose depolymeriza-
tion. Additionally, as the temperature and length of the
treatment increase, C—C and C-O links cleave within the
polymer itself. As a result, the copolymer system of lignin—
hemicellulose separates, and hemicelluloses and amor-
phous cellulose are depolymerized [49]. The modulus of
rupture (MOR) and modulus of elasticity (MOE) of the
wood may be influenced by cellulose depolymerization
and the decrease of its length chain [50]. Other studies
also showed similar outcomes [51-54].

According to Hu et al. [55], the mechanical and phy-
sical characteristics of the bamboo plastic composite were
examined in relation to the influence of bamboo fibers that
had been modified by utilizing a vacuum-heated method.
The outcomes showed that the bamboo fibers’ surface
polarity and hemicellulose content could be decreased
after the vacuum heat treatment, enhancing the interface
compatibility between the bamboo fiber and polyethylene.
The composite’s WA after 24 h was reduced by 73.01%
when the temperature was 160°C in comparison with the
control group, and the composite’s thickness swelling after
24 h was the lowest point at 180°C, which, compared to the
control group, was 71.47% lower. The mechanical strength
of the composites also exhibited a pattern of raising and
reducing as a function of vacuum heat treatment tempera-
ture. The bending strength and modulus of the composites
reached the highest amount at 180°C, increasing by 39.91
and 21.77%, respectively, compared to the control group.
Thus, the findings showed that adding a compatibilizer and

Table 5: The relationship between the WPC panels’ mechanical characteristics and the thermal treatment of the wood fibers (the ratio of wood fiber

to PP: 50:50 by wt) (adapted from ref. [47])

Thermal-treatment

Mechanical properties

level (°C, min)
Modulus of

rupture (N-mm2)

Modulus of
elasticity (N-mm)

IB strength (N'-mm™3) Surface SWR (N)

Untreated reference 25.9A° 2682.4A
120,20 24.7B 2483.8B
120,40 24.2BC 2434.5B
150,20 23.7CD 2358.3C
150,40 23.0D 2264.2D
180,20 21.7F 2225.8D
180,40 21.0F 2102.5E

0.95A 1,010A
0.86B 982AB
0.83BC 976AB
0.77CD 951BC
0.75D 924CD
0.71DE 915CD
0.68E 894D

dLetters show Duncan’s multiply range test (p < 0.01).
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thermal treatment of the composites could greatly increase
their bending strength and water resistance, but it may
also somewhat diminish their impact strength [55].

2.1 NaOH

Alkali modification is advantageous for cleaning the sur-
face of the fiber, altering the surface chemistry, reducing
moisture absorption, and raising the roughness of the sur-
face. The process helps clean away contaminants and
waxy particles from the surface of the fiber and pro-
duces a smoother texture that makes mechanical inter-
locking easier. The chemical connection between the
reinforcement and resin is also strengthened by the
cleaned fiber surface [56].

Bharath and Basavarajappa [57] evaluated phenol-for-
maldehyde (PF) composites containing coconut tree leaf
sheath (CLS) for their fire resistance capability. To create
CLS samples, a conventional hot press was employed with
60 wt% untreated and treated CLS fibers with 5% NaOH.
The results of the flammability test showed that the treated
composites’ mass loss rate and flame propagation rate had
been reduced, while their flame resistances had been
increased. The limiting oxygen index test also showed that
alkali-treated composites needed more oxygen to burn than
untreated composite material [57].

Guo et al. [58] reported that following alkalization,
some pectin, hemicellulose, lignin, and other low-molecule
contaminants dissolve and are eliminated, along with a
significant number of hydrogen bonds. The fiber’s surface
gets rougher, which improves the fiber’s ability to bind to
the resin at the interface. The remaining material is pri-
marily composed of wood fiber. The hydroxyl of the crys-
talline wood fiber is exposed to the alkaline solution, which
causes the wood fiber to become fluffy and better able to
attach to the coupling agent. This reduces the hydrophili-
city of the wood fiber and enhances the interface’s adhe-
sion properties and wettability. The alkalization process
reduces the fiber split, decreasing its diameter, while
enhancing its aspect ratio, resulting in an expansion of
the fiber’s interface with the matrix [58].

Li et al. [59] investigated the possibilities of adopting
several kenaf core pre-treatment using HDPE. The study
found that pre-treatment had little impact on fungus resis-
tance and that the duration of pectinase or cellulase
enzyme pre-treatment should be reduced to 30 or 60 min,
respectively. The mechanical performance of a 60/40 kenaf/
HDPE mixture was significantly enhanced by pre-treating
the core particles with 1% NaOH or 1% HCl for 60 or
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30 min, respectively. Pre-treating the kenaf fibers for 1 h
with NaOH resulted in increases in MOE and MOR of
approximately 50 and 82%, respectively [59].

Corn husk fiber (CHF) and recycled polystyrene foam
(rPS) composites’ tensile, thermal, WA, and morphologies
were studied by Chun et al. [60] in relation to their fiber
loading and alkaline treatment. According to the tensile
test results, rPS/CHF composites’ strength and modulus
have increased by an average of 26 and 13%, respectively.
A portion of the hemicellulose, lignin, and other com-
pounds were eliminated from CHF after the alkaline treat-
ment, and the fibers’ surface roughness was raised. The
interfacial interlock between the treated fibers and the
rPS polymer was enhanced. Because of this, there was an
improvement in the stress transmission between the fiber
and matrix, leading to composites with greater strength
and modulus. Similar findings were observed in other
works as well [61,62]. Compared to untreated rPS/CHF com-
posites, the average WA is 29% lower in treated rPS/CHF
composites. Additionally, Chun et al. [63,64] discovered that
composite materials with treated natural filler will absorb
less water.

Baffour-Awuah et al. [65] investigated the effects of
treating wood flour with alkali and ultrasound methods
on the mechanical characteristics of wood polypropylene
composites. The findings demonstrated that lignin and
hemicellulose were eliminated from the wood by the alkali
treatment, and the amount of hydroxyl groups on the sur-
face of the cellulose increased. This technique was made
more effective by ultrasonic modification. When PP grafted
with maleic acid was utilized as a compatibilizer, mechan-
ical features of WPC specimens demonstrated that alkali
treatment increased both composite strength and modulus.
While stronger modulus results from the elimination of
hemicellulose and lignin, which are less stiff than cellulose,
the strength improvement is caused by enhanced adhesion
between the matrix and the fiber. Composites having 1 and
3% NaOH-modified wood showed improvements in average
tensile modulus of 13% (from 4.27 to 4.83 GPa) and 20%
(from 4.27 to 5.13 GPa), respectively, as comparison to com-
posites manufactured with untreated wood. It has been defi-
nitively proven that chemical treatment of wood combined
with ultrasonic improves the mechanical properties of com-
posites more effectively than chemical treatment [65]. The
alkali solution penetrates the wood flour by utilizing ultra-
sound, which also gives each particle uniform vibrations. By
combining with alkali treatment, ultrasound expedites the
elimination of lignin from wood and boosts the amount of
hydroxyl groups on the cellulose’s surface. The particle size
of the wood is also decreased by the application of ultra-
sound. Thus, all of the mentioned processes have an impact
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on the stiffness and strength of WPCs produced by alkali-
treated wood [65].

Cui et al. [66] investigated the role of weight fraction
and wood fiber length, as well as three surface modifica-
tions, including silane, alkaline, and alkaline + silane
methods, on the mechanical features of wood recycled
plastic composites (WRPCs). The research showed that as
the amount of wood fiber rose, flexural strengths increased
and impact strengths decreased. Although the flexural
modulus improved with longer fibers, the impact and flex-
ural strengths reduced. The strongest mechanical features
were observed in a composite composed of wood fibers
treated by alkaline + silane methods along with MAPP.
According to Figure 1, all three surface treatments enhanced
the WRPC materials’ flexural strength in comparison with
unreinforced samples. Although the findings for the silane
treatment are relatively close to those for the combined
treatment, the alkaline + silane-treated composites demon-
strated the greatest flexural strength when compared to the
other two types of composites. The greatest improvement
was about 27% (50 wt%). Because of the complex microstruc-
ture of wood fiber, a surface treatment method may only be
able to slightly alter the surface properties, which results in
a limited increase in flexural strength [67]. The flexural
modulus and surface treatment trends are quite close to
flexural strengths, where 50 wt% treated wood fiber by alka-
line + silane had the highest flexural modulus (Figure 2) [66].

Nam et al. [68] produced composite material using
treated coconut shell fiber and polylactic acid after soaking
it in a 5% NaOH solution for 72h. In comparison to untreated
coconut shell fiber, the research revealed that the shear
strength and tensile strength had improved by 72.8%.
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Figure 1: Flexural strengths of wood fiber composites as a function of
wood fiber content with different surface treatment methods (adapted
from ref. [66]).
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Figure 2: Flexural modulus of WRPC material as a function of wood fiber
fraction with different surface treatment methods (adapted from
ref. [66]).

Rajeshkumar et al. [69] evaluated the effects of four
levels of NaOH concentrations (5-20%) on the mechanical
characteristics of epoxy composites reinforced by Phoenix
sp. fibers. In comparison to untreated fiber composites, the
results showed that the treated fibers had better interfacial
adhesion with polymeric matrix, decreased mechanisms of
failure (including fiber debonding and pull-outs), and had
improved mechanical characteristics [69]. Figure 3 shows
that reinforced specimens using 15% treated fiber have the
highest tensile modulus (589.12 MPa), which is 18.25% higher
than the untreated composite. According to the study’s find-
ings, composites with 15% treated fiber have the best flex-
ural characteristics (Figure 4), and their flexural strength
(143.65 MPa) is much higher than that of the control samples
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Figure 3: The effect of NaOH treatment on tensile properties of rein-
forced composites (adapted from ref. [69]).
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Figure 4: The effect of NaOH treatment on flexural properties of rein-
forced composites (adapted from ref. [69]).

(117.05 MPa). It was determined that the qualities of this
composite material complied with the requirements of EN
standards 312-2 and 312-3 and, therefore, could be utilized
for industrial purposes such as car panels [69].

2.2 Polyvinyl alcohol (PVA)

A type of secure, eco-friendly, and water-soluble material
that can be employed as fiber modification method is PVA.
PVA units that have been somewhat alcoholic have both
hydrophilic and hydrophobic OH groups and molecular
chains, respectively, that are well compatible with the
hydrophilic nature of cellulose. PVA’s hydroxyl groups
can be bonded by borax, formaldehyde, and other chemi-
cals. In order to increase the interfacial adhesion between
natural fiber and polymer matrix, PVA can be employed to
treat the fiber [70].

Effect of fiber treatment on natural fiber-reinforced composites
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Figure 6: Tensile strength of composites (adapted from ref. [70]).

To assess the mechanical characteristics and water
uptake of the composites, Hu et al. [70] coated the sisal
fibers with an alkali + PVA using an ultrasonic process.
The sisal-reinforced composites were manufactured using
a twin-screw extruder. The study demonstrates that sisal
fiber and HDPE can effectively be treated with an alkali/
PVA coating compound to increase the interfacial adhe-
sion, enhance the mechanical characteristics of the compo-
site, and decrease WA. The interfacial adhesion can be
clearly seen in the micromorphology of the composites’ cross
sections. The interfacial adhesion between sisal fibers and the
HDPE polymer has been considerably enhanced following
surface modification, which is also supported by the scanning
electron microscope (SEM) photos of the cross section and
other scientists [71-75]. As depicted in Figure 5(a), weak
mechanical property is often caused by the insufficient adhe-
sion of sisal fibers to HDPE polymer. Figure 5(b) illustrates
that the interfacial bonding enhances as the space between
the alkali-treated fibers and polymer reduces. As shown in

Figure 5: SEM images of sections of untreated sisal composites (a), alkali-treated sisal composites (b), and alkali/PVA coating compound-treated sisal
composites (c) and (d). SEM: scanning electron microscope; PVA: polyvinyl alcohol (adapted from ref. [70]).
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Figure 7: Flexural strength of composites (adapted from ref. [70]).

Figure 5(c), there is not much space between alkali + PVA-
treated sisal fibers and HDPE. According to the observations,
the sisal was only fractured at the cross section and not pulled
out. Both tensile and flexural strengths increased initially and
then declined when the sisal fiber amount was raised (Figures 6
and 7). The flexural and tensile strengths of the alkali/PVA-
coated sisal fiber composites attained their highest amounts
of 45.84 and 26.86 MPa, respectively, when the sisal fiber
content reached 12%. The alkali/PVA coating treatment increased
the tensile and flexural strength of composites by up to 18.85
and 18.90%, respectively, in comparison to untreated sisal
fiber composite. However, once sisal fiber levels rose
beyond 12%, fiber aggregation took place and led to weak
distribution. The WA of sisal fiber/HDPE composites with a
12% filling content is shown in Figure 8. By sisal fiber’s sur-
face treatment, the composite materials’ capacity to absorb
water was drastically reduced. Untreated sisal composite
absorbed 2.03% of water, but alkali-treated sisal composite
absorbed 1.57% of water, 22.67% less than untreated sisal
composite. The alkali/PVA coating treated sisal fiber compo-
site absorbed 1.33% of water, 34.48% less than untreated
sisal fiber composite [69].

2.3 Steam-exploded (SE) treatment

The impact of adding SE wood flour to a wood flour/plastic
composite was studied by utilizing Cryptomeria japonica
(Japanese cedar), Shorea negrosensis (red meranti), and
Fagus crenata (beech) and three types of thermoplastic poly-
mers including PVC, polymethylmethacrylate, and poly-
styrene [76]. The substitution of SE for wood flour often
enhanced the wood plastic board’s modulus of elasticity
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and rupture, and resistance to water. However, depending
on the plastic polymer and partially the wood species of SE,
the best-performed composition of the board was varied.
Despite plastic polymer, water durability was superior for
all composites utilizing SE compared to untreated compo-
sites, and the SE wood species had minimal effects on the
final board’s qualities [76].

2.4 Fungicide solutions

Ashori et al. [77] studied the impact of two chemical pre-
servatives including “3-iodo-2-propynyl butylcarbamate (IPBC)”
and “2 thiazol-4-yl-1H-benzoimidazole (TBZ)” on endurance
against the Coriolus versicolor (white-rot fungus) as well as
physical and mechanical characteristics of HDPE-reinforced
composites by poplar wood flour (PF). The study revealed
that treated composites had much lower strength losses and
higher resistance against decay than untreated samples. Fun-
gicide treatments enhanced TS and WA, but there was no
obvious difference between the modified samples (Table 6).
The weight loss of different treated composites varied from
1.1 to 4.5%, and the control had the greatest weight loss. Addi-
tionally, compared to the treated composites with TBZ, samples
that had undergone IPBC treatment had slightly less weight
loss. As a result, reinforced composites can be properly pro-
tected with IPBC and TBZ. Therefore, IPBC demonstrated better
results than TBZ, and it is advised to protect WPCs [77].

The thermal decomposition, dimensional stability, and
biological and mechanical properties of HDPE-reinforced
composites by CCA-treated wood, which were collected
after serving for 20 years, were examined by Tascioglu
et al. [78]. With the exception of the Izod impact strength,
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Table 6: Average mechanical and physical properties before and after fungal incubation (adapted from ref. 77)

Effect of fiber treatment on natural fiber-reinforced composites

-_ 9

Treatment Property
MOR (MPa) MOE (MPa) NI (k)-m™3) WA (%) TS (%)

Before After Before After Before After Before After Before After
Control 47.4 (1.2) 317 (3.4) 4,424 (76) 2,466 (221)  0.43(0.08) 0.34(0.08) 11.4 (1) 149 33) 41012 5.0 (3.2)
A 49.1(0.9) 34.0(22) 4,046 (115) 2,730 (154) 0.37(0.09)  0.31(0.08) 9.4 (1.1) 10.8 (21) 4.0(09 45(1.4)
A, 443 (0.8) 35.9(21) 4,360 (97) 2,877 (165)  0.37(0.09)  0.35(0.09) 8.6 (0.5) 10.03.1) 3.9(14) 4427
A3 439 (1.4)  39.6 (2.5) 4,250 (136) 3,192 (111) 0.38 (0.09)  0.37(0.1) 104 (22) MNM3(22) 43(13) 4729
B, 37.4(1.9)  26.8(3.00 3,951 (117) 2,339 (89) 0.41(0.07) 0.31(0.09) 12709 147(3.4) 3.8(0.5 41(1)
B, 344 (24) 27.8(2.8) 3,686 (112) 2,395 (99) 0.37(0.09) 0.34(0.08) 12.1(1.3) 141019 373 4.2 (2.1)
Bs 32.8(1.9) 27.2(1.2) 3,723 (80) 2,627 (146)  0.37(0.08) 0.35(0.03) 13.4(1.4) 145(2.9) 45() 4.9 (1.2)
A.B, 41.8 (2) 37.8 (1.0) 4,179 (116) 3,080 (79) 0.37 (0) 0.36 (0.08) 11.8(1.3) 13.8(1.9) 52(4.1) 5.8(2.3)
AsB; 43.0 (1.7)  40.8 (1.0) 4,282 (89) 3,437 (100)  0.39(0.02) 0.37(0.03) 9.3(1.5) 10.2(23) 46(3.2) 5.0(2.3)

Note: Values listed in parentheses are the standard deviations based on four specimens.

the WPC’s dimensional stability and mechanical properties
were enhanced by the recycled CCA-treated wood flour and
coupling agent. The biological analysis confirmed that the
treatment enhanced resistance to fungus and termites.
Instead of treating wood with chemicals, this procedure
could be utilized as a substitute recycling method.
Because the majority of WA occurs in the wood,
increasing the wood flour percentage made the material
more susceptible to decay and mass reductions. Several
borate-based biocides, including zinc borate (ZB), disodium

octaborate tetrahydrate, calcium/sodium borate, and boric
acid, can stop the fungi and other biodeteriorates [79]. ZB,
which has a high level of leaching resistance, broad effi-
cacy against insects and fungi as well as very low mamma-
lian toxicity and cost, is widely utilized commercially in a
variety of wood composites, such as wood plastic and par-
ticleboard [80].

Hosseinihashemi and Badritala [79] studied the long-
duration WA of wood flour prepared by ZB in a PP matrix
as influenced by “Trametes versicolor” after 98 days of
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Figure 9: Typical WA curves for selected composite formulations. UT-WPC: untreated wood flour/plastic composite; ZB-T-WPC: zinc borate treated
wood flour in manufacturing process/plastic composite; ZB-PT-WPC: zinc borate pretreated wood flour/plastic composite (adapted from ref. [79]).
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incubation. Since the WA and diffusion coefficients dif-
fered depending on the sample formulation, it was clear
that the ZB pretreatment employed in the current investi-
gation had a beneficial impact on the WA of WPCs. Figure 9
illustrates how the ZB-containing specimens had less WA
than the untreated ones. In comparison to the untreated
composites, the WA of the ZB-T-WPC and ZB-PT-WPC sam-
ples reduced by 4.6 and 27.9%, respectively. This is mostly
due to ZB’s lower water solubility. Additionally, the average
WA was higher in the ZB-T-WPC samples compared to the
ZB-PT-WPC samples. It might be anticipated that ZB precipi-
tation in cell lumens and cell walls will eventually decrease
in WA [79].

Badritala et al. [80] investigated how ZB treatment
affected the mechanical and morphological characteristics
of wood flour in the PP matrix. Except for tensile strength,
the ZB treatment had no effect on the composite’s mechan-
ical features. In comparison to the untreated samples, ZB-
containing samples had reduced flexural, tensile, and impact
strengths. However, the hardness was only slightly enhanced
by the ZB modification. According to SEM results, certain
crystalline deposits of ZB were deposited on the outer surface
of the wood fibers, increasing the surface area of the solids
inside the WPC and decreasing the bond effectiveness of the
polymer [80].

Gnatowski [81] investigated how zinc borate (ZnB) affected
WPCs’ ability to absorb water. The findings demonstrated
that two industrial WPCs with ZnB absorbed lower water in
exposed situations. The moisture diffusion coefficient of
WPCs made of HDPE and ZnB was studied by Jahadi et al.
[82]. The findings indicate that the diffusion constant of the
composites was reduced by the addition of ZnB (1%).

2.5 Chemical coupling agents

One of the major chemical techniques for enhancing inter-
facial adhesion is chemical coupling. In this technique, a
substance is applied to the fiber surface to create a che-
mical link between the matrix and the fiber. The majority
of researchers discovered that these medications were suc-
cessful and improved interfacial adhesion [37]. In order to
treat wood fibers, more than 40 different compatibilizers
have been studied. The most important types include anhy-
drides, silanes, isocyanates, and anhydride-modified copo-
lymers [83]. In general, the literature claims that using
maleic anhydride (MA) grafted matrices as a coupling
agent increases tensile strength and elongation at break
[39]. The load of the coupling agent is a key factor in the
treatment of fibers. Insufficient bonding between the fibers
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and matrix results from low values of coupling agents. In
contrast, taking too much might cause substantial fiber’s
agglomeration [84,85]. As a result, the best performance
of the composite materials would need the appropriate
amount of compatibilizers [86].

Cui et al. [87] treated the wood fibers using compati-
bilizers, including MA, methyl methacrylate (MMA), and
KH550, in order to decrease the water uptake of compo-
sites. The outcomes showed that the three surface modifi-
cations could successfully reduce the TS and WA of WRPCs.
The WA ratios of WRPCs with treated wood fibers by
KH550, MMA, and MA were decreased by 10.0, 21.7, and
27.6%, respectively, compared to the untreated samples,
and the impact toughness was improved by 18.4, 24.0,
and 2.1%, respectively, after 4 weeks of soaking in hot
water. When WRPC was treated with KH550 and MA, the
tensile strength improved by 26.0 and 11.1%, respectively,
but it reduced by 6.5% when treated with MMA. The effec-
tive approach for decreasing the WA of composites was
treated wood fibers by coupling agents, and this type of
composite had the best overall features [87].

In the study conducted by Khamtree et al. [88], alka-
line, silane, and alkaline-silane treatments were employed
to rubber wood flour (RWF) to create reinforced recycled
polypropylene (rPP) composites. To assess the role of treat-
ments in WA, morphological characterization, mechanical
and thermal properties of WPCs, silane treatment was
employed at different proportions and durations. In com-
parison to silane or alkaline alone, the results showed that
RWF treated with an alkaline-silane mixture demonstrates
superior properties. Additionally, treatment times mostly
unchanged the mechanical strength, hardness, and WA,
although silane amounts had a considerable impact on
these properties. The highest water resistance, mechanical
strength, and hardness of WPCs were achieved by an alka-
line-silane treatment (5% silane for 2 h). This procedure
also raised the crystallinity of the WPCs and enhanced
the interfacial bonding of RWF and rPP [88].

According to Hou et al. [89], incorporating the two
treatments for composites will improve bonding and might
even have an unanticipated synergetic effect.

Ramlee et al. [90] studied the different characteristics
of sugarcane bagasse (SCB) and oil palm empty fruit bunch
(OPEFB) composites treated with 4% H,0, and 2% silane. In
accordance with the findings, a 24-h examination revealed
that the silane-treated sample had the best mechanical
characteristics and the least amount of thickness swelling
and water uptake. Flexural strength (Figure 10) and flex-
ural modulus (Figure 11) of reinforced composites were
significantly improved with the addition of 2% silane-
treated fibers compared to H,0, and untreated composites.
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Figure 10: Flexural strength of treated reinforced composites (adapted from ref. [90]).

The research revealed that silane treatment enhanced the
functionality of waste natural fibers, and green composites
containing a mixture of different fibers meet both the phy-
sical and mechanical requirements for insulating board
standards to create new classes of sustainable and eco-
friendly construction materials such as thermal insulation
[90].

Vinod et al. [91] assessed the role of NaOH, oxalic acid,
and silane as treatments of soy stem fibers in the physical
and mechanical features of reinforced composites. The
study’s findings demonstrated that silane treatment of com-
posites improved their mechanical performance when com-
pared to NaOH, oxalic acid, and untreated fibers. The soy
fibers’ thermal stability was enhanced after the silane treat-
ment, and the silane-treated composite had a lower coefficient
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Figure 11: Flexural modulus of treated reinforced composites (adapted

from ref. [90]).

of thermal expansion [91]. The significant improvement in
mechanical and physical properties of silane-treated com-
posites was also confirmed by Ramesh et al. [92], where
the tensile strength of silane-treated fiber composites
varies in the range of 35-40 MPa, which is two times
higher than that of untreated fiber composites.

2.6 Plasma treatment

By inserting functional groups like sulfonates and amine
into wood fibers, plasma treatment is an environmentally
friendly mechanical treatment that is applied to enhance
the wood fibers’ surface features. It could be applied to
remove contaminants from the fiber surface, increase fiber
porosity, and the wood fiber defibrillation, which would
then improve the mechanical interlocking of polymer on
the surface of fibers. Along with the advantages that
plasma treatment has over chemical-based treatments in
terms of the environment, it also takes much less time
(1-3min) than traditional chemical processes, which need
several days to treat fibers appropriately [36]. For the fibers
of Spanish broom and beech veneer, plasma modification
transforms the soft surface of the fibers into a cross-linked
one (Figure 12) [93,94]. High plasma discharge power results
in greater surface etching, which increases the degree of
inhomogeneity of the fibers by creating deeper and wider
cracks. On the fiber surface, which was peeled off, threads
were produced [36].
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Figure 12: SEM pictures of: beech veneer’s surface (a) untreated, (b) 1 kW plasma treated fibers, (c) 2 kW plasma treated fibers; Spanish Broom fibers
(d) untreated (e) 10 W plasma treated fibers (f) 70 W plasma treated fibers (adapted from ref. [36]).

It has been shown to be beneficial to treat WPC by low-
pressure plasma to increase adhesion. Although treating
WPCs with low-pressure plasmas is efficient, it is challen-
ging to implement on an industrial scale since a vacuum is
required, the treatment is not continuous, and it can only
be applied to small pieces [95].

Hémaéldinen and Karki [96] used contact angle mea-
surement with sessile drop technique and tensile strength
testing of glued samples to examine the impact of atmo-
spheric plasma treatment on PP and spruce (Picea abies)
wood-—plastic composite surfaces. WPC profiles that have been
extruded are subjected to a plasma treatment. The findings
demonstrate an enhancement in the tensile strength of glued
specimens after plasma treatment as well as an improvement

in the contact angle of WPC materials treated with plasma.
According to the research findings, it is evident that atmo-
spheric plasma processing enhances the bonding of WPCs,
as proved by the results of sessile drop and tensile strength
tests of glued specimens. An increase in polar groups in the
Raman spectra could serve as a sign of the plasma treatment’s
effectiveness [96].

2.7 Distillate treatment

Vaisdnen et al. [97] investigated how hardwood distillate
(HWD) affected the characteristics of a commercial WPC

Table 7: Densities and mechanical properties of the studied materials (adapted from ref. [98])

Material Density Tensile Tensile Strain (mm) Flexural Modulus of Bending Charpy’s impact

(g~cm'3) strength modulus strength elasticity (mm) strength (kj-m'z)
(MPa) (GPa) (MPa) (GPa)

LG 1130 £0.002 22.41+0.82 2.09+0.20 1.86+0.26  44.09+2.00 3.05+0.16 454 +£0.28 11.57 £ 2.02

LG + HWD1 1.131+0.002 22.85+0.31 233 +0.09° 1.81+£0.12 45.27 +1.01 3.21+0.08° 442 £0.28 10.61£1.27

LG + HWD2 1.132+0.002 22.26 + 0.30  2.24 + 0.06 1.83+0.15 43.09+0.83 3.11+0.12 437+030 1117 £ 0.81

LG + HWD4 1.138 + 0.004 22.05 + 0.44  2.16 + 0.06 1.92+017  42.86 +1.17 2.89 +0.09° 472+029 10.89+1.13

LG + HWD8 1.141+0.003 19.67 + 0.52° 1.86 + 0.11° 1.85+ 013  39.36+0.63° 273 +0.09° 467+027 942 +0.69°

WPC: wood-plastic composites; LG: LunaGrain; HWD: hardwood distillate.

p < 0.01 (highly significant difference compared with the unmodified WPC).
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made of thermally treated sawdust (Scots pine) in a poly-
meric matrix by applying several levels (1-8 wt%) of dis-
tillate to the mixture. The results of the mechanical
experiments revealed that adding 1wt% of HWD to
WPCs improves their flexural and tensile properties
but not their impact strength (Table 7). Incorporating
up to 4wt% HWD greatly reduced the WA of WPCs
without decreasing the observed mechanical features,
which is another major result from this study. Table 7
shows a substantial tensile modulus improvement occurred
by incorporation of HWD (1 wt%). Additionally, improve-
ments in other mechanical characteristics were seen by uti-
lizing distillate modification for produced composites. The
reason why composites are more rigid is that HWD occupies
the cracks and spaces in the composites, which is also
demonstrated by the fact that bending and strain were
reduced on greater distillate amounts (above 4 wt%) [97].

Vaisdnen et al. [98] examined the effect of several
treatments (alkali, enzymatic, steam, and wood distillate)
on the properties of hemp fibers and their composites. Uti-
lizing vacuum-assisted resin transfer molding, long (aligned)
hemp fiber (Cannabis sativa L.) reinforced epoxy composites
were manufactured. The findings demonstrate that the
fibers’ tensile strength, Young’s modulus, and toughness
all massively enhanced after steam treatment. Water uptake
of the reinforced samples was dramatically reduced as a
result of the treated hemp fibers (Figure 13). The fiber mod-
ification by the alkali method depicted the minimum WA
levels among other processes.

According to Baghaei et al. [99], an improvement in the
interfacial adhesion between the polymer matrix and fibers
may be utilized to explain alkali treatment led to a reduction
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Figure 13: WA of different epoxy-hemp composites during 28 days of
immersion (adapted from ref. [99]).
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in the WA. Another factor is that the elimination of hemi-
celluloses and other hydrophilic materials reduced fibers’
hydrophilicity. Another effective strategy to reduce the
composite’s WA is enzyme treatment. Compared to other
treatments, the treated fibers by wood distillate indicated
low efficiency in water up taking properties. However,
untreated fibers still differ significantly from fibers that
have been treated using wood distillate [98].

3 Conclusion and future scope

Natural fibers have many benefits to utilize in composite
materials including high elastic modulus, flexural strength,
flexibility, low density, renewability, biodegradability, and
recyclability. These qualities have made natural fiber-rein-
forced composites more desirable. The hydroxyl groups of
hemicellulose, cellulose, and lignin, which compose nat-
ural fiber, form many hydrogen bonds in the wood’s struc-
ture. The hydroxyl groups may create new hydrogen bonds
with water molecules, causing water uptake, fiber expan-
sion, and the development of small cracks in the specimen,
leading to the fiber debonding and the deterioration of the
interface between polymer and fiber. Due to the hydropho-
bicity of the polymer and the hydrophilicity of the fiber,
polymer matrix containing natural fibers typically exhibit
weak interfacial adhesion and hence have a limited cap-
ability to transfer stress from the matrix to the reinforce-
ment materials. The fiber surface may experience a variety
of treatments, which are mainly categorized as chemical,
physical, and thermal treatments, to enhance bonding
properties, decrease WA, enhance weak wettability, and
improve both structural and mechanical properties. The
utilization of a wide range of fiber treatments on different
properties of reinforced composites with natural fibers
was discussed in this research. Generally, physical and
thermal treatments compared to chemical methods are
more environmentally friendly, but they require higher
energy consumption, are relatively newer, and also have the
appropriate potential to develop in the future. According to
the results of the studies, the physical and mechanical proper-
ties of the fiber-treated composites were typically improved by
using fiber treatments, and combined treatment methods may
exhibit an unanticipated synergetic activity.

Future research should concentrate on creating fully
bio-composites utilizing biodegradable or recycled poly-
mers and a higher percentage of natural fibers, as well
as focus on a better understanding of the natural fiber’s
interaction with polymers through fiber modification to
create environmentally friendly innovative products in
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all potential industries, including building construction,
automotive, and outdoor and indoor applications. Natural
fiber surfaces can be treated using traditional treatments
(mainly chemical methods) and eco-friendly approaches to
improve the interaction of fiber and polymer for a variety of
purposes. Natural fiber modification using chemical methods,
including benzoylation, peroxide, mercerization, acetylation,
compatibilizers, and polymer grafting, requires the use of a
large number of dangerous compounds. The manufacturing
costs of natural fiber-reinforced composites may rise due to
appropriate management of chemical waste. In order to treat
the natural fibers, eco-friendly approaches such as bacteria,
fungi, enzymes, plasma, cellulose, nanocellulose coating, and
supercritical carbon dioxide should be employed. These
methods are a great replacement for traditional techniques.
Researchers should focus on two major areas of interest in
future research projects based on the reviewed articles in
the current study: firstly, moving toward environmentally
friendly methods for fiber treatment, and secondly, the
incorporation of two or more treatment methods simulta-
neously with the evaluation of different levels, ratios, dura-
tions, and other experimental situations to develop eco-
friendly fiber modification techniques for the manufac-
turing of reinforced composites.
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