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Abstract:Most of the stress–strain relationships of thermo-
plastic polymers for aeronautical composites tend to be
nonlinear and sensitive to strain rate and temperature,
so accurate constitutive models are urgently required.
Classical and machine learning-based constitutive models
for thermoplastic polymers are compared and discussed.
In addition, some typical models have been recovered and
compared by authors to evaluate the performance of clas-
sical and machine learning-based constitutive models, so
that the advantages and shortcomings of these models can
be demonstrated. By reviewing constitutive models, it was
found that the equations of physical constitutive models
are derived according to thermodynamical principles, so
the physical constitutive models can describe the deforma-
tion mechanism at the microscopic level. The phenomen-
ological constitutive models may combine the macroscopic
phenomena and theories of physical models, and good per-
formance and wide range of applications can be realized. In
addition, phenomenological constitutive models combined
with machine learning algorithms have attracted attentions
of investigators, and these models perform well in pre-
dicting the stress–strain relationships. In the future, the
constitutive models combining the theories of physical con-
stitutive models, phenomenological constitutive models, and
machine learning algorithms will be increasingly attractive
as some challenging issues are effectively addressed.
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1 Introduction

Composites can be divided into two categories according to
the matrix properties: thermoplastic composites and ther-
mosetting composites. Thermosetting composites have been
widely used in the aeronautical and astronautical industries
due to the extreme pursuit of material performance and
weight [1]. Aircrafts such as Boeing-787 [2] and A350 [3]
are extensively made of composites for their fuselages and
wings, with the percentage exceeding 50%. Nevertheless,
thermosetting composites possess the following defects:
poor impact toughness, local damage is difficult to repair,
long molding cycle, difficult to recycle, and so on [4]. In the
past, the performance of thermoset composites was consid-
ered to outperform that of thermoplastic composites, but
the situation has changed with the application of high-
performance thermoplastic resins now. Compared with ther-
mosetting composites, there are many advantages to high-
performance thermoplastic composites, such as lower
density, high toughness, high impact resistance and damage
tolerance [5], high resistance to heat and humid, short
molding cycle, and easy to repair and recycle [6,7]. Due to
the concept of environmental protection, thermoplastic
composites thus attract the interest of researchers and
engineers, and they have been applied to the aerospace
industry, automotive industry, electronic industry, and
medical industry gradually [8].

Thermoplastic polymers which act as the matrix of
thermoplastic composites, can be divided into general plas-
tics and high-performance engineering plastics in terms of
performance. Polyethylene (PE), polypropylene (PP), and
acrylonitrile butadiene styrene (ABS) can be classified as
general plastics, while polyamide (PA), polycarbonate (PC),
polyether ether ketone (PEEK), polyetherimide (PEI), poly-
ether sulfone (PES), and polyphenylene sulfide (PPS) fall
within the latter [9]. The chemical reaction of side chain
groups will not take place during heating for the macro-
molecular chain of thermoplastic polymers, but only phy-
sical changes occur. Therefore, the thermoplastics can be
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softened, melted, formed, welded by heating, and solidified
when cooled.

Thermoplastic composites have been used in many
structures of aircraft, such as Airbus A380, A350, A400M,
Boeing787, Gulfstream jets G450, G550, and G650, etc. [10].
As the secondary bearing components, thermoplastic com-
posites are competent usually. The floor panels in the
A400M were manufactured with carbon fiber/PPS and
glass fiber/PPS composites. The rudder and elevator of
G650 were manufactured with carbon fiber/PEI and carbon
fiber/PPS composites. Carbon fiber/PPS composites are used
in many structures of A350 including connectors. These
structures work under static load mostly, and constitutive
models with small strain, low strain rate, and small range of
temperatures are thus needed. However, some other struc-
tures may be exposed to conditions with extreme loading.
The leading edge of aircraft A380 was manufactured with
glass fiber/PPS composites. The PC was usually used to man-
ufacture the canopy of fighters. Since the safety after a bird
or hailstone strike must be considered for both the leading
edge of the wing and canopy, the impact behavior and the
corresponding constitutive models with a high strain rate of
composite structures must be studied [11].

Although thermoplastic polymers have been used in
engineering, it requires addressing a key point that the
properties of such materials are usually more complex
than metals or thermosetting polymers. Figure 1 presents
a typical stress–strain curve of a thermoplastic polymer.
The whole deformation process can be divided into five
phases generally: linear VE deformation, nonlinear VE
deformation, yield, strain softening, and strain hardening.

The deformation is irrecoverable after yielding for most of
the polymers, but the plastic deformation of glassy poly-
mers is recoverable at a temperature above the glass
transition temperature (Tg) [12]. For the semi-crystalline
polymers commonly used in thermoplastic composites,
the behaviors of large deformation such as strain softening
and strain hardening are closely related to the crystalliza-
tion degree and crosslinking of molecular chains. In addi-
tion, the stress–strain response will be affected by the
strain rate, temperature, time, and pressure significantly,
and the nonlinear behavior of thermoplastic polymers is
further exacerbated [13]. If the mechanical behavior of
materials is not clear, it is largely difficult to design, man-
ufacture, apply, and monitor the thermoplastic composites.
Therefore, in addition to experimental testing, numerical
simulation adopting an effective constitutive model plays
an important role in predicting the behavior of materials.
Further, one of the most important works in the study of
thermoplastic polymers is to establish a constitutive model
that can accurately reflect such behavior.

There are two purposes for this study:
1) To sort, classify, and review the development of non-

linear constitutive models for polymers of aeronautical
composites.

2) To evaluate the performance of traditional constitu-
tive models and machine learning-based constitutive
models, and explore the future direction for the devel-
opment. It is important to note that this article does
not attempt to cover all constitutive models, but rather
introduces nonlinear constitutive models commonly
used in aeronautical thermoplastic polymers and
machine learning-based constitutive models particu-
larly. By reviewing literature, evaluation and com-
parison between the classical constitutive models
and the machine learning-based constitutive models
are rarely found. Therefore, evaluation and compar-
ison between the classical constitutive models and
themachine learning-based constitutivemodels were pre-
sented for the first time in the proposed work. Thereby,
this work fills in the research gap of the published litera-
ture. As the main body, Section 2 presents the detailed
classification and development of constitutive models. In
this section, constitutive models are introduced in
three parts: physical models, phenomenological
models, and machine learning-based models. Each
part is sorted and presented by several models, and
the typical model is simulated to evaluate its perfor-
mance. Section 3 gives the discussion, conclusion,
and prospects for the development of constitutive
models.Figure 1: Typical deformation behavior of a thermoplastic polymer [12].
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2 Constitutive models for
thermoplastic polymers

In order to improve the performance of aircraft, aeronau-
tical composite structures are required to work in the com-
plex thermal-mechanical environments. In particular, the
properties of semi-crystalline polymers are easily affected
by temperature and strain rate. The experimental testing
cannot cover all the working conditions entirely for those
materials that are sensitive to strain rate and temperature,
although the tests are the most direct way to study the
properties of thermoplastic polymers. Therefore, it is cru-
cial to establish the constitutive models of thermoplastic
polymers.

In this section, the nonlinear constitutive models applied
to thermoplastic polymers for aeronautical composites are
classified according to diverse points of view to understand
the issues, and the characteristics of each type of constitutive
models are investigated in detail. The constitutive models can
be divided into two categories: physical constitutive models
and phenomenological constitutive models as shown in
Figure 2, according to the theoretical basis given in previous
studies [14–16]. The so-called physical constitutive models
aim to study the effects of amorphous and crystalline phases
on the mechanical behaviors of materials, which describes
the macroscopic behavior of materials based on the micro-
structures. Most of the physical constitutive models were
almost derived from the theories of Haward and Thackray
[17] and Edwards and Vilgis [18], and all parameters in
physical constitutive models have physical meanings.
However, the phenomenological constitutive models

describe the experimental phenomenon by using math-
ematical formulations with or without some concepts
of physical constitutive models. Therefore, phenomen-
ological constitutive models do not mainly focus on the
natural deformation mechanism of materials. In gen-
eral, the phenomenological constitutive models mainly
include the elasto-plastic models, the viscoelastic (VE)
models, the hyperelastic models, the viscoplastic (VP)
models, the multi-mode models, the models with damage,
and the machine learning-based phenomenological models,
which are shown in Figure 2.

2.1 Physical constitutive models

As mentioned above, the physical constitutive models
inspired by microstructure believe that crosslinking, mole-
cular weights, and crystallinity degrees are the dominant
factors in material properties. The crystalline phase is con-
sidered to have a significant effect on the mechanical prop-
erties of materials, especially at the stage of small strain. As
for the amorphous phase, it will affect the deformation at
the stage of high strain and post-yielding [19]. In this regard,
the mechanical properties of materials can be forecasted by
simulating the behavior of amorphous and crystalline
phases. This research started in the middle of the last
century, and most of the existing physical constitutive
models were developed based on the theory of Haward
and Thackray [17] and Edwards and Vilgis [18] from the last
century. These two theories and corresponding models will

Figure 2: Classification of constitutive models for thermoplastic polymers.
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be discussed, respectively, although researchers often refer
to them together.

2.1.1 Rubber-like models

This kind of models are developed through the elastic
theory of rubber, so they could be called rubber-like
models. Studies of rubber elasticity began as early as the
early twentieth century, and James and Guth [20] discussed
an idea of effective internal pressure, and the typical
stress–strain curve for rubber is displayed in Figure 3.
They assumed that the polymer chains move through
each other only through crosslinks, and the whole system
is prevented from collapsing by the assumption of repul-
sive forces which can generate a bulk modulus. In addition,
a simplified model for the bulk rubber was proposed,
which consists of a network of the idealized flexible chains
extending through the material and fluid filling it. More-
over, the bounding surfaces are in equilibrium under all
the forces acting on them (internal pressure, pull of the
molecular network, and any external forces). Because of
the changing entropy, a good agreement was obtained by
comparing the stress–strain curves for bulk rubber at a
constant temperature. The general theory proposed by
James and Guth [20] provides a basis for the treatment of
other physical properties of stretched rubber.

Ball et al. [21] indicated that the assumption by James
and Guth [20] ignored the repulsive forces which generate
a bulk modulus. They proposed that entanglements can be
simulated by links that make a sliding contact between
polymer networks. The contribution of entanglement to
the free energy of shear is given in Eq. (1), where λi is
the Cartesian extension ratio and η is a measure of the
freedom of a link to slide compared with the freedom of
movement of a chain.
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Edwards and Vilgis [18] proposed an elasticity theory
of rubber based on the concept of entanglements in 1986,
which is an improvement of the work presented by Ball
et al. [21]. They found that the molecular mechanism of
stretching is dominated by the slippage of chains for small
deformation, and the hardening of the rubber at high
deformation attributes to the inextensibility as described
by the tube concept. The constitutive model is able to
explain the deformation behavior of rubbers over the total
range of deformation, by comparing the free energy of
deformation with the experiment. The free energy is shown
in Eq. (2), where α is a measure of the inextensibility and η
of the slippage, Nc is the number of crosslinks, and Ns

denotes the number of slip links.

( )

( )( )

( )
( )

∑

∑

∑

⎟⎜

= +

=
⎡

⎣⎢
∑ −

−
−

⎛
⎝

−
⎞
⎠

⎤

⎦⎥

=
⎡

⎣⎢
⎧
⎨
⎩

+ −
+ ( − ∑ )

+ +
⎫
⎬
⎭

− ( − )
⎤

⎦⎥

=

=

=

F F F

F N
α λ

α Zλ
α λ

F N
λ η α

ηλ α λ
ηλ

α λ

1

2

1

1 ¯

log 1

1

2

1 1

1 1

log 1

log 1

.

i i

i i

i

i

i

i i

i

i

C S

C C

1

3

2
2

2
2

2

1

3

2

S S

1

3 2
2

2
2

2

2

2
2

(2)

The Edwards–Vilgis model was the most representa-
tive one in this type of approach, and it was also known
as the network model. It was initially applied to rubbers,
then extended and applied to amorphous glassy polymers
or semi-crystalline polymers by other researchers. Van
Ruiten et al. [22] applied the Edwards–Vilgis model for
the analysis of melt-spun PA 4.6 fibers in 2001. They tested
the maximum attainable tenacity of drawn yarns under
given drawing conditions, and compared the experimental
results with the predictions of the Edwards–Vilgis model. It
was shown that the Edwards–Vilgis rubber-elastic model
can describe the network deformational behavior of the as-
spun yarns over a wide range of draw ratios. Based on the
rubber elastic model, Sweeney et al. [23] suggested a large
deformation and rate-dependent model in 2002. In theirFigure 3: Typical stress–strain curve for rubber [20].
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theory, the rigid spheres are embedded to introduce strain
concentration, which is similar to that caused by hard
crystalline regions. Besides, the dependence on time and
rate was introduced via the shear stress-driven diminution
of the sphere radii. Then, the model was applied to the high
temperature stretching of PE through ABAQUS software (a
finite element (FE) solver). Constitutive models introduced
in this section are listed in Table A1 of the Appendix.

2.1.2 Models based on Haward–Thackray theory

This type of model takes the theory of Ree and Eyring [24]
as the foundation. Ree and Eyring [24] presented a general
relationship between the yield stress, the strain rate, and
the temperature applicable to polymers as early as 1955,
and Ree and Eyring’s theory can account for the relaxation
process of viscous flow. Since then, researchers have come
up with models based on this theory.

Haward and Thackray [17] represented the interac-
tions between molecules through springs and dashpots in
1968. This model is intended to provide a semi-empirical
approach to the large plastic deformations at the yield
point in low-temperature where the temperature is below
Tg. Nevertheless, it is not suitable for describing the creep
behavior at extensions of up to 5% or nonlinearity in the
initial Hookean modulus. Haward–Thackray model con-
tains a Hookean spring, an Eyring dashpot, and a Langevin
spring with an ultimate limiting network strain as shown
in Figure 4. The above Hookean spring represents the
constant Hookean modulus, which describes the linear
elastic deformation of the amorphous phase. The Eyring

dashpot represents the VP character, which describes
the rate-dependent macroscopic yield deformation of the
amorphous phase. The Langevin spring represents the lim-
ited elastic extensibility, which describes the strain hard-
ening result from the change in configuration entropy
caused by the orientation rearrangement of molecular chain
entanglement. The limited elastic extensibility is based
either on the first-order process model, or the conven-
tional Langevin formula as used to describe the highly
elastic extension of rubbers. Practice shows that the
model can be used to characterize the intermolecular
elastic interaction, strain-rate dependent yield behavior,
and strain-strengthening behavior in the post-yield stage
of amorphous polymers.

Haward–Thackray theory is a milestone and many
subsequent models are inspired by it to varying degrees.
On this basis, a large number of constitutive models are
proposed. We introduce the development profile with three
typical types of models and their derivatives: the BPA model,
the glass-rubber (GR) model, and the Eindhoven glassy
polymer (EGP) model.

2.1.2.1 BPA model and its derivatives
Among numerous research groups, Boyce et al. [25] have
made an outstanding contribution. Boyce et al. [25] pro-
posed a three-dimensional constitutive model for glassy
polymer on the basis of the Haward–Thackray model in
1988, also known as the BPA model. Linear spring, VP
dashpot, and Langevin spring are contained in the BPA
model as shown in Figure 5, and the linear spring and VP
dashpot are connected in series to construct the Maxwell
element. BPA model assumes that the deformation resis-
tance of amorphous polymers may be decomposed into
intermolecular deformation resistance and entropy defor-
mation resistance. The intermolecular deformation resis-
tance is related to the rotation of molecular chain segments

Langevin spring  

with an ultimate  

limiting network strain 

Eyring

dashpot

σm

Hookean 

spring

Figure 4: Haward–Thackray model system [17].

Network B Network A

Linear 
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dashpot
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Figure 5: BPA model [25].
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and determines the elastic deformation before yield. The
entropy deformation resistance is related to the rearrange-
ment of molecular chain segments, and will increase due to
the continuous rearrangement of molecular chain seg-
ments during the post-yield process. Strain hardening is
controlled by entropy deformation resistance, while strain
softening is controlled by both intermolecular deformation
resistance and entropy deformation resistance. BPA model
can achieve good results by comparing with the experi-
mental data of PMMA.

2.1.2.2 GR models and its derivatives
Buckley and Jones [26] proposed the GR constitutive model
which displays the glassy response at low temperatures
and short time-scales, and rubber-like response at high
temperatures and long time-scales. The model employs the
linear elasticity, Eyring viscous flow, and the Edwards–
Vilgis entropy function to reflect the elastic bond distortion
stress–strain law and flow model, and the conformational
entropy function, respectively. This model can be argued by
combining the theories of Edwards and Vilgis theory [18]
and Haward and Thackray theory [17]. The model proposed
byWu and Buckley [27] included a distribution of relaxation
times and a semiempirical representation of strain-induced
structural rejuvenation based on the GR model for amor-
phous polymers. The model, constructed by a series of non-
linear partial differential equations, was suitable for the
research of yield and plastic flow of glassy polymers. De
Focatiis et al. [28] proposed a new glass-melt constitutive
model to describe the mechanical behavior of large defor-
mation in both the glass state and molten state of polymers
in 2010. The model consists of a set of ROLIEPOLY equations
that govern the conformational entropy elasticity of the
polymer and its relaxation by tube diffusion in the melt,
and amulti-mode glassy constitutive model for deformation.
It was found to be quantitatively successful in capturing the
material rheology in the melt and uniaxial compression
experiments deep in the glassy state.

2.1.2.3 EGP model and its derivatives
The initial EGP model was a one-mode model, and it did
well in forecasting the plastic flow near yield, but it was
poor in the nonlinear VE pre-yield region. Tervoort et al.
[29] proposed a model based on “compressible-Leonov
model” (CLM) [30], which was a three-dimensional consti-
tutive model for the finite elasto-viscoplastic deformation
of polymers. The CLM can also be regarded as a single
Maxwell model with a relaxation time. The elastic volume
response in this model was rigorously separated from the

elasto-viscoplastic isochoric deformation, and it could be
extended to include a spectrum of relaxation times. They
compared the model predictions with the experimental
results obtained from the homogeneous uniaxial tensile
test and the homogeneous plane-stress shear test of PC,
and received the expected results. Govaert et al. [31]
extended the CLM to describe the mechanical behavior
of large strain in glassy polymers, and only one relaxation
time was involved in this model. Strain rate, temperature,
pressure-dependent yield, strain softening, and strain-
hardening phenomena are well incorporated into the
model. Then, Govaert and Tervoort [32] introduced the
physical quantities into the strain hardening stage, which
are related to temperature and molecular dependence.
Nevertheless, only one relaxation time is involved in the
model, so it is difficult to capture the nonlinear VE pre-
yield behavior accurately. As mentioned above, the one-
mode EGP model was not suitable for the prediction of
non-linear VE behavior in the pre-yield region. Van Breemen
et al. [33] extended the one-mode EGPmodel to a multi-mode
model by using a spectrum of relaxation times. Their tests
proved that the multi-mode model is necessary for micro-
indentation or notched impact deformation, because these
macroscopic responses to such deformations were controlled
by local non-homogeneous deformations.

The theories proposed by Haward and Thackray [17]
and Edwards and Vilgis [18] provided a good foundation
for physical constitutive models, so a large number of
models had been derived according to their ideas. Furthermore,
physical models can describe the deformation mechanism of
polymers, which can be explicitly traced to the microscopic
level. Constitutive models introduced in this section are listed
in Table A2 of the Appendix.

2.2 Phenomenological constitutive models

The phenomenological constitutive models have also been
developed for a long time, and a mass of models have been
proposed, improved, and applied. Phenomenological con-
stitutive models focus on portraying the phenomena results
from tests, rather than the deformation mechanism of mate-
rials at the molecular level. The forms and methodologies
of phenomenological constitutive models are consequently
varied, and some models purely express the stress–strain
response, while some models refer to the theory of physical
constitutive models. The readers might be confused because
some models were developed based on physical theories,
while the authors classified them as phenomenological
models. It is because the experimental phenomenon is taken
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as the starting point in these models, and physical models
are subsequently introduced phenomenally. This work
attempts to classify the phenomenological models into
several categories according to their application: elasto-
plastic models, VE models, VP models, hyperelastic
models, multi-mode models, models with damage, and
others, and the summary of these models can refer to
Table A3 in the Appendix.

2.2.1 Elasto-plastic models

G’sell et al. [34,35] proposed a phenomenological model
through a series of tests of polyvinyl chloride (PVC) and
high-density polyethylene (HDPE) in 1979. The stress can be
expressed as a function of strain, strain rate, and tempera-
ture in Eq. (3).

( ) ( )= − −σ ε ε K ε, ̇ e 1 e ̇ e ,

hε Wε m e T/
2 (3)

where σ, ε, ε̇, and T denote stress, strain, strain rate, and
temperature, respectively, and K, W, and m are the model
parameters. The G’sell–Jonas model is suitable for the
deformation prediction of materials at a low strain rate
(10−1–10−4 s−1). Johnson and Cook [36,37] proposed a famous
Johnson–Cook model (JC model) when studying the defor-
mation of metal under high strain rate and high tempera-
ture in 1985 as shown in Eq. (4).
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0

, T, Tm, and Tref signify stress, plastic
strain, plastic strain rate, reference strain rate, tempera-
ture, melting temperature, and reference temperature,
respectively, and there are only five model parameters
in the JC model (A, B, C, n, and m). JC model is a typical
model, and it reflects the behavior of elasticity, strain hard-
ening, and strain rate hardening for metals. However,
researchers subsequently found that the JC model was
also suitable for predicting the deformation of semi-crys-
talline polymers. Garcia-Gonzalez et al. [38] applied the JC
model to the simulation of impact for PEEK and Ti6Al4V
titanium alloy. In addition, the JC model was constantly
extended in order to get better performance. For example,
Chen et al. [39,40] modified the original JC model into the
following form shown in Eq. (5), so that the modified one
has better capability to predict the flow behavior at ele-
vated temperature conditions.
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Neither of G’sell–Jonas model and JC model mentioned
above can accurately describe the strain softening defor-
mation of the polymers. Thus, Duan et al. [41] proposed a
homogeneity model suitable for glassy and semi-crystalline
polymers based on G’sell–Jonas model, JC model, Matsuoka
model, and Brook model, named DSGZ model. DSGZ model
can describe the characteristics of elasticity, yielding, strain
hardening, and strain softening by taking strain rate and
temperature into account, as shown in Eq. (6).
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where C1, C2, C3, C4, K, a, m, and α are model parameters,
and they are easy to be calculated according to the strain–
stress relationship. Then, Duan et al. [42,43] applied the
DSGZ model to predict the deformation under the impact
load of ABS, PC, and polybutylene-terephthalates (PBT).
Further, the DSGZ model has been continuously improved
and applied to ABS, PBT, PC, PMMA, PA, and PEEK by
researchers [12,44–47].

In order to further evaluate the performance of phe-
nomenological models, the deformation of PMMA and
PEEK at a low strain rate was simulated by applying the
DSGZ model by the authors. The experimental data of
PMMA was taken from the article of Duan et al. [41], and
the experimental data of PEEK was taken from the research
of Chang et al. [48]. Particle swarm optimization was applied
to fit the parameters of the DSGZ model according to the
experimental data. By comparing the results of prediction
with the experiment (as shown in Figure 6), it was found
that the DSGZ model has the ability to capture the behavior
of polymers at different temperatures. Moreover, the non-
linear elastic deformation, yielding, strain softening, and
strain hardening at low strain rates were captured well
with a reasonable fitting of parameters. Although the pre-
diction of theDSGZmodelmaynot be guaranteed at a high strain
rate, the phenomenological constitutive models can always find
appropriate forms to obtain a satisfactory prediction.
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Mulliken and Boyce [49] proposed an M–B model on
the basis of the BPA model in 2006. They decomposed the
intermolecular resistance into two rate-dependent resis-
tances as shown in Figure 7. In other words, network A
in the BPA model was decomposed into two parallel Max-
well elements which are related to glass transition (α) and
secondary molecular motions (β), respectively. In this way,
the behavior of polymers in low strain rate can be reflected
by α, and the behavior of polymers in high strain rate is
determined by both α and β. The M–B model can not only
capture the transition in the yield behavior, but also accu-
rately predict the post-yield and large strain behavior over
a wide range of temperatures and strain rates. The total
stresses in the polymer are given as the tensorial sum of
the intermolecular stresses of α and β and the network
(back) stress. Moreover, expressions of three stress compo-
nents are presented in Eq. (7). It has been indicated that the
M–B model can accurately predict the behavior of mate-
rials in the strain rate range of 10−4–103 s−1.

[ ]

[ ]

⎜ ⎟

= + +

=

=

=
⎛
⎝

⎞
⎠

′−

T T T T

T
J

φ

T
J

φ

T
C N

λ
φ

λ

N
B

1

ln V

1

ln V

3

¯ .

α

α

e e

β

β

e e

P

P

A A B

A
A

A
A

B

R

chain

1

chain

B

α β

α α

β β

(7)

The M–B model is capable of predicting the deforma-
tion trend of polymers at low, moderate, and high strain
rates. Figure 8 shows that it is convenient to use M–B

model for analysis of many polymers such as PC (shown
in Figure 8 (a)) and PMMA (shown in Figure 8 (b)), because
the deformation response is divided into α and β. However, it
was found that the M–B model ignored the viscosity effect
before yield. In addition, the strain softening stage predicted
by the M–B model usually deviate from the experimental
results due to the early arrival of yield. The M–B model can
only predict the trend of strain hardening at a low strain rate,
but the prediction becomes inaccurate with the increase in
the strain rate. In addition, the M–B model is an isothermal
model, and it cannot capture the post-yield thermal softening.
Other researchers have drawn similar conclusions [50].

By combining the M–B model, G’sell model, and DSGZ
model, Wang et al. [50,51] proposed an adiabatic phenom-
enological constitutive model to predict the mechanical
behavior of PC at various strain rates and temperatures.

Figure 6: Comparison of true stress–strain curves between the prediction of DSGZ model with experimental results, left is for PMMA and right is
for PEEK.
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Figure 7: M–B model [49].
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Deformations of the low strain rate and the high strain rate
were reflected by the α-component and the β-component,
respectively. In addition, they used the model to simulate
the split Hopkinson pressure bar testing and the falling
weight impact testing by explicit user material subroutine
(VUMAT). Moreover, results of the simulations agree well
with the experimental data. In addition, some phenomen-
ological models have been also developed for 3D-printed
polymers [52].

Varghese and Batra [53] modified the M–B model by
introducing temperature and strain rate-dependent elastic
moduli and two internal variables at the high strain rate.
Further, Safari et al. [54,55] indicated that α and β alone in
network A were insufficient under the high strain rate, so γ
transition as shown in Figure 9 was added to reflect the
behavior of materials in the higher strain rate. Moreover,
their studies have shown that the modified model can pre-
dict the thermomechanical behavior of polymer when the
strain rate is over 10,000 s−1. However, Safari et al. [54,55]
indicated that due to adiabatic condition of high strain rate
deformations, the modified model requires higher strain
rates to account for temperature changes.

2.2.2 VE models

Both reversible and irreversible deformation is usually
included for polymers, and some researchers argue that
the reversible deformation of polymers should be con-
cerned. Nonlinear VE characteristics will thus appear in
such types of constitutive models. Schapery [56] proposed

that the behavior of some steels and polymers such as
creep and relaxation can be reflected by linear equations,
nonlinear equations, and some other specific equations
which are summarized from a good deal of experiments.
In fact, Schapery [56] attempted to build some connections
between experimental phenomena and some constitutive
equations, based on a framework of irreversible thermo-
dynamics that are similar to the Boltzmann superposition
integral form of linear theory. They suggested the core idea
of phenomenological constitutive models and lay a founda-
tion for the subsequent development of phenomenological
constitutive models. Khan et al. [57] proposed a one-dimen-
sional (1D) phenomenological constitutive model with a
semi-empirical modification based on experimental obser-
vations, to capture the complex and highly nonlinear finite
thermo-mechanical behaviors of VE polymers. Moreover,

Figure 8: Comparison of true stress-strain curves between the predictions of M–B model and experimental results, where (a) shows the contrast for
PC and (b) shows the contrast for PMMA [49].
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Figure 9: Safari model [54].
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the model was built based on the infinitesimal linear
theory. It was demonstrated that the model was accurate
in predicting the deformation of polymers over a wide
range of strain rates at room temperature or near the Tg.
Chang et al. [48] proposed a phenomenological nonlinear
VE constitutive model to characterize the stress–strain of
PEEK before yielding with considering temperature and
strain rate dependence. The VE model consists of a cubic
nonlinear spring and a linear Maxwell element connected
in parallel, and the form of this model as shown in Eq. (8) is
similar to the subsequent Z-W-T model [58,59].
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Wang et al. [58,59] proposed a Z-W-T model to repre-
sent the nonlinear VE deformation of polymers in 1991, and
then they applied this model for the impact investigation in
bird strikes on windshields of the high-speed aircraft. The
expression is shown in Eq. (9).
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where E1, θ1, and E2, θ2 signify the elastic modulus and
relaxation time of VE response at low or high strain rate,
and E0, α, and β are nonlinear elastic modulus except for
the VE response. In the early stage, the Z-W-T model was
only suitable for polymers at room temperature, because the
temperature was not considered in the model. Therefore,
Wang et al. [60] extended the Z-W-T model by introducing
the effect of temperature, and simulated the dynamic
response of PMMA windshield against bird strike accu-
rately. Dar et al. [61] also implemented the Z-W-T model to
describe the mechanical behavior of PMMA. Nevertheless,
the Z-W-T model is adaptable to simulate the VE response
but not the VP response after yielding.

2.2.3 VP models

Some researchers pay attention to the irreversible defor-
mation, and suggested a series of VP constitutive models. A
series of models were improved based on over-stress
model (VBO). Colak [62] proposed a modified viscoplasticity
theory based on the over-stress model, which contains two
tensor valued state variables, the equilibrium, and kine-
matic stresses and two scalars valued state variables, drag,
and isotropic stresses. They compared the numerical results
with the experimental data, and the tests of polyphenylene
oxide were performed at different stresses above and below

the yield point. It is shown that nonlinear rate sensitivity,
nonlinear unloading, creep, and recovery at zero stress
were simulated by the proposed model. Besides, Ghorbel
[63], Drozdov [64], Khan and Yeakle [65], Dusunceli and
Colak [66] developed the corresponding models based on
the VBO model for analysis of the polymers such as PA,
PC, PET, and PP. Bardenhagen et al. [67] presented a general
framework to develop the constitutive models of polymeric
materials in the VP regime, and a VP constitutive model
of three-dimensional finite deformation. Strain-rate depen-
dence, stress relaxation, and creep phenomena can be
reflected in the proposed model. Drozdov and Christiansen
[68] presented a VP constitutive model for isothermal three-
dimensional cyclic deformations with small strains of semi-
crystalline polymers. Moreover, multiple inelastic deforma-
tions appear in the model with the 1D spring and dashpot
construction. Although there are 15 material parameters in
the proposed model, they can be determined step by step by
matching appropriate intervals of a stress–strain curve at
loading and retraction. Good prediction can be obtained,
when the constitutive model was applied to predict the VP
behavior of HDPE with a strain less than 0.1.

2.2.4 Hyperelastic models

Neo-Hooken model [69] is a classic statistical thermody-
namic hyperelastic model, and it is suitable for the defor-
mation of rubber-like materials. The Neo-Hooken model is
expressed for its Helmholtz free energy per unit reference
volume as shown in Eq. (10), which is independent of the
temperature.
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where ( )Ψ I J,

1

is the Helmholtz free energy, I1 is the first
invariant of strain tensor, and J is the determinant of defor-
mation gradient tensor. In addition, Mooney–Rivlin model
[70] is also a classic hyperelastic constitutive model.

Wang and Guth [71] established an orthogonal non-
Gaussian three-chain network constitutive model to describe
the large deformation of polymer chain segments by statis-
tical methods in 1952. Flory and Rehner [72] proposed a four-
chain constitutive model of regular tetrahedra to predict the
strain hardening deformation of hyperelastic materials.
Arruda et al. [73] proposed a fully three-dimensional eight-
chain thermodynamically consistent constitutive model in
1995, and a thermo-mechanically coupled FE analysis for the
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large deformation of glassy polymer was carried out. The
inelastic deformation of strain hardening in this model
is not dissipative, and it is to be stored as internal back
stress. The strain rate and temperature-dependence of
initial yield are included in the model as well as the tem-
perature dependence of evolving anisotropy and its asso-
ciated strain hardening. Wu and van der Giessen [74] also
proposed an eight-chain constitutive model, which fea-
tures strain-rate, pressure, and temperature-dependent
yield, softening immediately after yield, and subsequent
orientational hardening with further plastic deformation.
Sweeney and Ward [75] conducted the experiments near
and above the glass transition temperature (Tg) of PVC
in 1995, in which PVC is an amorphous polymer con-
taining a small amount of crystallization. In addition,
they introduced strain-rate into Edwards–Vilgis model,
and investigated the strain-rate dependence of PVC. Billon
[76] proposed a 1D visco-hyperelastic model, and vali-
dated it by using a rich and rigorous database of PMMA
above Tg. Moreover, they extended the Edwards–Vilgis
model to a general time-dependent constitutive model.
The inelastic phenomena in this model were reflected
by an evolution of internal variables related to the altera-
tion of microstructure, that induces changes in para-
meters in constitutive model and dissipation of energy.
This approach worked well in modeling time-dependent
behavior of polymers over a wide range of temperatures
and strain rates. Maurel-Pantel et al. [77] extended the
model proposed by Billon [76] to three-dimensional thermo-
dynamically consistent constitutive equations, and proposed
a visco-hyperelastic constitutive model in 2015. On the basis
of Edward–Vilgis theory, they also represented the degree of
mobility of entanglement points through the introduction of
an evolution equation for the internal state variable. The
thermomechanical model was applied to a semi-crystalline
polyamide polymer (PA66), and the predicted deformation
and temperature were in good agreement with the experi-
mental results under tension and shear conditions. Gehring
et al. [78] modified the network theory of Billon [76] and
Maurel-Pantel et al. [77] in 2016. For the behavior of amor-
phous and semi-crystalline PET, they considered several
contributions of the microstructure’s rearrangement (disen-
tanglement and loss of connectivity) within the large defor-
mation formalism by the thermodynamic framework. In
addition, the model considers microstructure at a mesoscopic
level through the description of an equivalent network evol-
ving with internal state variables. Good agreement was
obtained by comparing with the results of the nonmonotonic
tensile test. Federico et al. [79] used the theory proposed by
Gehring et al. [78] to investigate the mechanical behavior of
amorphous PMMA with different molecular weights in 2020.

The model can account for the elastic contribution of an
equivalent network, which experiences inelastic mechanisms
coming from the evolution of internal state variables. There-
fore, the model [78] possesses the capability to capture the
mechanical response of materials at different temperatures
and strain rates through the VE and rubbery regimes. In
addition, there are still lots of models based on such strategies
[19,80–84].

2.2.5 Multi-mode models

However, some features have been ignored logically when
constructing the above constitutive models. Different poly-
mers usually exhibit different mechanical properties con-
taining more than one pattern, due to the different degrees
of crystallization. The properties of polymers would be
the most important features to be considered for the study
of constitutive models. Researchers hence attempted to
couple the VE character and VP character or more char-
acteristics in their models to obtain more reasonable
results.

Anand et al. [85,86] developed an elastic-viscoplastic
thermodynamically consistent constitutive model for the
amorphous polymers with strain rate and temperature-
dependent large-deformation behaviors. Moreover, they
implemented their model for simulation of large-strain
compression experiments for PMMA, PC, and a cyclo-olefin
polymer (Zeonex-690R). It was validated that the model can
reflect the strain rate and temperature-dependent yielding,
strain-hardening, unloading response, and the tempera-
ture transforming. Frank and Brockman [87] presented
a constitutive model which combines nonlinear VE char-
acter and VP character of polymers for multi-axial iso-
tropic deformation in 2001. Several traditional constitutive
models expressed by some simple empirical relationships
were included in their model such as linear elasticity,
linear viscoelasticity, and plasticity, so that the time-depen-
dent and nonlinear behaviors can be captured. The pro-
posed model was applied to simulate the impact behavior
of PC, and the feasibility and accuracy of the model are
demonstrated.

Miled et al. [88] proposed a coupled VE–VP constitutive
model for homogeneous and isotropic polymers. Moreover,
fully implicit integration, a two-step return mapping cor-
rector strategy, and a consistent tangent operator were
used in their work. The model is restricted to the regime
of small perturbations (small strains, displacements, and
rotations), and the VE part of the model is linear and iso-
thermal. The total strain in this model was assumed to be
a sum of VE strain and VP strain, and this behavior is a
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common strategy for multi-mode models. The model was
implemented in a three-stage shear test and the simulation
of HDPE through ABAQUS software via a user-defined rou-
tine (UMAT), and the model was proved to be effective. Yu
et al. [89] proposed a nonlinear VE–VP cyclic constitutive
model based on the tests of multilevel loading–unloading
recovery, creep-recovery, and cyclic tension–compression/
tension ones. They extended Schapery’s nonlinear VE model
[56] as the VE part of the model. Moreover, as for the accu-
mulation of irrecoverable VP strain produced during cyclic
loading, they adopted the Ohno–Abdel-Karim’s nonlinear
kinematic hardening rule [90]. This model was verified by
comparison of the prediction with the tests of PC. Other
researchers [13,91–98] have also made significant contribu-
tions in this regard.

2.2.6 Constitutive models with damage

It is out of their depth for the above models to describe the
damage or crack during the deformation, even though most
of the models have reflected the viscous, elastic, and plastic
behavior of polymers well. Therefore, researchers take the
damage to materials into account when constructing the
constitutive models.

Zairi et al. [99,100] proposed a constitutive model to
describe the elasto-viscoplastic damage behaviors of poly-
mers according to both micromechanical (Gurson potential)
and phenomenological (modified Bodner–Partom model)
models, which contains hydrostatic and failure evolution
terms. They investigated the macro-mechanical response
and damage micro-mechanism by failure growth in rubber-
toughened glassy polymer by the simulation of RTPMMA
and HIPS, and a good agreement was obtained. An explora-
tory approach is provided by this model to capture the
damage quantitatively, while some improvements are still
essential. Tehrani and Abu Al-Rub [101] proposed a non-
linear VE, VP, and visco-damage constitutive model, and
applied the proposed model for the damage evolution simu-
lation of PMMA embedded with silicate nanoclay particles.
They introduced a damage evolution variable which is a
function of actual stress, hydrostatic stress, total strain,
strain rate, temperature, and damage process. A series of
simulations were performed, and the model was proved to
be reasonable. Balieu et al. [102] proposed a phenomenolo-
gical non-associated elasto-viscoplastic model coupled with
damage in the finite strain framework, which was used to
simulate the behavior of a 20% mineral-filled semi-crystal-
line polymer for a large strain rate range. Perzyna-type VP
formulation was used to represent the nonlinear strain-
stress response, and the specific non-associated VP potential

was used to capture the volume change of the material
under tensile and compression loading. In addition, hydro-
static pressure was introduced to reflect the yield stress
coupled with the damage model. They implemented the
model into FE simulation through UMAT, and the result
obtained were in good agreement with the experimental
data.

Krairi and Doghri [103] proposed a constitutive model
by coupling viscoelasticity, viscoplasticity, and ductile damage
within the framework of irreversible thermodynamics.
They simulated the time and strain rate dependencies,
the Bauschinger effect, and ductile damage through a
series of simple expressions. Ductile damage evolution
is related to VP strains, and it evolves only with changes
in VP strains. The model was validated by tests for dif-
ferent polymers under various loadings. Praud et al. [104]
also proposed a VE, VP constitutive model considering duc-
tile damage within the framework of thermodynamics, but
the VP behavior of their model is different from that of
Krairi and Doghri [103]. In the model proposed by Praud
et al. [104], the VE part is described with the help of a series
of Kelvin–Voigt branches, while the VE properties of the
model of Krairi and Doghri [103] are expressed through
Prony series through an integral formulation. Khaleghi
et al. [105] suggested a thermodynamically consistent damage
model to predict failure of glassy polymers based on the EGP
multi-mode model. In their model, the effects of plastic defor-
mation and hydrostatic stress on damage evolution were con-
sidered. In addition, Abu Al-Rub et al. [106], Seidel et al. [107],
Voyiadjis et al. [108], and Cayzac et al. [109] also made great
contributions in this aspect. In addition, some issues had also
attracted the attention of investigators, such as the influence
of moisture [110], heating [111], finite strains [112], change in
crystallization [113], hardening behavior [114 and softening
behavior [115]. Phenomenological models can be constructed
by combining the physical mechanisms and the results of
tests, so phenomenological model can usually predict the
deformation well as the model is constructed correctly. In
addition, phenomenological constitutive models introduced
in this section are listed in Table A3 of the Appendix.

2.2.7 Constitutive models incorporating machine
learning algorithms

There are still some weaknesses for the above traditional
nonlinear constitutive models, although intensive studies
have been performed and remarkable results have been
achieved in the past decades. Most of the physical consti-
tutive models derived from microstructural aspects are
expressed in complex equations, but the performances
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are not always perfect. Moreover, coefficients determined
from the tests of both phenomenological models and phy-
sical models will affect the performances as well [116].
With the rapid development of machine learning algo-
rithms and computing power, researchers attempt to reflect
the behaviors of materials by machine learning algorithms
or introducing them into mechanics. In recent years, artifi-
cial neural networks (ANN) models are the most popular
and widely used machine learning models due to their out-
standing performance in terms of “big data” and nonlinear
modeling. Therefore, the machine learning-based constitu-
tive models will be reviewed in this section, and the typical
model will be recovered and evaluated, so that a clear
understanding can be provided of the characteristics of
machine learning-based constitutive models. Furthermore,
a possible direction for the research of constitutive models
can also be provided.

Ghaboussi et al. [118] suggested that the behavior of
materials may be reflected by neural networks (NN) as
early as 1991. Back-propagation neural network was con-
structed for the plane stress state under monotonic biaxial
loading and compressive uniaxial cycle loading. The NN
model is self-operated, and all the parameters responsible
for the behavior of materials and experimental data are
reflected within a unified environment of a NN. After that,
they conducted a series of studies about the NN-based con-
stitutive models, in which the rate-dependent behaviors (as
shown in Figure 10) or hysteretic behaviors were consid-
ered [117,119]. In their research, the strain, strain rate, and
the internal variables were taken as the inputs directly,
and stresses were the outputs. The ANN-based model was
implemented within the FE method for the results of

boundary value problems [120]. The experimental data
and simulation data calculated by physical constitutive
models were combined, and worked together with the
NN model to achieve more accurate results [121]. Their
studies not only provided evidence that it is feasible to
forecast the behavior of materials by the NN approach,
but also established a basic framework for the ANN-based
constitutive models.

Al-Haik et al. [122] developed an ANN-based constitu-
tive model to predict the stress relaxation of polymer
matrix composite. A series of stress relaxation tests were
performed at the conditions of constant strain and con-
stant temperature, and 9,000 experimental datasets were
used to train the ANN model. The ANN model consisted of
three input layers, two hidden layers, and one output layer.
To verify the performance of the ANN-based constitutive
model, they compared the results of the ANN model and
another nonlinear VE constitutive model with the experi-
mental results. The predictions of the ANN model are
found to be more accurate than those of the nonlinear
VE model over a wider range of stress and temperature
conditions, in particular near the Tg. Their study further
proved that the ANN model has great potential in consti-
tutive modeling.

Rodriguez et al. [123] predicted the behavior of ther-
moplastic polymer through a feed-forward artificial NN
model. A model with the stress–strain curve as outputs
and test datasets as inputs was constructed, and a response
surface of stress varying with strain and temperature was
modeled as shown in Figure 11. They further compared the
performance of ANN-based model with several other con-
stitutive models such as Polynomial model, Neo-Hookean
model, Yeoh model, Mooney–Rivlin model, and Ogden

Figure 10: Rate-dependent NN constitutive model (Ak is equal to elm/Sk,
where elm = εlm − δlmεv/3, S denotes the scale factor, the dots denote the
rates, n and n − 1 denote the discrete time steps) [117]. Figure 11: The stress response surface given by the ANN model [123].
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model. The proposed ANN-based model achieved the best
prediction accuracy among these models, and the pre-
dicted maximum percentage error (mean square error)
was even less than 1%.

By combining the NN model with elasticity theory,
researchers also attempted to construct new constitutive
models, except for the direct modeling by NN. Jordan et al.
[124] decomposed the total logarithmic axial strain into a
purely-elastic strain and a VE strain. The elastic deforma-
tion was reflected by a temperature-dependent Hooke’s
law, while the VE deformation was reflected by the NN
model. The relationship between stress with the viscous
strain, viscous strain rate, and temperature are identified,
without making any prior assumptions on the specific
mathematical form. The proposed NN constitutive model
and a thermos-elastic-viscoplastic constitutive mode named
the Johnsen model [125] were implemented to simulate the
deformation of PP at various temperatures and low strain
rates, and a comparison was made with experimental
results as shown in Figure 12. It was demonstrated that
the NN model has the capability to predict the stress–
strain response at low strain condition.

Li et al. [126] improved the Johnson–Cook model [36]
by applying the machine learning algorithm to capture the
observed unconventional effect of the strain rate and tem-
perature on the hardening response. A feed-forward NN
with three hidden layers was introduced to represent a
function that describes the effects of the strain, strain
rate, and temperature. The NN was implemented into
UMAT, and an accurate NN model was constructed by
repeatedly launching full 3D FE simulations during the
training. A hardening law of DP800 steel was thus obtained,

in which the yield stress is expressed as a function of the
equivalent plastic strain, strain rate, and temperature.
Although the object of study is metal, this approach is still
a typical strategy for combining the NN algorithm with
the traditional constitutive model.

Besides, the NN model was not only widely used in the
construction of constitutive models, but also in the perfor-
mance prediction of fiber-reinforced polymeric composite
structures [127–129], the damage prediction of composites
[130], multiscale modeling of composites [131 or replacing
the expensive nonlinear computation of FE model [132].

Tao et al. [133] coupled the commercial FE code Abaqus
with the deep neural network model, to acquire the con-
stitutive relationship of the fiber-reinforced composites.
The proposed system avoids excessive assumptions in the
process of constitutive modeling and satisfies the equili-
brium and kinematics equations, so that it has more poten-
tial to conform to physics laws. Engineering constants of
the fiber‐reinforced composite were acquired, and the pro-
gressive damage of structures was also captured. This
research shows that the machine learning algorithm can
be applied to not only the constitutive modeling of mate-
rials, but also the constitutive modeling of structures.

In addition to the above NN algorithm, other machine
learning algorithms have also been employed for con-
structing constitutive models, such as convolutional neural
network [134], Gaussian process machine learning [135],
and genetic algorithms (GAs) [136]. As far as the authors
are concerned, GAs are applied to solve the parameters of
constitutive models in most cases. Colak and Cakir [136]
proposed a constitutive model to reflect the rate and tem-
perature-dependent stress–strain behavior of polymers.

Figure 12: Comparison of the NN model and Johnsen model [124].
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The model was modified from the cooperative-viscoplasti-
city theory of the VBO model, and GA was adopted to
determine the material parameters of the models. The pro-
posed model with parameters obtained from GA was cap-
able of predicting the mechanical behavior and all features
below and through Tg of polymers.

The authors built an NN-based constitutive model on the
basis of previous research to further evaluate the perfor-
mance of the machine learning-based constitutive models.
A 2D NN model was established, and the model contains
one input layer, ten hidden layers, and one output layer.
The deformations of PEEK in which strain rate was main-
tained at 0.001 s−1 were studied, and the experimental data
were still taken from the research of Chang et al. [48]. True
strain and temperature were the input variables, and true
stress was the output variable. The experimental data which
obtained from the tests at the temperature of −60℃, −2℃,
23℃, 100℃, and 140℃were used for training the constitutive
model, and the experimental data at the temperature of 60℃
were used for validating the constitutive model. Figure 13
presents the comparison of modeling (surface), training sam-
ples (red dots), and validation samples (black dots, the black
dots are almost hidden under the surface). It was found that
the NN-based constitutive model achieved a good agreement
with the experimental results in a wide range.

In addition, Figure 14 compares the deformation at the
temperature of 60℃ predicted with testing separately. Our
studies show that the NN-based constitutive model is cap-
able of predicting the deformation of polymers when a
suitable model is established with good training accuracy

and enough experimental data are provided. in addition,
the NN-based constitutive model is suitable for any poly-
mers. Certainly, the performance of a machine learning-
based constitutive model greatly depends on the samples,
training accuracy, and many other factors, and it is chal-
lenging to achieve high accuracy.

Many other researchers were also interested in using
the NN algorithms to investigate the nonlinear character-
istics of thermoplastic polymers in recent years [137–139].
In addition, the machine learning-based constitutive models
in this section are listed in Table A4 of the Appendix. Among
the current studies, many benefits are found for such stra-
tegies. First, almost no assumptions were made, but the
behaviors of materials can be captured by training the NN
model by using experimental or computational data. There-
fore, such an approach possesses the capability to describe
the actual behavior of materials. Second, the NN-based con-
stitutivemodels may discover unknown deformationmechan-
isms of polymers by learning the deformation of polymers
[116]. Third, the computation may be accelerated by applying
the NN algorithm with a reasonable approach.

Up to date, there are still some disadvantages for NN-
based constitutive models [116]. In fact, the experiments
are usually “expensive,” so it is difficult to obtain a large
amount of training data. Due to lack of experimental data,
it is not easy to maintain the steady performance of NN-
based constitutive models. In addition, the NN-based con-
stitutive models will encounter difficulties to accurately
predict the results outside the training sets. For example,
when the NN-based model is trained by using experimental
data obtained from tensile deformations, such model might

Figure 13:Modeling of NN-based constitutivemodel (surface: NN-basedmodel,
red dots: samples input, black dots: experimental data to be compared).

Figure 14: Comparison of true stress–strain curves between the pre-
diction of NN-based model with experimental results for PEEK.
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encounter difficulties to accurately predict shear deformations.
Moreover, the NN-based constitutive model cannot closely
relate to the physical mechanism of materials.

Nevertheless, with the development of machine learning
technology, these challenges are expected to be overcome in
the future. For example, combination of physical constitutive
models and machine learning algorithms might be a choice.
Therefore, the machine learning algorithms exhibit a great
potential in the research of constitutive models for thermo-
plastic polymers.

3 Discussion and conclusion

Comparison and review of classical and machine-learning
based constitutive models for polymers used in aeronautical
thermoplastic composites have been discussed in the pre-
sent work. By comparing these models, it was found that
classical constitutive models have been developed over the
past decades and widely used in thermoplastic polymers. In
addition, the machine learning algorithms possess a great
potential to construct constitutive models for thermoplastic
polymers. The detailed conclusions can be drawn as follows:
1) Differing from phenomenological models, physical models

can describe the deformation mechanism of polymers,
which can be explicitly traced to the microscopic level.
Moreover, construction of physical models will not
highly depend on the quantity of experimental data.
Nevertheless, the performance of physical models will
be obviously influenced by their construction schemes,
and it is more complex to apply the physical models for
analysis of engineering issues than phenomenological
models. In addition, it is difficult to extend the range of
application of the physical models, as a certain physical
model may be only suitable for some deformation pat-
terns of corresponding materials.

2) Phenomenologicalmodels can be constructed by combining
the physical mechanisms and the results of tests. If the
model is constructed correctly, phenomenological model
can usually predict the deformation well. In addition, the
forms and schemes of phenomenological models are
usually simpler than those of physical models. However,
the phenomenological models may encounter difficulties
in describing the microscopic deformation mechanisms of
polymers. In addition, accuracy of the phenomenological
models largely depends on testing data and experiences.

3) If machine learning-based constitutive models are well
trained, thesemodels have the ability to accurately predict
the mechanical behavior of polymers. Because the experi-
mental data can be well used, the machine learning-based
constitutive models have more advantages than classical
constitutive models in predicting the hardening, softening,

relaxing, and creep. However, performance of machine
learning-based constitutive models will be significantly
influenced by the choice of machine learning algorithm,
the training quality, and the reliability of experimental
data. In addition, the machine learning-based constitutive
modelsmay encounter troubles in predicting the deforma-
tions outside the training data and exploring the physical
mechanism of materials.

4) In the short term, due to the widespread application of
machine learning technology, phenomenological consti-
tutive models combined with machine learning algo-
rithms have shown activity and capability in studying
the deformation of thermoplastic polymers. Therefore,
phenomenological constitutive models with the help of
machine learning algorithms are expected to be used
more and more extensively in engineering. In the future,
the correlation between macrostructure and microstruc-
ture of materials is expected to be effectively addressed,
and computer technology will be further developed,
which are still challenging issues. Then, the combination
of physical constitutive models, phenomenological con-
stitutive models, and machine-learning algorithms will
be increasingly attractive, as they can describe the phy-
sical deformation mechanism of materials accurately.
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Appendix

Table A1: Summary of rubber-like models

Year Model/theory Characteristics

1943 Theory of James and Guth [20] Basal and general theory for rubber-like models
1981 Theory of Ball et al. [21] Simulation of entanglements was included on the basis of James et al.
1986 Edwards–Vilgis model [18] The molecular mechanism of stretching and hardening was explained

Table A2: Summary of models based on Haward–Thackray theory

Year Model/theory Characteristics

Class BPA models
1955 Theory of Ree and Eyring [24] Foundation of Haward–Thackray theory
1968 Haward–Thackray model [17] This model contains a Hookean spring, an Eyring dashpot, and a Langevin spring
1988 BPA model [25] Maxwell element is parallel with the Langevin spring in this model
Class GR models
1995 GR model of Buckley and Jones [26] The linear elasticity, Eyring viscous flow, and the Edwards–Vilgis entropy function

were employed in this model
2004 Model of Wu and Buckley [27] A distribution of relaxation times was added on the basis of GR model
2010 Model of De Focatiis et al. [28] This model consists of a set of ROLIEPOLY equations
Class EGP models
1997 Model of Tervoort et al. [29] It is a single Maxwell model with a relaxation time
2000 Model of Govaert et al. [31] The physical quantities were introduced into the extended CLM
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Table A3: Summary of phenomenological models

Year Model/theory Characteristics

2011 Model van Breemen et al. [33] It is a multi-mode model on the basis of one-mode EGP model
VE models
1969 Model of Schapery [56] It does well in the prediction of creep and relaxation
2006 Model of Khan et al. [57] This model can get good prediction over a wide range of strain rate
2010 Z-W-T model of Wang and Yue [58] It is not suitable for the VP response after yielding
2018 Model of Chang et al. [48] It is good at predicting the mechanical behavior of polymers before yielding
VP models
1997 Model of Bardenhagen et al. [67] It is good at predicting the creep and relaxation
2005 Model of Colak [62] The nonlinear response such as creep caused by viscoplasticity can be simulated well
2007 Model of Drozdov and Christiansen [68] It is suitable for the prediction with small strain
Hyperelastic models
2015 Neo-Hooken model [140] It is suitable for the deformation of rubber-like materials
1995 Model of Arruda and Boyce [73] It can well predict the phenomenon of strain hardening
1995 Model of Wu and van der Giessen [74] It does well in the prediction of strain hardening and softening
2002 Sweeney model [75] Strain concentration was included in their model
2012 Billon model [76] Edwards–Vilgis model was extended to a general time dependent constitutive model
2015 Maurel-Pantel model [77] The degree of mobility of entanglement points was represented
2016 Gehring model [78] Microstructure rearrangement was considered
Multi-mode models
2001 Model of Frank and Brockman [87] The form is simple for this model, and it is suitable for problems with high strain rate
2009 Model of Anand et al. [85] The yielding, strain hardening, unloading response, and temperature transforming can be

reflected well in this model
2011 Model of Miled et al. [88] The viscous behavior of polymers can be reflected better in this model
2016 Model of Yu et al. [89] It is good at predicting the creep, loading and unloading behavior
Constitutive models with damage
2008 Model of Zairi et al. [99] The behavior of elasto-viscoplastic damage is considered in this model
2011 Model of Tehrani and Abu Al-Rub [101] Viscodamage is reflected by a damage evolution variable in this model
2013 Model of Balieu et al. [102] It is suitable for the prediction of damage with a high strain rate and finite strain
2014 Model of Krairi and Doghri [103] Ductile damage evolution is included in this model
Elasto-plastic models
1979 Model of G’sell and Jonas [34] The form of this model is simple, and it is suitable for the deformation with low strain rate
1983 Johnson–Cook model [36] It is originally used for the deformation of metal under high temperature and high strain rate
2001 DSGZ model [41] All the characteristics of elasticity, yielding, strain hardening, and strain softening can be

reflected well by this model
2018 Model of Wang et al. [50] It can get good results over a wide range of temperature and strain rate
2006 M–B model [49] Another Maxwell element was added in parallel on the basis of BPA model
2009 Model of Varghese and Batra [53] Three Maxwell element were contained in the model

Table A4: Summary of NN-based constitutive models

Year Model/theory Characteristics

1991 Model of Ghaboussi et al. [118] It is an earlier attempt for the applying of NN model on constitutive models. Back-propagation neural
network is applied in this model

2006 Model of Al-Haik et al. [122] The NN-based model is good at predicting the stress relaxation of polymers
2019 Model of Rodriguez et al. [123] The constitutive model built with feedforward artificial neural network can get extremely high precision
2019 Model of Li et al. [126] NN model is used to enhance the performance of Johnson–Cook model
2020 Model of Jordan et al. [124] NN model is used to reflect the VE deformation
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