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Abstract: The roughness of the joint surface plays a signif-
icant role in evaluating the shear strength of rock. The
waviness (first-order) and unevenness (second-order) of
natural joints have different effects on the characterization
of joint surface roughness. To accurately quantify the influ-
ence of the two-order asperity on the joint roughness coef-
ficient (JRC) prediction of joint surface profile curve, the
optimal sampling interval of the asperity was determined
through the change of the Rp value of the joint surface
profile curve. The separation of the two-order asperity
of 48 joint surface profile curves was completed at the
optimal sampling interval, and morphological parameters
of the asperity such as iave, Rmax, and Rp were counted from
three aspects: asperity angle of the profile curve, asperity

degree, and the trace length. Based on the statistical results
of the morphological parameters considering the two-
order asperity, the new nonlinear prediction models were
proposed. The results showed that the curve slope mutation
point SI = 2mm is the optimal separation distance of the
two-order asperity of the joint surface profile curve. The
refined separation method that considers the waviness
and unevenness of morphological parameters can charac-
terize the detailed morphological features of the joint sur-
face in more dimensions. The support vector regression
(SVR) and random forest (RF) models that take into account
a two-order asperity separated results have higher accuracy
than traditional models. The prediction accuracy has
improved by 7–8% in SVR model compared with SVR
(SO) and RF(SO). The SVR nonlinear model that consid-
ering separation of two-orders of joint surface roughness
is more suitable for the prediction of JRC.

Keywords: two-order asperity of joint surface, statistical
parameters of morphology, data-driven model, prediction
of JRC

1 Introduction

A rock mass is a discontinuous medium composed of
rock blocks and joint surfaces. The rock mass’s integrity
is destroyed by the joint surface, which also lowers its
mechanical strength [1,2]. Failure of the joint surface is
the cause of the failure of several rock masses [3,4], such
as the failure of the Malpassay arch dam in France [5] and
the Jiweishan landslide in Wulong, Chongqing [6]. These
accidents all occurred due to the existence of joint surfaces.
As one of the most important mechanical properties of
rock masses, the shear strength of the joint surface is
of great importance for evaluating the stability of rock
masses [7–9]. A rock joint’s mechanical reaction to shear
is principally influenced by the characteristics of the rock,
normal load, and surface roughness [10,11]. Generally, the

Yunpeng Hu: College of Environment and Civil Engineering, State Key
Laboratory of Geohazard Prevention and Geoenvironment Protection,
Chengdu University of Technology, Chengdu 610059, China; Key
Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of
Natural Resources, Fuzhou 350002, China; Fujian Provincial Key
Laboratory of Geological Hazards, Fuzhou 350002, China,
e-mail: huyunpeng@cdut.edu.cn



* Corresponding author: Wenkai Feng, College of Environment and
Civil Engineering, State Key Laboratory of Geohazard Prevention and
Geoenvironment Protection, Chengdu University of Technology,
Chengdu 610059, China; Key Laboratory of Geohazard Prevention of Hilly
Mountains, Ministry of Natural Resources, Fuzhou 350002, China; Fujian
Provincial Key Laboratory of Geological Hazards, Fuzhou 350002, China,
e-mail: fengwenkai@cdut.cn

Wenbin Li, Xiaoyu Yi, Jiachen Zhao: State Key Laboratory of Geohazard
Prevention and Geoenvironment Protection, Chengdu University of
Technology, Chengdu 610059, China
Kan Liu, Longzhen Ye: Key Laboratory of Geohazard Prevention of Hilly
Mountains, Ministry of Natural Resources, Fuzhou 350002, China; Fujian
Provincial Key Laboratory of Geological Hazards, Fuzhou 350002, China
Xianjing Lu: Henan Xinhua Wuyue Pumped Storage Power Generation
Co., Ltd., Xinyang 465450, China
Ruichao Zhang: Central China branch of China Power Construction New
Energy Group Co., Ltd., Changsha 410019, China

Reviews on Advanced Materials Science 2023; 62: 20220336

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/rams-2022-0336
mailto:huyunpeng@cdut.edu.cn
mailto:fengwenkai@cdut.cn


joint surface can be divided into hard (rigid) joint surface
and weak joint surface according to rock own properties.
The shear strengths of the two kinds of joint surface are all
affected by factors such as lithology, moisture content, con-
nectivity, plane morphology, filling properties, and stress
state [12,13]. The friction coefficient of hard joint surface is
large, and most of them have no filling material (the main
object of this article). The mechanical properties are influ-
enced by the roughness of the joint surface and the normal
stress. The extension of the weak joint surface is long, and
the interfacial friction coefficient is relatively small. The
interior is generally filled with clay, mud, rock fragments,
and so on. The filler properties dominate the mechanical
properties of the joint surface. For the normal stress,
usually the higher the normal stress, the higher the shear
strength of the joint surface will be [14]. This is especially
evident in hard joint surfaces. The normal stress level is
mainly influenced by the regional ground stress. The afore-
mentioned two factors can be obtained by lithological iden-
tification and stress testing. The interface roughness, as an
important parameter to describe the morphological char-
acteristics of joint surfaces such as joints and faults, also
greatly determines the shear–slip properties of hard joint
surfaces [15,16]. However, the quantitative estimation of
joint roughness coefficient (JRC) is very complicated and
remains under debate in recent year research.

At the earliest time, the JRCs of joint surface were
obtained mainly by back-calculation based on test results
[17,18]. Barton first proposed ten standard JRC curve pat-
terns based on a large number of experimental studies.
Researchers could then derive the JRC of the joint surface
by comparing them with the standard profile lines, and
this method was of great significance in the research on
JRC. It was found that rock joints show different roughness
characteristics at different scales in the follow-up practice
research [19,20]. The International Society of RockMechanics
qualitatively suggests that the roughness of a joint surface
is characterized by two parts: waviness (first-order) and
unevenness (second-order). Patton [21] found that the
shear behavior of rock joints is primarily controlled by
the asperity of the second-order and the first-order at
small and large displacements, respectively. Some other
research results [22] also indicated that the waviness
plays a major role in influencing the nodal surface under
low normal stress. In the case of high normal stress, the
effect of unevenness of the joint surface should be empha-
sized. Li et al. [23] studied that asperity degradation con-
trols the shear behavior of the rock joint. For a rock joint
subjected to shear under non-extreme normal stress

conditions, dilation and asperity degradation occur
simultaneously.

However, the morphological parameters of the two-
order asperities of joint surface contour curves obtained
by different sampling interval methods are different,
which has a great impact on the accurate estimation of
the final JRC values. Yu and Vayssade [24] found that Z2
and SF vary for sampling intervals of 0.25, 0.5, and
1.0 mm, indicating that the coefficients of these fitting
equations need to be modified for different sampling
intervals. Jang et al. [25] found that Z2 and RP decrease
with increasing sampling interval, but SF increases very
rapidly with increasing interval. Therefore, the structure
of joints such as the quantitative ranking and accurate
characterization of surface roughness are the theoretical
basis for analyzing the shear resistance of rock masses.
How to accurately quantify the evolution of waviness and
unevenness is crucial to calculate the JRC value and the
prediction of shear behavior of a rock joint.

Generally speaking, the main methods for quantifying
the roughness of joint surfaces contain the experimental
method, straight-edge method with a modified straight
edge, the statistical parameter method, and the fractal
mathematical method. Geertsema [26] obtained the JRC of
specimen using the straight shear test on the joint surface
and verified the applicability of the JRC–JCS model. Du [27]
modified the straight-edge method and plotted the gra-
phical solution of the modified straight-edge method to
derive mathematical expression of joint surface roughness.
Li and Huang [28] proposed a new method of using the
relative undulation Ra and elongation R to jointly respond
to the JRC of the joint surface and finally established the
empirical formula of JRC with Ra and R as two factors. The
results provided conditions for a rapid acquisition of shear
strength of joint surfaces. Chen et al. [29] proposed the
multiple fractal theory to quantify JRC as a way to solve
the problem that subjective factors in Barton’s formula had
a large influence on JRC. Ge et al. [30] proposed a method to
describe the joint surface morphology using the bright
area percentage BAP and fitted the regression relationship
between BAP and JRC. Among these quantitative calcula-
tion methods of the aforementioned JRC, although the
experimental method was accurate and was recognized
by most of scholars, it was contrary to the significance of
studying the shear strength of the joint surface by using the
JRC–JCS model. Moreover, experiments also took a lot of
time and cost. Thus, it had not been widely promoted in
practical applications [31,32]. The straight-edge method and
the modified straight-edge method took into account the
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large fluctuation of the joint surface, but the contribution
of the small fluctuation of the joint surface to the overall
shear strength was ignored. According to a large number of
research results on JRC using fractal theory, different scho-
lars got different research results [33]. Therefore, the sta-
tistical parameter method was gradually being accepted as
a method for quantifying JRC that can effectively overcome
the aforementioned disadvantages and had some practical
significance [34,35].

The statistical parameter method is a way to obtain the
prediction values of JRC by rigorous mathematical for-
mulas and is easy to implement in the program. It effec-
tively avoids the errors caused by subjective factors and is
gradually becoming one of the main methods for JRC pre-
diction model research. There have been as many as
dozens of statistical parameters used to express the mor-
phology of joint surfaces, including the average tilt angle
iave, the first-order-derivative root mean square Z2, the
modified first-order-derivative root mean square Z2’, the
roughness index Rp − 1, the contour index Rp, the structure
function SF, the knotted surface roughness gauge +θ C* / 1max ( ),
and so on [36]. However, there were two major difficulties
in the calculation of JRC using the statistical parameter
method. One was the refined characterization of the undu-
lating morphology of the rock structure surface and the
accurate acquisition of the main controlling statistical
parameters. The other was the complex nonlinear relation-
ship between statistical parameters of the joint surface
morphology and JRC.

For the first problem, it is well known that natural
joints of the joint surface possess two-order roughness,
i.e., waviness (first-order) and unevenness (second-order)
[37–39]. Both order asperities experience dilation and degra-
dation, leading to the non-linear mechanical response of a
rock joint to shear loading [40,41]. The waviness generally
has the characteristics of a small dip angle and large
asperity height. Conversely, the unevenness has the charac-
teristics of a large dip angle and small asperity height [22,42].
Zhu et al. [43] analyzed the effect of two-order asperity on
the shear strength and deformation characteristics of the
joint surface through a shear test of the joint surface con-
taining the two-order asperity. They found that under low
normal stress, the shear strength of the joint surface
increases with the height of the second-order small asperity,
and the two-order asperity shows different shear character-
istics during the shearing process. Huang et al. [44] used
natural joint surface samples to conduct shear tests to
explore the influence of two-order asperities on the JRC at
different shear stages. The test results showed that the two-
order asperity contributed different influences to the shear

failure of the joint surface, and research on the shear
strength of the joint surface should comprehensively con-
sider the shear contribution of the two-order topography.
Guo [45] used the particle flow software PFC2D to simulate a
joint surface with the two-order asperity and conducted
shear tests. They obtained the law that the two-order asperity
has different influences on the failure mode and shear
mechanical properties of the joint surface. Therefore, the
correct quantification of the contribution of the two-order
roughness to JRC was of great significance for determining
the shear strength of joint surfaces [46–48]. To quantify the
contribution of different orders of roughness to the JRC, it is
necessary to realize the separation of the two-order asperity.
Zou et al. [49] classified the low-frequency and high-fre-
quency variables in the joint surface profile curve by the
wavelet transform method and characterized a two-order
asperity in the joint surface profile curve with low frequency
and high frequency. Based on wavelet transform theory and
the critical decomposition-level criterion, Yuan et al. [50]
separated the first-order and second-order asperity in the
profile curve of the joint surface and established a JRC hier-
archical characterization regression equation based on the
statistical parameters of the first-order and second-order
asperities. The determination of the optimal wavelet basis
in the wavelet transform method played a crucial role in
the separation of the first-order and second-order asperities.
However, the selection of the optimal wavelet basis was time-
consuming, labor-intensive, and complicated. The results of
the selection varied among researchers. Liu et al. [22] used the
fixed sampling interval method to decompose the standard
profile curve into a curve containing only two-order asperity,
and the morphological parameters were also statistically ana-
lyzed. The fixed sampling interval method provided a new
solution for the separation of the first-order and second-order
asperities. However, the existing research results have not
been deeply explored in the selection of sampling intervals,
and further research is needed on the selection of separation
intervals for the two-order asperity.

For the second problem, many researchers separated
the two-order asperity and established a linear regression
model between the morphological parameters and the JRC
to calculate the JRC based on the ten standard profile
curves proposed by Barton [15,16]. However, the standard
profile curve had the problem that the data sample was too
small and the length was single. Therefore, the effect was
poor when it was actually applied to profile curves of dif-
ferent lengths. In addition, JRC was a comprehensive para-
meter to describe the morphology of the joint surface. But
many researchers had quantified JRC using only a single-
joint surface morphological parameter, without considering
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morphological characteristics at the same time such as
undulation angle, undulation degree, and trace length. This
kind of linear model selected only one or two morphological
parameters for fitting and regression, and it was difficult to
fully characterize the influence of morphological parameters
on JRC. Although the aforementioned two-order roughness
division method produced a large number of statistical
parameters that can provide a fine characterization of the
joint surface roughness, the complex nonlinear relationships
between the parameters were difficult to characterize by tra-
ditional regression analysis methods. In recent years, machine
learning has increasingly become the focus of much attention
in rock parametric estimation [51,52]. For the characteristics of
small and discrete of rock structure surface data, random
forest (RF) and support vector regression (SVR) models show
strong advantages in solving both small and nonlinearity
samples among the many commonly used machine learning
models. They not only meet the requirement of training
sample size, but also ensure the accuracy of prediction
[53,54]. However, little research has been done in morpho-
logical classification and statistical regression of rock joint
surface consideration of the two-order asperity.

Therefore, in view of the problem that most of the
previous studies were based on 10 standard profile curves,
this article collected 48 joint surface profile curves with
lengths from 64 to 112 mm (the values of JRC were known).
The optimal sampling interval of the two-order asperity of
the plane profile curve was explored deeply to achieve the
precise separation of the two-order asperity of the 48 joint
surface profile curves. The asperity angle, degree, and
length morphological parameters of the two-order asperity
were counted. The morphological characteristics of the
first-order and second-order asperities were characterized by
the refinement of the morphological parameters of the two-
order asperity, and the morphology of the two-order asperity
was accurately and effectively quantified. Thirty-eight curves
were randomly selected to establish the training database, and
the regression models of SVM and RF that could capture the
complex relationship between the morphology parameters
and the JRC were constructed to determine the influence of
each morphological parameter on the JRC. Finally, ten profile
curves were randomly selected as the prediction set, and the
prediction accuracy of the data-driven model constructed
based on the separation results was also verified by the joint
surface shear test. These works may provide new research
results for the JRC prediction and shear strength calculation
of rock joints.

2 Data and methods

2.1 Data set

To carry out research on the determination of the rough-
ness of the joint surface of the two-order asperity based on
the data-driven model, 48 joint surface profile curves of the
known JRC were collected, of which 1–10 were standard
profile curves, 11–22 were derived from Grasselli [55–57],
and 23–48 were derived from Bandis et al. [58]. The JRC of the
48 profile curves was calculated by the relevant researchers
through the direct shear test. The results were real and
effective. A large number of researchers had studied the
influence of the roughness of the joint surface on the shear
strength.

2.2 Standard JRC profile decomposition
method

The influence of the first-order asperity and the second-
order asperity on the roughness in the rock mass joint
surface is quite different. Under a large sampling interval,
only the morphological characteristics of the first-order
asperity can be collected. Under the small sampling interval,
the statistical results of the morphological characteristics
are the comprehensive results of the first-order asperity
and the second-order asperity. Therefore, a suitable interval
should be used to distinguish the two-order asperity in the
profile curve of the joint surface, and the morphological
parameters of the two-order asperity should be counted.

When the sampling interval of the profile curve of the
joint surface dropped to a certain value, the length of the
second-order asperity was included in the statistical result
of the total length of the profile curve, and the roughness
profile indexes Rp changed greatly. The sampling interval
changed with the slope of the fitting curve. This sampling
interval was the optimal sampling interval [59]. The optimal
sampling interval was the change in the slope of the fitting
curve, which consisted of the sampling interval and Rp. The
profile curve of the joint surface was discrete with the limit
sampling interval to realize the acquisition of the first-order
asperity. The acquisition of the second-order asperity was
obtained by subtracting the morphological data of the first-
order asperity from the morphological data under the
minimum sampling interval.
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2.3 Data-driven methods

Based on the characteristics of the two-order undulating
morphological parameter data of the joint surface, this
article selected two data-driven models, RF and support
vector machine, and established the machine learning
model to determine the JRC of the joint surface.

2.3.1 SVR

Support vector machine is a statistical learning theory
based on the principle of minimum structural risk and
applied to small samples [60–62]. To solve the regression
problem, the support vector machine maps the input vari-
able data set x to the high-dimensional feature space F by
establishing a nonlinear mapping function from the input
space to the output space and constructs the estimated
function in F. The estimated function is as follows:

= × +f x ω x bф ,( ) [ ( )] (1)

where f(x) is the output variable, x is the input variable, ω
is the weight vector, and the dimension of ω is the dimen-
sion of the feature space, and b is the threshold.

ω‖ ‖ is a measure of the model’s ability to control the
generalization. When

ω
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‖ ‖
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ability is the best. To find the smallest ω, assuming that all
data can be linearly fitted with the accuracy of ω, the
problem of finding the smallest ω is transformed into a
quadratic convex optimization problem:
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Introducing Lagrangian multipliers, αi, α *
i , λi, and λ *

i

the aforementioned equation is converted into a dual opti-
mization problem to solve:

∑

∑

∑

∑

= + +

− + − + +

− + + − −

− +

=

=

=

=

L ω b α ξ ω C ξ ξ

α ξ ε γ ω x b

α ξ ε γ ω x b

λ ξ λ ξ

, , ,
1

2
*

Ф

* Ф

* *

i

i

l

i i

i

l

i i i i

i

l

i i i i

i

l

i i i i

2

1

1

1

1

( ) ‖ ‖ ( )

( · ( ) )

( · ( ) )

( · · )

(6)

When the partial derivative value of ω, b, ξi, ξand *
i and

other parameters is 0, the aforementioned equation obtains
the minimum value. The aforementioned equation is entered
when the partial derivative value of ω, b, ξi, and ξ*

i and other
parameters is 0 to obtain the dual optimization problem:
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The aforementioned equation is the quadratic program-
ming problem of the support vector machine. Solving this
problem results in the form of data points ω:

∑= −
=

ω α α x* Ф .
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i i i
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( ) ( ) (8)

The choice of hyperparameters and kernel functions
has an important impact on the prediction accuracy and
generalization performance of the model. Therefore, an
optimal search of hyperparameters and kernel functions
is performed using MSE values as indicators for parameter
tuning and model selection. Finally, it is concluded that the
highest model accuracy is achieved when the Gaussian radial
basis kernel function is used for the joint surface JRC regres-
sion study. In support vector machine regression, the kernel
function ′K x x,( ) satisfies ′ = ′K x x x x, Ф , Ф( ) 〈 ( ) ( )〉, and the
kernel function is introduced for nonlinear approximation.
The regression function is obtained from this solution:
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Different support vector machines can be generated by
selecting different forms of kernel functions such as radial
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basis functions, polynomial functions, perceptron (sigmoid)
functions, and linear functions. In this study, the Gaussian
radial basis kernel function was used for the JRC regression
study of the joint surface.

2.3.2 RF

RF is an ensemble learning model that integrates multiple
decision trees = ∙⋯h X θ k K, , 1,2,k{ ( ) } to solve the pro-
blem of overfitting and large error of a single decision tree
algorithm, where X is the predictor variable, θk is an input
variable with independent and identical distributions, and
K is the number of trees in the RF model.

The regression process of the RF model is as follows:
1) The self-help method (bootstrap) is used to extract sam-

ples with replacements to ensure that the N samples
generate N subsets of the same size and N decision trees.

2) When nodes are randomly generated in each decision
tree, m variants (m < n) among the explanatory vari-
ables are randomly selected to participate in the growth
of the tree. Using the principle of the minimum Gini
coefficient or the principle of maximum information
gain, the optimal variable is selected for node segmen-
tation to ensure that each tree generates the optimal
branch and realizes the growth of the tree.

3) Each tree is generated from top to bottom. The max-
imum generation depth of each tree depends on the
initial set hyperparameter (max_depth). The branches
that exceed the maximum depth will be cut off to pre-
vent the model overfitting.

4) The prediction results of all decision trees are accumu-
lated and averaged to obtain the final prediction result
of the prediction set.

The prediction accuracy of the RF model is affected by
model hyperparameters such as the number of decision
trees (n_estimators), the maximum depth of the decision
tree (maximum_depth), the minimum number of samples
required for node division (minimum_samples_leaf), and
the minimum number of samples of leaf nodes (mini-
mum_samples_split). Among them, the number of regres-
sion trees, the maximum depth of the regression tree, and
the model accuracy have the greatest impact on the model
hyperparameter optimization. In order to improve the
model predictive performance, the hyperparameters are
also optimized based on the MSE value and the number of
characteristic variables. It is determined that the highest
model accuracy is achieved when the number of regression
trees is 400 and the maximum depth of regression trees is 2
for the JRC regression study of rock joint roughness.

3 Results

3.1 Profile curve separation result

When making the curve selection, it is necessary to con-
cern that the samples should be able to characterize the
morphological features of the ten standard contour curves
as much as possible. Therefore, samples from both ends
and the middle of the JRC standard contour curve sample
library are selected. In this case, the selection of 2nd, 5th,
and 8th; the selection of 3rd, 6th, and 9th; and the selection
of 4th, 7th, and 10th curves from the standard profile curve
all can be considered. However, the overall JRC values
of the 48 contour curves by Grasselli and Bands (those
selected in this article) are larger, and many of them are
close to the JRC values of the ninth and tenth curves of the
standard contour curves (JRC > 16.7). The selection of 4th,
7th, and 10th curves takes into account both the standard
contour curves and the JRC distribution characteristics of
the sample data source. Therefore, the 4th, 7th, and 10th
curves in the standard profile curve were selected as the
research objects, as shown in Figure 1.

Based on the pixel analysis function of MATLAB soft-
ware, the grayscale image processing method was adopted.
The histogram equalization and homomorphic filtering
operations are mainly performed with the help of grays-
cale histograms and discrete Fourier transform spectral
amplitude maps of low-illumination images, so as to obtain
the profile curve coordinate data under different intervals.
To verify the feasibility of the processing method and the
accuracy of the data, the values of Rp under the corre-
sponding interval were counted by an SI = 0.5 mm discrete
standard profile curve and compared with other data [31].

Figure 1: The shape and JRC value of the research object.
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The comparison results are shown in Figure 2. It can be
seen that Rp is obtained by different researchers with dif-
ferent methods, so the results of the study vary slightly.

The values obtained by the grayscale image processing
method had high consistency and small differences from
other research results, which proved the rationality of the
grayscale image processing method. Therefore, the grays-
cale image processing method was used to discretize the
profile curve of the joint surface with different sampling
intervals to count the morphological parameter values of
the research object. The sampling intervals were set with
SI = 0.25, 0.5, 1, 2, 5, 10, 20, and 25 mm. The statistical results
are shown in Figure 3. It can be seen that when the SI is
2 mm, the slope of the straight–line-fitting relationship
with SI changes significantly. The change in slope means
that the previously ignored second-order asperity length is
included in the total length of the profile curve statistics, so
Rp suddenly increases, causing the slope to change. There-
fore, it can be determined that the limit sampling interval
of the two-order asperity is 2 mm.

To obtain the profile curve of the joint surface that
only contained the first-order asperity, the collected profile
curves were processed with the limit sampling interval SI =
2 mm, and the discrete data of the profile curve SI = 2 mm
were obtained. Then, the discrete data only contain the
first-order asperity. Then, the profile curve was processed
with the minimum sampling interval SI = 0.1 mm, and
the discrete data of the profile curve SI = 0.1 mm were
obtained. The results are shown in Figure 4. It shows that
the profile of the profile curve under the limit sampling
interval and the profile curve of the minimum sampling
interval are almost the same. The sampling result of the
limit sampling interval has a second-order asperity that is
ignored, and the calculation of the morphological para-
meters is not performed. Therefore, the subtraction result
of the morphological curve can independently obtain the
second-order small undulating topography, and the separa-
tion of the two-order asperity can be successfully carried
out. This means that the samemethod is adopted to separate
the two-order asperity of the remaining profile curves, and
the next step is carried out.

Figure 2: Comparison of statistical results of morphological parameters
(SI = 0.5 mm).

Figure 3: Statistical parameter change curve.

Figure 4: The difference in profile curve shape under different discrete intervals.
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3.2 Statistical results of morphological
parameters

Based on the separation results of the two-order asperity
on the joint surface, the morphological parameters of the
two-order asperity were counted to quantitatively charac-
terize the roughness of the joint surface. The morpholo-
gical parameters of the joint surface were divided into
three types: the roughness angle parameter, the roughness
degree parameter, and the trace length parameter. Therefore,
combined with the type of morphological parameters and the
size effect of the joint surface profile curve, appropriate mor-
phological parameters were selected to predict the roughness
coefficient. The selected parameters and corresponding cal-
culation equations were expressed as follows [24,63]:
1) Average roughness angle (i perave (°))

∑=
⎡
⎣⎢

−
⎤
⎦⎥

−

=

= −

+i
L

y ytan
1

,

i

i N

i iave
1

1

1

1
| | (10)

where L is the line length of the joint surface profile
curve, γ

i
is the joint surface discrete point ordinate, and

N is the number of data points.
2) Maximum roughness (R permax (μm))

=
−

R
y y

L
,max

max min
( ) (11)

where y
max

and y
min

represent the maximum and
minimum values of the joint surface profile curve dis-
crete data on the y coordinate.

3) Standard deviation of roughness angle (SDi)
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1

1
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where xi is the discrete point abscissa for the joint sur-
face profile curve.

4) Roughness profile indexes (Rp)

Figure 5: Statistics of the two-order morphological parameters and JRC distribution.
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In this article, the same method was used to distin-
guish the same morphological parameters of the two-order
asperity. For example, Rp

1st and Rp
2nd represent the rough-

ness profile index of the two-order asperity, respectively.
The other morphological parameters adopted the same
definition method. The statistical results of the morpholo-
gical parameters of 48 profile curves and the statistical
characteristics of the results are shown in Figures 5 and
6, respectively. It can be seen that there is a certain corre-
lation between the morphological parameters (iave

1st , Rmax
1st ,

Rp
1st) of the first-order asperity. For the same morphological

parameters of a two-order asperity, taking the morpholo-
gical parameters as an example, the standard deviation,
average value, maximum value, minimum value and
median of the sum of iave

1st and iave
2nd have obvious differ-

ences in value. From the correlation analysis results, it
can be seen that the correlation level with iave

1st and iave
2nd is

low. A lower correlation level indicates that the relation-
ship between the two is weaker, which can explain the
morphology more comprehensively. It is proven that the
separation results of the two-order asperity of the joint
surface profile curve have rationality and effectiveness.

The correlation coefficients between the six morpho-
logical parameters (iave

1st , Rmax
1st , Rp

1st, iave
2nd, Rmax

2nd , and Rp
2nd) and

JRC are 0.938, 0.910, 0.941, 0.626, 0.593, and 0.586, respec-
tively, all of which have obvious correlations. Therefore,

these six morphological parameters can be used as effec-
tive descriptive parameters of JRC.

The dimensions and value ranges of the morphological
parameters and JRC were different. To speed up the training
speed of the model and avoid the calculation error of the
model, the morphological parameters and JRC normaliza-
tion were used in the machine learning model to [−1,1]. In
this study, the maximum and minimummethods were used
to normalize the input and output data set. The normaliza-
tion equation was as follows:

′ =
−

−
x

x x

x x

min

max min
,

( )

( ) ( )
(14)

where ′x is the normalized data and x is the original data.
After the data normalization was completed, it was

randomly divided into 38 machine learning training sets
and 10 prediction sets in a ratio of 0.8:0.2. The training set
is used for model learning and training. The prediction set
was used to test the performance of the model after the
model was built to evaluate the prediction results and
accuracy. To evaluate the rationality of the data set parti-
tion, the statistical characteristics and T-test of the training
set and prediction set data were carried out. The test can
count the distribution characteristics of data sets and com-
pare the differences in the distribution characteristics of
data sets (Tables 1 and 2).

It means that the two sets have similar distribution
characteristics and are not significantly different from
each other when the P-value between the two sets is

Figure 6: First- and second-order morphological parameters and JRC correlation heatmap.
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greater than 0.05. It can be concluded that the statistical
characteristics of the training set and the prediction set
are substantially the same. The maximum value in the
prediction set of iave

2nd is 10.809, which is larger than the
maximum value in the training set (7.603), thus leading
to a P-value of 0.0001 for the T-test between the prediction
set and the training set, which is smaller than the recom-
mended value of 0.05 in the T-test. It indicates similar
distribution characteristics. The similarity between the sta-
tistical and distribution characteristics of the training set
and the prediction set can reduce the probability of over-
fitting or unfitting the model and improve the robustness
of the model on the prediction set. This shows that the
partition results of the training set and the prediction set

are reasonable and can be applied to the construction of
machine learning models.

3.3 Regression results

The value of MSE was used as the evaluation indicator; the
method of grid search and cross-validation was used to
optimize C and g of the SVR model. When the model opti-
mization results were ε = 0.05, C = 1.4641, and g = 1.1096,
the SVR model achieved the optimal prediction accuracy.
By adjusting the model hyperparameter, the RF model
achieves optimal accuracy when hyperparameter n_esti-
mators were 400, and maximum_depth was 2. The predic-
tion results of the SVR and RF models are shown in Figure 7.
It can be seen that both SVR and RF models have ideal
precision. The fitted correlation coefficient R2 is 0.954 and
0.933, respectively (all above 0.9). The deviation of model
prediction results from true values is small, which indicates
that the predicted results of the SVR and RF models are
reasonable and realistic. For the prediction set, the SVR

Table 1: Statistical characteristics of the training set and prediction set

Data set Variable i
ave

1st
R

max

1st
R

p

1st
i

ave

2nd
R

max

2nd
R

p

2nd JRC

Prediction set Average 9.368 0.043 1.032 4.958 0.005 1.007 10.47
Standard deviation 6.977 0.0278 0.048 1.493 0.002 0.005 4.913
Minimum value 3.05 0.0127 1.002 2.940 0.003 1.000 5.400
Maximum value 25.89 0.103 1.155 7.603 0.008 1.016 20
Median 7.420 0.038 1.013 5.017 0.004 1.006 9.750

Training set Average 8.880 0.045 1.027 4.981 0.005 1.034 10.538
Standard deviation 5.900 0.0344 0.035 1.924 0.003 0.162 5.5138
Minimum value 2.322 0.007 1.001 2.572 0.002 1.001 0.40
Maximum value 22.954 0.157 1.126 10.809 0.017 2.005 20
Median 6.603 0.031 1.011 4.428 0.004 1.006 9.225

Table 2: Significant results for morphological parameter eigenvalues by
T-test

Variable i
ave

1st
R

max

1st
R

p

1st
i

ave

2nd
R

max

2nd
R

p

2nd JRC

T-test p value 0.626 0.395 0.663 0.00001 0.204 0.070 0.587

Figure 7: Prediction results for the SVR and RF models. (a) SVR model prediction and (b) RF model prediction.
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model has a higher correlation coefficient R2 compared with
the RF model, and the mean absolute error (MAE) and root
mean square error (RMSE) are reduced by 19.5 and 12.8%,
respectively. Therefore, from the point of view ofmodel applic-
ability, it can be concluded that both SVR and RFmodels are all
applicable to the prediction of JRC on joint surfaces, but the
accuracy of SVR model is a little bit higher [23].

To further evaluate the prediction accuracy of the
machine learning model based on contour curve separation
results (considering the two-order asperity), a machine
learning model based on unseparated profile curve morpho-
logical parameters (only considering single-order asperity)
was also established for comparative analysis in this article,
which expressed as SVR(SO) and RF(SO). The comparison of
prediction results is shown in Figure 8, and the comparison
of accuracy is shown in Table 3. It can be concluded that the
predicted results of the machine learning model based on

the morphological parameters of the unseparated profile
curve do not exceed the value range of JRC (from 0 to 20)
but the goodness of fit. The prediction results of the SVR and
RF models both perform better. The fit of both models is
higher than 0.93. The MAE values are less than 1, and the
RMSE values are less than 1.2, which indicates that the pre-
dicted results of the SVR and RFmodels are quite reasonable
and realistic. From the prediction results, it can be seen that
the difference between the predicted values of the SVR and
RF models and the true values of the median is small, and
they all show the prediction results that are smaller than the
true values. However, the difference between the predicted
and true values of the SVR model is smaller than that of the
RF model, and the SVR model has a higher correlation coef-
ficient R2 and smaller RMSE and root mean error than the
RF model. This indicates that the SVRmodel is more suitable
for handling low-dimensional data sets and more suitable
for JRC prediction of joint surface than the RF model. In
addition, the MAE and RMSE of the model prediction results
are not as good as those of the model based on the separa-
tion results.

As for the two-order asperities of joint surface (taking
RF as an example), a total of six statistical parameters were
selected for the quantitative characterization roughness.
The RF model is able to assess the importance of the input
variables. The model uses cross-validation to estimate the
significance of the input variables. The impact of features
on model accuracy is calculated by disrupting the order of
eigenvalues of a feature in the sample. The higher the
feature importance, the greater the impact on model accu-
racy. Feature importance is measured by the degree of
decrease in accuracy, from which the importance score
of each variable is obtained. The calculation results show
that the importance ratings of the six morphological para-
meters iave

1st , Rmax
1st , Rp

1st, iave
2nd, Rmax

2nd , and Rp
2nd for JRC were

obtained as 29.4, 26.3, 27.6, 5.4, 5.9, and 5.4%, respectively.
The importance score shows that the morphological para-
meter waviness (first-order) is more important to the JRC,
and the morphological parameter unevenness (second-
order) contributes less to the JRC. However, the total
importance of the unevenness morphological parameter

Figure 8: Prediction results and residuals of different machine learning
models. (a) Prediction results and (b) residuals.

Table 3: Results of prediction accuracy of different methods

Model Evaluation indicators

R2 MAE RMSE

SVR 0.954 0.746 1.001
RF 0.933 0.927 1.149
SVR(SO) 0.896 0.880 1.282
RF(SO) 0.923 1.251 1.021
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is greater than 16%, which also influences the quantitative
value of JRC to some extent. So, it is helpful to improve the
prediction accuracy of JRC considering the morphological
parameters of waviness and unevenness of joint surface in
the quantification of joint profiles and their roughness para-
meters. Therefore, the machine learning model based on the
separation results is more suitable for JRC prediction.

The traditional classical Rp-based linear regression
model (LM) by Yu and Vayssade [24] was used to calculate
the contour curve morphological data in prediction set and
also compared with the prediction results of the machine
learning model in this study. The regression equation is
shown in Eq. (15). The prediction results are shown in
Figure 9, and the accuracy comparison is shown in Table 4.
It can be seen that the partial prediction results of the linear
model exceed the range of JRC values (0–20), the fitting coef-
ficient is 0.513, and the correlation is low. The average abso-
lute error and RMSE are larger. Therefore, the prediction
results are unreasonable, and the application effect is poor
on the randomly selected prediction set.

= −RJRC 558.68 557.13 .p (15)

Based on the prediction results of various models, the
machine learning model considering two-order asperities
of joint surface was superior to those of the learning model
based on the morphological parameters of the unseparated
profile curve and linear model in terms of the fitting coef-
ficient, MAE and RMSE. Actually, JRC was a comprehensive
parameter to describe the morphology of the joint surface.
But many researchers had quantified JRC using only a
single joint surface morphological parameter, without con-
sidering morphological characteristics at the same time
such as undulation angle, undulation degree, and trace
length. This kind of linear model selected only one or
two morphological parameters for fitting and regression,
and it was difficult to fully characterize the influence of
morphological parameters on JRC. Although the two-order
roughness division method produced a large number of
statistical parameters that can provide a fine characteriza-
tion of the joint surface roughness, the complex nonlinear
relationships between the parameters were difficult to
characterize by traditional regression analysis methods.
Nonlinear data-driven models show strong advantages in
solving both small and nonlinearity samples among the
many commonly used machine learning models. They
not only meet the requirement of training sample size,
but also ensure the accuracy of prediction. That is why,
the data-driven model proposed in this study can improve
the accuracy of prediction results.

The machine learning model based on the separation
results synthesized the different contributions of the two-
order asperity in the roughness of the joint surface and
constructed the nonlinear relationship between the mor-
phological parameters and JRC. Therefore, the separation
method of joint surface morphological parameters and the
nonlinear calculation model proposed in this study were
more suitable for the JRC prediction of joint surface.

4 Case application

To verify the accuracy of the roughness prediction of the
machine learning model based on the profile curve

Figure 9: Prediction results of the linear model. (a) Prediction results of
linear model and (b) residuals of linear model.

Table 4: Results of prediction accuracy of each method

Model Evaluation indicators

R2 MAE RMSE

SVR 0.954 0.746 1.001
RF 0.933 0.927 1.149
LM 0.513 5.4560 9.288
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separation results, a direct shear test of the structural pro-
file was carried out to measure the peak shear strength and
the friction angle of the sample under different stresses.
The rebound test of the joint surface sample was carried
out to measure the strength of the wall rock of the sample.
Based on the results of the shear test and the rebound test,
the JRC of the joint surface was inversely calculated, and
the prediction results of the model used in this study were
compared and analyzed.

The test sample was taken from the water inlet of the
lower reservoir of Wuyue Pumped Storage Power Station,
which was located in Yinpeng Township, Guangshan County,
Henan Province. The bedrock lithology in the engineering
area mainly included schist of the Mesoproterozoic Guishan
Formation, granulite and schist of the Nanwan Formation of
the Devonian, andmiddle-grained granite intruded in the late
Yanshan period. The sample used in this study was medium-
grained granite, and the basic physical parameters are shown
in Table 5. The size of the sample was 100mm × 100mm ×

100mm. The L-type hammer was used to measure the wall
rock strength of the joint surface (after the rebound value is
measured by the test, the joint compressive strength (JCS) is
finally obtained by checking the graph or calculating with
relative formula). The sample shear tests were carried out
by an automatic bidirectional shear instrument. The constant
normal stress was set as 1.0MPa. The shear force was applied
at a loading rate of 4mm·min−1, and the shear stress was
stopped when the shear displacement reached 10mm. The
test process and results are shown in Figure 10.

Based on the test results, the JRC of the sample can be
calculated by the JRC–JCS equation (16):

⎜ ⎟=
⎡
⎣⎢

⎛
⎝

⎞
⎠ +

⎤
⎦⎥

τ σ
σ

φtan JRClog
JCS

,p n 10
n

b
(16)

where τp is the shear strength of the joint plane, σn is the
normal stress of the joint surface, and JCS is the strength of
the structural wall rock, which was measured by rebound
meter on-site. The final calculation results are shown in
Table 6. These four JRC values obtained by experiment
and classical theoretical calculation were expressed as
experimental joint compressive strength (EX-JCS) results,
and they were used as a reference standard for the JRC
prediction of joint surface.

To verify the accuracy of the machine learning model
prediction of the two-order morphological parameters of
the joint surface, the samples were scanned with a three-
dimensional structured light scanner, and morphological
data with a sample scanning pitch of 0.02mmwere obtained.
The structural light scanner used in this study has a scanning
range of 500mm × 500mm and a scanning accuracy of
0.02mm. The single scanning time is only 4 s. 3DScanner
and Geomagic Studio are used to process the point cloud
data. Along the shear direction of the sample, 26 joint surface
profile curves were extracted at a distance of 4mm, and each
profile curve i

st

ave
1 , iave, and other morphological parameters

were counted. The profile curve JRC prediction was per-
formed. The sample scanning and profile layout are shown
in Figure 11.

The morphological parameters without the two-order
asperity separation were counted based on the profile
curve of the joint surface sample. The statistical results
of the morphological parameters of 104 profile curves of
joint surface from four samples are shown in Figure 12.
Since the range and magnitude of the curvilinear morpho-
logical parameters were different, the data obtained from
Eq. (14) were normalized to reduce the order of magnitude
differences between the parameters. Then, it was also
easier to observe the distribution characteristics of the
morphological parameters. For the three morphological
parameters of waviness (first-order) of the same specimen,
although there were local differences in the degree of var-
iation, the overall undulation pattern of the curves was
more similar. However, the morphological parameters
of unevenness (second-order) showed a high degree of
dispersion. The difference between the morphological para-
meters of waviness (first-order) and unevenness (second-
order) indicated that the refined separation results can char-
acterize the detailed morphological features in more dimen-
sions, which could not be found in the apparent morphology
of interface undulations. Absolutely, the finer the joint sur-
face morphology was portrayed, the more accurate the JRC
prediction results were.

To further validate the applicability of the machine
learning model, the SVR and RF models for predicting the
JRC of joint surface based on the profile separation results
were established (Figure 13). It can be seen that the predic-
tion values of the SVR and RF models fluctuate slightly up
and down around the EX-JCS results. For the four random
specimens, the deviation rates of the RF model calculation
results from the EX-JCS results are 0.42–23.42, 1.54–23.30,
0.09–21.68, and 0.84–56.04%, respectively, and they are
0.38–26.65, 0.89–22.63, 0.24–14.20, and 0.99–36.73% in the
comparison of SVR model vs EX-JCS results. The average
deviation ratio of four samples ranged from 9.51 to 17.60%

Table 5: Basic physical parameters of granite formed in late Yanshan
period

Item Gravity
(kN ·m−3)

Basic friction
angle (deg)

Wall rock strength of
the joint surface (MPa)

Value 27.4 26.82 77.78
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Figure 10: Joint surface sample test. (a) Joint surface of granite, (b) direct shear test, (c) shear stress–displacement curve, and (d) peak shear stress.

14  Yunpeng Hu et al.



in RF model, and it was 5.57–13.53% in the SVR model. The
results indicated that the established test system can meet
the requirement of engineering precision (<20%). How-
ever, the prediction results of the SVR model were closer
to the EX-JCS values than that in the RF model, and the
errors were smaller. Therefore, the SVR model based on
the profile separation results were more suitable for pre-
dicting the joint surface JRC effectively and accurately.

To further validate the effectiveness of the SVR and RF
models for the prediction of morphological parameters of
joint surface considering both waviness and unevenness at
the same time, the morphological parameters that have not
been separated by the two-order asperity are counted
based on the plane profile curve of the joint surface
sample. Moreover, linear models were also established to
predict the JRC of joint surface. Prediction results of dif-
ferent methods are shown in Table 7 and Figure 14.

It can be concluded that different models had different
JRC prediction results for the sample plane profile curve.
Firstly, the results calculated by the prediction model were
generally larger than those obtained by EX-JCS. This was
mainly due to the fact that 25–75% of the curves in the
model training set had a JRC value division interval of
6–15 (as shown in Figure 5). This also indicated that the
profile curve of hard joint surfaces of rock bodies was
generally more undulating in nature, and similar conclu-
sions had been obtained by other scholars [64,65]. Second,

it can be found that the prediction value of the linear
equation based on Rp had exceeded the value range of
JRC, and the prediction result was unreasonable. The rela-
tive error was also much larger than those of the SVR
model and the RF model. The reason for the unreasonable
prediction value and the large prediction error was that it
was difficult to describe the morphological characteristics
of the profile curve due to the single morphology para-
meter selected by the linear equation, and it was only
established based on the standard profile curve. Therefore,
the error rate was large and the application effect was poor
in practical applications. Third, the prediction results of
the SVR model and the RF model based on the profile
separation results were well distributed, and there were
no results exceeding the range of JRC. The prediction
results based on the single-order model had similar pat-
terns of change with that of the two-order model. However,
the relative error between the former and EX-JCS results
was larger than those in latter. The prediction accuracy
had improved by 7.2 and 5.0% in the SVR model and the
RF model, respectively. Finally, comparing the prediction
results of the SVR and RF models, it can be seen that the
SVR prediction results were closer to EX-JCS with less error
compared to RF prediction results and were more suitable
for predicting and calculating the JRC of joint surfaces.

In summary, it can be concluded that the SVR non-
linear model that considering separation of two-orders of
joint surface roughness (waviness and unevenness) was
more suitable for the prediction of JRC, and also the calcu-
lation results will be more consistent with the real char-
acteristics of the rock joint surface. It is worth noting that
the application of the model in this research is mainly
for igneous rocks with predominantly hard joint surface,

Table 6: JRC calculation results of each structure sample

Specimen number 1# 2# 3# 4#

JRC 12.56 9.14 10.09 6.46

Figure 11: Sample scanning and profile processing. (a) 3D structured light scanner and (b) profile curve arrangement.
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Figure 12: Distribution of morphological parameters of each sample. (a) Distribution of iave
1st , (b) distribution of iave

2nd, (c) distribution of Rmax
1st , (d)

distribution of Rmax
2nd , (e) distribution of Rp

1st, and (f) distribution of Rp
2nd.
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especially under dry environment. Moreover, the size effect
of joint surface shear strength was not considered. Usually,
as the size of joint surface increases, the shear strength of
joint surface decreases accordingly, and they all should be
studied in the later stage. Moreover, more sample data,
either from our experimental measurements or from other
scientific studies in the literature, are also needed for future
research.

Figure 13: Prediction results of the JRC of SVR and RF models of four specimens. (a) Sample 1, (b) sample 2, (c) sample 3, and (d) sample 4.

Table 7: JRC prediction results of different models

Number SVR RF SVR(SO) RF(SO) LM EX-JCS

1# 13.13 13.45 13.61 13.77 −36.09 12.56
2# 9.73 9.824 10.11 10.28 −36.21 9.14
3# 10.30 10.71 10.86 10.97 −35.91 10.09
4# 7.28 7.53 7.74 7.81 −36.26 6.46

Figure 14: Analysis of prediction results of different models.
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5 Conclusions

1) The Rp of profile curve under different sampling inter-
vals was counted by the grayscale image processing
method, and the relationship between the sampling
interval and Rp was studied. The curve slope mutation
point SI = 2 mm was the optimal separation distance of
the two-order asperity of the joint surface profile curve.
Accurate separation of the two-order asperities in 48
profile curves of known roughness was achieved.

2) The quantitative separation method of the two-order
asperities of joint surface contour curves was proposed.
Based on the separation results of the two-order asperity
with 48 profile curves, the iave, R ,max and Rp parameters
were counted from three aspects: asperity angle, asperity
degree, and trace length. The difference between the
morphological parameters of waviness (first-order) and
unevenness (second-order) indicated that the refined
separation results can characterize the detailed morpho-
logical features in more dimensions, and it would help to
quantify the factors affecting the roughness more com-
prehensively and improve the prediction accuracy of JRC.

3) A database of morphological parameters of joint sur-
face was established according to the statistics of the
separation results of the two-order asperities of 48 pro-
file curves. Thirty-eight curves were randomly selected
as the training set, and the remaining 10 curves were
selected as prediction set, and the nonlinear prediction
models were constructed by the machine learning
method. The comparison results showed that the SVR
and RF models considering the separation results showed
better prediction performance comparedwith the prediction
results of the traditional linear model and the machine
learning model without separating the parameters obtained
by the two-order asperity.

4) Samples with natural joints were prepared for shear
tests to calculate the JRC of samples. The test results
were compared with predicted values by the SVR model,
the RF model, the SVR(SO) model, the RF(SO) model, and
the linear model. The results showed that the prediction
accuracy had improved by 7.2% in the SVR model and it
was 5.0% in the RF model compared with the SVR(SO)
and RF(SO) models. The SVR prediction results were closer
to EX-JCS with less error compared to RF prediction results
and were more suitable for predicting and calculating the
JRC of surfaces. Thus, the SVR nonlinear model that con-
siders the separation of two-orders of joint surface
roughness (waviness and unevenness) was more sui-
table for JRC prediction, and also, the calculation
results will be more consistent with the real character-
istics of rock joint surface.
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