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Abstract: The failure of rock mass is mainly due to the
failure of the structural plane, which is an important
factor to reduce the mechanical properties and stability
of rock mass. The shear strength of rock mass is one of the
parameters for the stability calculation of large-scale rock
mass engineering. The shear strength of a rock structural
plane is strongly influenced by surface morphology.
Considerable research has been conducted regarding
the correlation between two-dimensional structural plane
morphology and shear strength. However, quantitative
research on three-dimensional (3D) morphology is rela-
tively limited. In this study, 3D printing technology was
used to create molds. Using cement and sand as the main
materials, additives such as early strength and water-
reducing agents were added, and test samples of irregular
surface topography were created. The 3D roughness was
quantified by formula calculation. Using a ZScanner® 800
hand-held 3D laser scanner to perform scanning on the
structural surface, the parameter curve was analysed by
generating 3D coordinate information and a 3D image of
the fracture surface, and the quantitative parameter MSD
describing the 3D morphology of the structural surface was
constructed. The change rule of RSD and joint roughness
coefficient (JRC) were analysed under different scanning
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resolutions, A(r), the scanning precision was suggested,
and the functional relationship between JRC and M;" was
established. Finally, a formula for shear strength para-
meters considering the 3D characteristics of a structural
plane surface was established. The model validation results
show that the experimental data were within the 95% con-
fidence band of the model curve, the average error of the
shear strength was 10.4%, the errors of friction angle and
cohesion, C, were 3.4 and 9.4%, and the reliability was fine.

Keywords: structural plane, three-dimensional, topography,
laser scanning, shear strength, roughness coefficient

List of symbols

C cohesion of the material
joint compression strength

JRC joint roughness coefficient

M;®  reciprocal of 3D fluctuation coefficient of the
structural plane

RSD 3D fluctuation coefficient of the structural plane.

Sa area of the structural surface slope

St area of the horizontal projection

Ar scanning resolution

01 axial stress

03 confining pressure

On normal stress

Tp peak shear strength

[0} internal friction angle of the material

[0 basic friction angle of the structural plane

1 Introduction

There are a large number of joint planes in the natural
rock mass, which significantly affect the mechanical prop-
erties of the rock mass [1-3]. The physical and mechan-
ical properties of the joint plane in rock mass are a
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complex system with geometric space characteristics.
The instability of rock mass engineering and the occur-
rence of geological disasters are mostly related to the
weakening of the mechanical properties of rock mass
[4]. By controlling the shear strength of the jointed
rock mass, the roughness of the joint plane has become
one of the important factors affecting the mechanical
properties of the rock mass structural plane [5]. The
influence of joint surface morphology on the rock’s
mechanical properties is notable. To eliminate or reduce
the rock morphological effects, model tests have been
widely used. In the study by Patton, by introducing a
structural plane physical model, the effect of serrated
structures on the shear strength is studied [6]. By ana-
lysis of a total of 136 natural rock joints, the index
of joint roughness coefficient (JRC) was proposed by
Barton and Choubey [7] to describe the roughness of
rock surfaces. Since the 1970s, joint morphology and
its effects on mechanics have become a hot topic [7-14].

To evaluate the quantitative characteristics of the
structural surface, Li et al. [15] introduced a meshing
method of Schmidt projection to calculate the fractal
dimension for joint orientation for the first time. By
introducing the minimum spacing/trace length value
and fractal dimension, the corresponding fractal prob-
ability density function was derived. Wei et al. [16] used
cumulative relative fluctuation amplitude and weighted
average gradient to characterize the morphological char-
acteristics of the joint profile, and the JRC calculation for-
mula was put forward. The quantitative characterization
of ten standard JRC curves has been analysed by many
scholars [17-23], and a set of statistical formulas have
been developed. Some roughness parameters, such as
root mean square of the deviation [17-22], structural func-
tion [17,18,21], and roughness profile index [18-21,24],
were often mentioned. By using a total station, Feng
et al. [25] put forward a new way to describe non-contact
fracture roughness. In the study by Morelli [26], a new
index for describing the JRC was put forward. In addition,
some scholars have found that self-affine fractal and
multifractal natures exist in joint morphology [27-29]. By
analysing ten standard JRC curves, the effect of fractal
dimension on joint strength has been studied. It was noted
by Grasselli [9] that the initial contact area was correlated
with the damaged zone and the peak shear strength. There
are many methods to study and determine the roughness
of a structural plane, but how to apply it to the deforma-
tion and failure of rock mass and quantitatively combine
the roughness with the failure strength of rock mass has
become an important research direction.

DE GRUYTER

In the study by Barton and Choubey [7], a formula for
the peak shear strength that combines the JRC, normal
stress, and mechanical properties was put forward. Zheng
et al. [30] proposed a generalized three-dimensional (3D)
fractal dimension, which can comprehensively characterize
the roughness, undulation, and anisotropy of structural
surface morphology, and established the mathematical
expression of a generalized 3D fractal dimension. Taking
the effect of the slippage resistance of convex teeth in
the shear direction into account, Grasselli [9] used the
morphological quantification of 3D joint surfaces and pro-
posed a peak shear strength prediction model. Further-
more, considerable work in this field has also been done
by other researchers [5,31-35]. The research on structural
surfaces mentioned in the above literature mainly focuses
on 2D morphology, and it is necessary to further develop
the research on 3D models. Combining 3D scanning and
direct shear technology, it is feasible to explore and estab-
lish the criterion of peak strength of a structural plane [36].
The computation of JRC is cumbersome and requires a lot
of study. The 3D morphological characteristics or the ani-
sotropy of joint surfaces are not reflected. As a quantitative
model to describe the 3D surface morphology, the para-
meters in the Grasselli model are too complex.

In this study, via material preparation and the 3D
printing (3DP) method, structural test samples of dif-
ferent topographies were developed. The ratio of slope
area to horizontal projection area was used to reflect
the fluctuation in the 3D structure. Then, the change
rule of the fluctuation state of the structural surface
under different scanning resolutions was analysed using
the 3D laser scanning method. A function model of the 3D
structural surface and shear strength was established,
then the shear test was used for validation (Figure 1).

2 Materials and methods

2.1 Material preparation

To prepare a rock model, a mix proportion procedure was
used. The ratio of cement to sand is 1:1.5, and the ratio of
cement to water is 1:0.3. In addition, 10% silica powder,
15% silicon carbide, 1.5% water reducer, and 2% accel-
erator were used in the whole mixture [37-47]. In the test,
52.5R composite silicate cement and sand were the main
ingredients, silica powder and silicon carbide were addi-
tives, and a small amount of early strength admixture. To
test the compressive strength and shear strength of the
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Figure 1: Flow chart of shear strength research of rock structural plane.

material, the dimensions and test standards of the mod-
ulus materials are shown in Table 1 (Figure 2).

2.2 3DP

3DP is a computer-controlled manufacturing technique
that can fabricate objects with complicated geometry
and internal structures repeatedly and accurately. Various
printing techniques have been used to fabricate polymer
composites. In this study, 3DP equipment and corre-
sponding printing materials have been studied to pro-
duce molds of structural surface topography. Among the
equipment, 3D printers using powder ink binders (PIB)
are widely used. PIB printers are based on powder and
liquid binders. Because PIB printers are made from sand
powder, the resulting product may be more visually like
rock material.

2.3 3D laser scanning

Hand-held 3D laser scanners are used to measure struc-
tural surface topography as they have high scanning
speed and high precision. In this study, a ZScanner®

Figure 2: Components of similar raw materials. ® Green SiC,

® Micro silicon powder, ® Early-strength admixture, @ Portland
cement, ® Fine sand, ® Coarse sand, @ Aggregate (3—6 mm),
Carboxylic water-reducer, and ® Warm water (30-45°C).

800 handheld 3D laser scanner was used, in which the
maximum scanning accuracy can reach 0.04 mm. The
instrument is shown in Figure 3, and the process of
obtaining the surface morphology of the structural plane

Table 1: Testing type, specimen dimensions, and standard use in testing

Testing item Sample size Standard

Comprehensive strength
Tensile strength
Shear strength

¢50 mm x 100 mm
$50 mm x 50 mm
100 mm x 100 mm x 100 mm

American Society for Testing Material International Society for Rock
Mechanics
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Figure 3: ZScanner® 800 hand-held 3D laser scanner.

is shown in Figure 4, which included instrument installa-
tion, scanning specimen preparation, pasting the sensi-
tive plate, open scanning of software, adjusting the laser
power and other configurations, scanning the specimen,
saving the file, data processing, model reconstruction,
and the analysis result. After the scan is completed, a
coordinate transformation of the data is required. Geo-
magic Qualifier & Studio can quickly complete the trans-
formation of coordinates. The principle of transformation
can be expressed as Formula 1 as follows:

X X Xo
|:le =R(a:ﬁ’ Y)[)’} + yO )
z z] |z

where R(0, f8, y) represents the rotating vector and [x,
Yo, Zo] T represents the transformation vector between dif-
ferent coordinate systems.

)

2.4 Model creation

In this study, a 3D zigzag structural plane was processed.
The model size was 10 cm x 10 cm x 5 cm. The geometric
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features of the convex teeth were controlled by the fluc-
tuation angle (i) and the fluctuation height (h). Six ser-
rated models were created, and their dimensions were
i=60°h=1cm;i=45° h=1cm;i=30°%h=1cm;
i=60°h=0.5cm;i=45° h=0.5cm; and i = 30°,
h = 0.5 cm, as shown in Figure 5.

3 Roughness quantization of the3D
surface of the structural surface

3.1 3D roughness quantization formula

Figure 6 shows a normal four-pyramid model; point O is
the projection of point E on the plane ABCD. Line EF is
the section line of the model. By cutting the convex teeth
along the line EF, the roughness profile can be obtained.
The profile roughness coefficient R, is used to represent
the fluctuation of the structural plane. R, = EF/OF, and
its coordinate expression is as follows:

[(y; = y)? + (22 — 22)2]"/?
Y5 — 0
Triangle AABE and triangle AAOB have a public side
AB, EF 1 AB, and OF LAB, and AABE is a projection of the
ABCD in plane AAOB, Saagge = Y2(AB x EF), Saaop = V2(AB
x OF).

Rp1 = )

SAABE _ 1/2(AB x EF) _ EF

SAAOB  1/2(AB x OF)  OF’

€.

Figure 4: 3D laser scanning process. (a) Scanning specimen preparation.

f.

(b) Paste the sensitive plate. (c) Debug scanner. (d) Prescan.

(e) Scan sensitive plate. (f) Scan structural plane. (g) Data processing.
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d.

Figure 5: 3D zigzag model. (a) Model side view. (b) Transverse cutting view. (c) Model bird’s-eye view. (d) Longitudinal cutting view.

a3 ;13,22
E

x2,¥221)

D
«1,¥2,21)

oz, 1,21

A
&1,Y1,21)

Figure 6: Normal four-pyramid model and coordinates.

E _ _ [(J/3 - J/1)2 +(z - 21)2]1/2
Y5 — 0

oF '~
Thus, we obtain formula (3) as follows:

Ry = [(ys - Y1)2 + (2 — 7)) . 5
5= N

SAABE _
SAAOB

The profile roughness coefficient of the 3D surface of
the structural surface is denoted by RSD. Equation 4 can
be used to describe the entire structural plane as follows:

N-1
R3D _ 2isiSai _ Sq

== =" (4)
g ZfillsTi St

where S represents the slope area of the structural plane
and Sy represents the projected area in the horizontal
plane.

The profile roughness coefficient R, can reflect the
undulating state of the structure. However, to avoid
the surface area of the structural surface becoming O,
the situation of R;" tends to infinity. The reciprocal Mp
of the profile roughness coefficient Ry, is adopted, and the
expression of M, is as follows:

{Nz'l (s = W2 + (2 — 2)2]2 }‘1
i-1 5-n

Mp = (5)

3.2 Effect of scanning resolution on 3D
roughness

In general, the higher the resolution, the more detailed
the model is, and the closer it is to the real shape of the
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structural plane. To study the effect of scanning accuracy
on the 3D roughness coefficient RSD, different scanning
resolutions were used to scan the structural surface topo-
graphy to explore the relationship between Ar and RSD.
The resolution of the scanning instrument was 0.4, 0.6,
0.8, 1.0, 2.0, 3.0, and 4.0 mm, respectively, and 3D data of
the structural surface were obtained. Then, the data were
imported into the ploy-works 8.0 reconstruction software
to process, generate 3D images of the structural surface,
and develop statistics on the related geometric para-
meters. The 3D scanning model and grid are shown in
Figure 7. The geometric parameters of the structural
plane are shown in Table 2.

Table 2 shows, when the resolution of Ar = 0.4 mm,
the scanning model is most similar to that of the original
rock surface, and the detailed characteristics are very
clear. When the resolution is gradually reduced, the
details of the structural surface become blurred, and
the model surface becomes smooth. When the resolution
reaches 4 mm, the detailed morphology can hardly be
observed, and only the areas with prominent fluctuations
can be reflected; the whole plane gradually tends to
a smooth plane. The relationship between scanning reso-
lution and RSD is shown in Figure 8. With a decrease

in scanning resolution (Ar increasing), RSD gradually
decreases, representing a power index relationship.

The JRC value is the parameter reflecting the rough-
ness of the structural surface. At different resolutions,
the roughness coefficient JRC of the structural surface
image changes. To study the change rule of JRC under
different scanning accuracies, six profile lines were taken
of the different scanning resolution models. Based on the
Barton model, which links the roughness of the structural
plane with the shear strength and compressive strength,
the roughness coefficient JRC value of the profile line was
calculated. The relationship between Ar and JRC was stu-
died. Similar to Figure 9, the JRC values of the profile
lines are shown in Figure 10.

The relationship curve of JRC to Ar is shown in
Figure 11. With a decrease in resolution (Ar increasing),
the roughness of the structural surface gradually decreases,
and they are related exponentially. Its change trend is
basically consistent with the change trend of MSD, and

a relationship between M;" and JRC is established as
follows:

JRC = -444.52(R2°)? + 1050.8R." - 614.56.  (6)

DE GRUYTER

N
ARK T
RSO
PO
ANy
N
RN

N

N
N
o

%
NKKR
')

N
N

NN
RN
%

SRRRDE
SNE N
NP

N
R
N
RPN
NN
LN

2
g

N
RRRN

N
NN
RN

R

NN
K1

N“
N
Bis
%A’A

SN
Vel
N2
%4
\A
N
N
%

N
RN
NN

7N
%!
N

£t
b

S NN

RISy N AN

AN sasﬂ ?m‘%%“
%

N
NN

SRR

(caption on next page)



DE GRUYTER

Figure 7: Model and grid of a 3D scanned model. (a) 3D model (Ar =
0.4 mm). (b) Triangular grid diagram (Ar = 0.4 mm). (c) 3D model
(Ar = 0.6 mm). (d) Triangular grid diagram (Ar = 0.6 mm). (e) 3D
model (Ar = 0.8 mm). (f) Triangular grid diagram (Ar = 0.8 mm).
(g) 3D model (Ar = 1.0 mm). (h) Triangular grid diagram (Ar =

1.0 mm). (i) 3D model (Ar = 2.0 mm). (j) Triangular grid diagram (Ar =
2.0 mm). (k) 3D model (Ar = 3.0 mm). (l) Triangular grid diagram
(Ar = 3.0 mm). (m) 3D model (Ar = 4.0 mm). (n) Triangular grid
diagram (Ar = 4.0 mm).

We can see from the aforementioned figures that with
a decrease in the scanning resolution (an increase in Ar),
RSD and JRC gradually decrease. When the scanning reso-

lution is reduced to 10.6mm, the R3" value is 1.061.

— 679
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4 Prediction model of shear
strength based on 3D roughness
On the basis of the quantitative description of the 3D
structural surface and the Barton model [48], we estab-
lished a 3D shear strength estimation formula by adopting

the MSD of the structural surface undulating coefficient a
follows:

T= antg[(—o.oozs(MgD)2 +0.0098M;° ¢ < 20 MPa,

+ O.9076)1g( ICS) + (pb],

On

1 (8)
Substituting 10.6 into the formula in Figure 11, the JRC
N T Gem s J T = 0ptg| (~0.0028(M;P)? + 0.0098M° o > 20 MPa.
value is 0.01, which is near 0, indicating that the struc-
tural surface is near the plane. When the scanning reso- 01 - 0
lution is enhanced, R;” and JRC also increase, but the JRC + 0'9076)1g( o, ) + ‘Pb]’
value does not increase when the scanning resolution
reaches 0.2 mm. Therefore, we suggest that during the (Ar = 0.4 mm), where
scanning process of the structural surface topography,
the scanning resolution should be adjusted to be from
0.4mm. At the same time, the function relationship
between JRC and MSD was established, as shown in the
following equation:
1.2 1~
JRC = -0.0028(M7")? + 0.0098M;" @)
{ &
+ 0.9076 (0.1 mm < Ar < 1 mm), 1.18
5 5 S50 YT [sa\! R BN y= 113160077
where M7 = (R3P)™! = (%) = (?Q) . 8 114 - N R?=(.8348
Zi:] St T é.‘ "\\
In the above formula, M;" is the reciprocal of the 1.12 A *
undulation coefficient (M" = O represents the vertical 11 | . -®
horizontal plane, the projected area is 0, and MSD =1 - ®
indicates that the surface is near an ideal horizontal 1.08 j ' i ' '
0 1 2 3 4 5
plane). S, represents the slope area of the structural sur- . .
. L. Scanning resolution A7 (mm)
face. St represents the area of the horizontal projection.
Ar is the scanning resolution (Figures 12 and 13). Figure 8: Relation curve of Ar with R3.
Table 2: Geometric parameters of the structural plane at different resolutions
Number Scanning Triangular mesh Slope area of the structural Area of the horizontal R;D
resolution (mm) number plane (mm?) projection (mm?)
1 0.4 62,040 5648.3 4775.94 1.182
2 0.6 27,525 5414.6 4775.94 1.133
3 0.8 15,650 5404.5 4775.94 1.131
4 1 9,940 5356.1 4775.94 1.121
5 2 2,620 5306.2 4775.94 111
6 3 1,247 5262.2 4775.94 1.101
7 4 706 5224.7 4775.94 1.093
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Figure 9: Section line of the structural plane.

-1

YiSa) _(Sa)’

MSD = (RSD)_I = (ZlNils ! = 5_2 (0 < MSD < 1)-
i=1 OTi

In the above formula, MSD is the reciprocal of the
undulation coefficient (Mg’D = 0 represents the vertical

horizontal plane, the projected area is 0, and MSD =
indicates that the surface is near an ideal horizontal
plane). Sq represents the slope area of the structural sur-
face. St represents the area of the horizontal projection. Ar
is the scanning resolution. The joint compression strength
(JCS) represents the compressive strength of the rock. ¢y,
is the basic friction angle of the structural plane.

5 Discussion

A shear test under different stress levels was conducted to
verify the reliability of the shear strength model. The
reliability of the theoretical formula was evaluated by
comparing the error of the test value to the predicted
value. During the experiment, the normal stress was
0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 MPa. The structural surface
sample is shown in Figure 14. The compressive strength
was 52.5 MPa and the basic friction angle was 45.48° after
28 days of standard curing. The resolution of the scan-
ning instrument was 0.4 mm, via scanning and calcula-
tion, Mg = 0.7642.

Figure 15 shows the laser scanning image following
the shear test under different stresses. With an increase in
the normal stress, the loss degree of the structural surface
gradually increases. When the normal stress is relatively
low, the surface of the structural plane is significantly
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damaged, and this results in a sliding type after climbing
over the convex body.

T=0tgp + C. 9

When the normal stress was increased gradually, the
convex was cut and slippage shear failure occurred.
According to the experimental data of the shearing results,
the relationship curve between the shear stress and the
positive stress was plotted. The shear stress was the ver-
tical coordinate and the normal stress was the horizontal
coordinate, and C and ¢ were obtained according to for-
mula (9). At the same time, the theoretical prediction
model was applied. C and ¢ were obtained after accu-
rate determination of M®, JCS, and ¢y, as shown in
Figure 16.

Experimental values and theoretical prediction values
were calculated, and the results are shown in Table 3.
The friction angle was 41.5° and the cohesion coefficient
C was 0.32 MPa by experiment. The friction angle was
42.9° and the cohesion C was 0.29 MPa using the theo-
retical prediction model. Through the linear fitting of
the 95% confidence interval of the model formula, the
experimental values are within the confidence band.
The average error of the shear strength was 10.4%.
The errors of friction angle and the cohesion C were
3.4% and 9.4%. The results show that the formula is
reliable.

The test assumes that the structural plane is hard and
does not consider the anisotropy of the structural plane.
The established theoretical prediction model can well
predict the friction angle and the cohesion C, but the
shear strength is not very ideal when the normal stress
is small. We believe that the cohesion C still has some
internal relationships with M;". Through the shear test of
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Figure 10: Sectional morphology and JRC value at different resolutions.
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Figure 11: Relation curve of JRC with different resolutions.
Figure 13: Relation curve of M3’-JRC.
0.94 - samples with different proportions, we may be able to
find the relationship between them and then modify the
0.92 ~ % theoretical model.
E
0.9 - e
8 *
. 0.88 A *e” :
- ¥ = 08837004 6 Conclusions
/. R2=0.8348
086 4 . .
The model of an irregular structure was prepared via
084 * material preparation and 3DP. Laser scanning was used
T 1 2 3 4 5 to obtain the surface topography of the rock structural

scanning resolution 41 (mm) surface and produce a quantitative model of the 3D topo-

graphy of the irregular structure. Based on the fluctuation

Figure 12: Relation curve of M3°-Ar.

No.l 0,=0.5MPa No.3 0,=1.5MPa

No.4 0,=2.0MPa No.5 0,=2.5MPa No.6  0,=3MPa

Figure 14: Model of structural plane sample.
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\

No.5, scanning, 0,=2.5MPa No.6, scanning, ¢,=3.0MPa

Figure 15: Laser scanning image of the structural plane after the shear test.

coefficient M;", the functional relationship between JRC

@ Expriment et and MSD was established and embedded into the Barton
55 - - - Linear Fit - model. Then, a prediction model was established for the

' e 9 shear strength, and the following was found:
204 ) (1) Using the composite silicate cement and sand as
main ingredients, silica powder and silicon carbide
were added as additives, and with a small amount of
Q -t ¥ = 0.8859x+0.32 early strength admixture, rock model materials were
1.0 Lo R2=099 prepared. The ratio of cement to sand is 1:1.5, cement

-0‘ p=415° to water is 1:0.3. In addition, 10% silica powder, 15%
054" C=0.32MPa silicon carbide, 1.5% water reducer, and 2% accel-
erator were used.

T T T T (2) The undulation coefficient MSD was used to describe

05 1.0 13 20 23 30 the 3D fluctuation of the structural surface, and
o (MPa) ) .

its value was the ratio of the slope area to the

@ horizontal projection area for the structural surface.

(3) A ZScanner® 800 portable 3D laser scanner was used

@ Expriment 8 : for structural plane scanning, and the relationship

1 O E‘f:;:gial Model L curves of Ar to M;" and JRC were obtained. With

55 95% Prediction Band . o the decrease in resolution, the variation trend of

95% Confidence Band T o JRC and M;" decreases exponentially. The scanning

204 i Q resolution should be adjusted to be 0.4 mm during

L the scanning. The established functional relationship

154 . 8 0927954029 between JRC and M;" is credible.
Q- y=0. x+0.
O

T (MPa)

‘ R%=0.95 (4) A formula for estimating the shear strength of the

1.0 . 9 =42.9° 3D structural surface was established based on the

a C=0.29MPa quantization parameters of the 3D structural surface.

8 Experimental verification was conducted. The experi-

T T T T T T mental values are within the confidence band of the

0.5 1.0 15 20 25 30 95% confidence interval of the model formula, and

o (MPa) the average error of the shear strength was 10.4%.

(®) The errors of friction angle and the cohesion C were

Figure 16: Relationship curves of 7—o under different methods: (a) 3.4 and 9.4%, showing that the formula of the shear
based on prediction model and (b) based on shear test. strength model is reliable.

0.5 4
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Table 3: Comparison of the experimental value of shear strength and the prediction value of the theoretical model

No. Normal stress (MPa) Shear strength based on tests MPBD Shear strength based on prediction model Error (%)
T (MPa) C (MPa) P T (MPa) C (MPa) P
1 0.5 0.6908 0.32 41,5 0.7642 0.5423 0.29 42.9 21.5
2 1.0 1.3188 0.7642 1.0742 18.6
3 1.5 1.6956 0.7642 1.6022 5.5
4 2.0 2.0560 0.7642 2.1277 3.4
5 2.5 2.4288 0.7642 2.6515 9.2
6 3.0 3.0533 0.7642 3.1737 4.0
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